博碩士論文 992413001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.85.214.0
姓名 曾愛倫(Ai-Lun Tseng)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 中國傳統醫藥蒙古黃耆在HCT116結腸癌細胞體外和體內實驗呈現腫瘤抑制作用
(Traditional Chinese Medicine Astragalus membranaceus (Fischer) Bge. var. mongolicus (Bge.) Hsiao Exhibits Tumor Inhibitory Effect in HCT116 Colorectal Cancer Cells in vitro and in vivo)
相關論文
★ 人類陰道滴蟲之Myb2蛋白質動態性質研究★ 分析原核生物基因體複製起點與終點的反向對偶對稱現象
★ 分析基因體拷貝數變異所使用的兩種方法比較:隱藏馬可夫模型與成對高斯合併法★ 使用兩種方法偵測基因體拷貝數變異:成對高斯合併法與隱藏馬可夫模型
★ 以整體晶片數據為母體應用於分析基因差異表達的z檢定方法★ GSLHC - 運用基因組及層次類聚以生物功能群將有生物活性的複合物定性的方法
★ 一個檢定測量微晶片基因表達數據靈敏度的全統計計算法★ 運用嶄新抗體固著策略發展及驗證新式抗體微晶片平台
★ Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells★ 創傷性關節炎軟骨之退化進程- 大鼠模型基因體圖譜研究
★ 基因體功能統合分析在阿茲海默症和大腦老化-近年阿茲海默症研發藥物失敗的理論問題探討★ 運用時間序列微陣列資料來預測調控基因
★ 以大鼠嗜鉻性瘤細胞株建立神經訊號傳遞之細胞分子生物學模型★ 一種找尋再利用藥物複合物來系統性治療複雜疾病的架構:大腸直腸腺瘤的應用
★ 中草藥BP004誘導管腔A型乳腺癌細胞凋亡★ 以上皮細胞間質化與增生相關功能來描述癌症幹細胞之基因型
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 許多腫瘤細胞在治療過程中會去抵抗化療藥物所產生的細胞毒性,因此,有需要重新審視傳統中草藥於大腸直腸癌的治療。此研究利用黃耆萃取物治療HCT116大腸癌細胞的研究發現黃耆確實具有抗腫瘤生長的功能。在動物實驗中,我們發現經過黃耆治療的小鼠腫瘤體積較對照組有顯著縮小。藉由基因晶片圖譜分析後,發現表觀基因體與代謝等相關的功能產生變化。另外,在微核糖核酸分析中,許多標靶微核糖核酸也參與代謝及細胞內運輸有關之功能。此研究也運用Library of Integrated Network-based Cellular Signatures資料庫找出與黃耆作用相似的天然藥物。經黃耆治療後的異種移植小鼠血清中使用酵母菌蛋白質晶片偵測其蛋白質表現量也不同於對照組,並發現免疫相關的生物標記物在血液中具有顯著差異。最後,本實驗室也建立一組對5-氟尿嘧啶抗藥的HCT116細胞株。這些細胞株不只呈現多倍體的型態,而在5-氟尿嘧啶與黃耆合併治療中也能抑制細胞存活率。我們的研究結果發現黃耆對於大腸直腸癌具有潛在的治療作用,希望此研究將提供其影響性在藥廠等商業應用上。
摘要(英) The fact that many chemotherapeutic drugs cause chemoresistance and side effects during the course of treating colorectal cancer necessitates development of novel cytotoxic agents aiming to attenuate new molecular targets. Here, we show that Astragalus membranaceus (Fischer) Bge. var. mongolicus (Bge.) Hsiao (AM), a traditional Chinese medicine, can inhibit tumor growth in vitro and in vivo thus the underlying molecular mechanisms are elucidated. The effects of AM on HCT116 cell viability and apoptotic events were studied over a dose range of 0-500 μg/ml. The viability assay showed that AM-treated cells were significantly lower than control. In the animal model, the mice were treated with either water or 500 mg/kg AM once per day, before being sacrificed for extraction of tumors and serum, which were then subjected to microarray expression profiling. The identified genes as differentially expressed between treated mice and controls revealed that administration of AM suppresses chromosome organization, histone modification, regulation of macromolecule metabolic process and others. A separate analysis focused on differentially expressed microRNAs revealed involvement of macromolecule metabolism, intracellular transport, etc. and implicated several cancer signaling pathways. For validation, inputting the identified genes to The Library of Integrated Network-based Cellular Signatures led to many chemopreventive agents of natural origin that produce similar gene expression profiles to that of AM. The mouse sera analysis revealed many immune system-related markers, suggesting the immunosuppressant effect of AM. Finally, a separate study on 5-fluorouracil resistant HCT116 subclones shows the cells possess polyploidy morphology and when the subclones were treated with both AM and 5-fluorouracil, the number of viable cells decreased significantly. The demonstrated effectiveness of AM suggests a potential therapeutic medicine for CRC.
關鍵字(中) ★ 大腸癌
★ 基因晶片
★ 黃耆
★ 異種移植
關鍵字(英) ★ Colorectal cancer
★ Microarray
★ Astragalus membranaceus
★ xenograft
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures vi
List of Tables vii
List of Abbreviations viii
Chapter 1. Introduction 1
1.1 Epidemiology: Diagnosis and Staging 1
1.2 Treatment 2
1.3 Molecular Analysis of Colorectal Cancer 3
1.4 Herbal Medicine in the Treatment of Colorectal Cancer 4
1.5 Astragalus membranaceus (Fischer) Bge. var. mongolicus (Bge.) Hsiao (AM) in Cancer Treatment 6
1.6 Significance and Project Aims 7
Chapter 2. Materials and methods 9
2.1 Ethics Statement 9
2.2 Cell Lines and Culture Condition 9
2.3 Preparation of AM 9
2.4 alamarBlue® Viability Assay 10
2.5 Trypan Blue Viability Assay 10
2.6 FACS Analysis 10
2.7 Tumor Xenografts Experiment 11
2.8 Microarray Experiment 11
2.9 Analysis of Microarray Gene Expression Profile 12
2.10 Real-time PCR Validation 13
2.11 Database Analysis for Differentially Expressed microRNAs 13
2.12 Identification of Compound Signature Using LINCS 14
2.13 Western Blotting 14
2.14 Immunohistochemical Staining 15
2.15 Yeast Proteome Microarray Assay 15
2.16 Yeast Proteome Array Data Processing 16
2.17 Statistical Analysis 17
Chapter 3. Effect and Molecular Analysis of AM on HCT116 Cells in vitro and in vivo 18
3.1 Introduction and Objective 18
3.2 Results 20
3.2.1 AM Suppresses The Growth of HCT116 Cells in vitro 20
3.2.2 The Inhibitive Effects of AM in vivo 21
3.2.3 Bioinformatics Analysis of Molecular Mechanisms 21
3.2.4 Focal Analysis on miRNA 23
3.2.5 Experimental Validation of Bioinformatics Analysis on Migration and Angiogenesis of HCT116 cells 24
3.2.6 Drug Predictions Using LINCS 24
3.2.7 Identification of Differentially Expressed Yeast Genes from Mouse Sera 24
3.2.8 Functional Classification, Pathway and Network Analysis 25
3.3 Discussion 27
Chapter 4. Microarray Analysis of 5-fluorouracil-induced Resistant HCT116 Colorectal Cancer Cells 36
4.1 Introduction and Objective 36
4.2 Results 37
4.2.1Effect of 5FU on Proliferative Activity of HCT116 Parental and HCT116 Resistance Subclones 37
4.2.2 Hierarchical Clustering and Functional Analysis of HCT116 Parental and Resistant Subclones 37
4.2.3 Characteristics of HCT116 Resistant Subclones and AM Effect in Combined Therapy 38
4.3 Discussion 38
Chapter 5. Conclusion 40
References 41
Supplementary Table 1. 92
Supplementary Table 2. 93
Supplementary Table 3. 94
Supplementary Table 4. 95
Supplementary Table 5. 96
Supplementary Table 6. 97
Supplementary Table 7. 98
Supplementary Figure 1. 99
Supplementary Figure 2. 100
Supplementary Figure 3. 101
Supplementary Figure 4. 105
Supplementary Figure 5. 109
Supplementary Figure 6. 113
參考文獻 1. GLOBOCAN.
2. Taiwan Codsi. 2012.
3. Su SY, Huang JY, Jian ZH, et al. Mortality of colorectal cancer in Taiwan, 1971-2010: temporal changes and age-period-cohort analysis. International journal of colorectal disease. 2012;27(12):1665-1672.
4. Lynch HT, de la Chapelle A. Hereditary colorectal cancer. The New England journal of medicine. 2003;348(10):919-932.
5. Kamiza AB, Hsieh LL, Tang R, et al. Risk Factors Associated with Colorectal Cancer in a Subset of Patients with Mutations in MLH1 and MSH2 in Taiwan Fulfilling the Amsterdam II Criteria for Lynch Syndrome. PloS one. 2015;10(6):e0130018.
6. Cunningham D, Atkin W, Lenz HJ, et al. Colorectal cancer. Lancet. 2010;375(9719):1030-1047.
7. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260(5109):816-819.
8. de la Chapelle A. Microsatellite instability. The New England journal of medicine. 2003;349(3):209-210.
9. Aaltonen LA, Peltomaki P, Leach FS, et al. Clues to the pathogenesis of familial colorectal cancer. Science. 1993;260(5109):812-816.
10. Bronner CE, Baker SM, Morrison PT, et al. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature. 1994;368(6468):258-261.
11. Fishel R, Lescoe MK, Rao MR, et al. The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell. 1993;75(5):1027-1038.
12. Lynch HT, Lynch PM, Lanspa SJ, et al. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clinical genetics. 2009;76(1):1-18.
13. Vasen HF, Watson P, Mecklin JP, et al. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology. 1999;116(6):1453-1456.
14. Umar A, Boland CR, Terdiman JP, et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. Journal of the National Cancer Institute. 2004;96(4):261-268.
15. Burt RW, Bishop DT, Lynch HT, et al. Risk and surveillance of individuals with heritable factors for colorectal cancer. WHO Collaborating Centre for the Prevention of Colorectal Cancer. Bulletin of the World Health Organization. 1990;68(5):655-665.
16. Galiatsatos P, Foulkes WD. Familial adenomatous polyposis. The American journal of gastroenterology. 2006;101(2):385-398.
17. Brown G, Radcliffe AG, Newcombe RG, et al. Preoperative assessment of prognostic factors in rectal cancer using high-resolution magnetic resonance imaging. The British journal of surgery. 2003;90(3):355-364.
18. Bipat S, Glas AS, Slors FJ, et al. Rectal cancer: local staging and assessment of lymph node involvement with endoluminal US, CT, and MR imaging--a meta-analysis. Radiology. 2004;232(3):773-783.
19. Nordlinger B, Sorbye H, Glimelius B, et al. Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet. 2008;371(9617):1007-1016.
20. Colucci G, Gebbia V, Paoletti G, et al. Phase III randomized trial of FOLFIRI versus FOLFOX4 in the treatment of advanced colorectal cancer: a multicenter study of the Gruppo Oncologico Dell′Italia Meridionale. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23(22):4866-4875.
21. Quasar Collaborative G, Gray R, Barnwell J, et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007;370(9604):2020-2029.
22. Arnaud JP, Dumont P, Adloff M, et al. Natural history of colorectal carcinoma with untreated liver metastases. Surgical gastroenterology. 1984;3(1):37-42.
23. Misiakos EP, Karidis NP, Kouraklis G. Current treatment for colorectal liver metastases. World journal of gastroenterology : WJG. 2011;17(36):4067-4075.
24. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330-337.
25. Van Cutsem E RP, Kohne CH, Stroh C, Schlichting M, Bokemeyer C. A meta-analysis of the CRYSTAL and OPUS studies combining cetuximab with chemotherapy as 1st-line treatment for patients with metastatic colorectal cancer: results according to KRAS and BRAF mutation status. European journal of cancer. 2009;7:6077.
26. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138(6):2073-2087 e2073.
27. Tejpar S, Bosman, F., Delorenzi, M., Fiocca, R., Yan, P., Klingbiel, D., Dietrich, D., Van Cutsem, E., Labianca, R., Roth, A. . Microsatellite instability (MSI) in stage II and III colon cancer treated with 5FU-LV or 5FULV and irinotecan (PETACC 3-EORTC 40993-SAKK 60/00 trial). Proc ASCO Meeting Abstracts. 2009;27.
28. Sargent DJ, Marsoni, S., Thibodeau, S. N., Labianca, R., Hamilton, S. R., Torri, V., Monges, G., Ribic, C., Grothey, A., Gallinger, S. . Confirmation of deficient mismatch repair (dMMR) as a predictive marker for lack of benefit from 5-FU based chemotherapy in stage II and III colon cancer (CC): A pooled molecular reanalysis of randomized chemotherapy trials. Proc ASCO Meeting Abstracts. 2008;26 (15 suppl).
29. Alazzouzi H, Alhopuro P, Salovaara R, et al. SMAD4 as a prognostic marker in colorectal cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005;11(7):2606-2611.
30. Alhopuro P, Alazzouzi H, Sammalkorpi H, et al. SMAD4 levels and response to 5-fluorouracil in colorectal cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2005;11(17):6311-6316.
31. Wong CS, Wong VW, Chan CM, et al. Identification of 5-fluorouracil response proteins in colorectal carcinoma cell line SW480 by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Oncology reports. 2008;20(1):89-98.
32. Qi F, Li A, Inagaki Y, et al. Chinese herbal medicines as adjuvant treatment during chemo- or radio-therapy for cancer. Bioscience trends. 2010;4(6):297-307.
33. Wen Z, Wang Z, Wang S, et al. Discovery of molecular mechanisms of traditional Chinese medicinal formula Si-Wu-Tang using gene expression microarray and connectivity map. PloS one. 2011;6(3):e18278.
34. Small EJ, Frohlich MW, Bok R, et al. Prospective trial of the herbal supplement PC-SPES in patients with progressive prostate cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2000;18(21):3595-3603.
35. Kubota T, Hisatake J, Hisatake Y, et al. PC-SPES: a unique inhibitor of proliferation of prostate cancer cells in vitro and in vivo. The Prostate. 2000;42(3):163-171.
36. Olaku O, White JD. Herbal therapy use by cancer patients: a literature review on case reports. European journal of cancer. 2011;47(4):508-514.
37. Wilken R, Veena MS, Wang MB, et al. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular cancer. 2011;10:12.
38. Lai H, Sasaki T, Singh NP. Targeted treatment of cancer with artemisinin and artemisinin-tagged iron-carrying compounds. Expert opinion on therapeutic targets. 2005;9(5):995-1007.
39. Lai HC, Singh NP, Sasaki T. Development of artemisinin compounds for cancer treatment. Investigational new drugs. 2013;31(1):230-246.
40. Miura K, Satoh M, Kinouchi M, et al. The use of natural products in colorectal cancer drug discovery. Expert Opin Drug Dis. 2015;10(4):411-426.
41. Wall ME, Wani, M. C., Cook, C. E., Palmer, K. H., McPhail, A. T., Sim, G. A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminate. Journal of the American Chemical Society. 1966;88.
42. Howells LM, Sale S, Sriramareddy SN, et al. Curcumin ameliorates oxaliplatin-induced chemoresistance in HCT116 colorectal cancer cells in vitro and in vivo. International journal of cancer Journal international du cancer. 2011;129(2):476-486.
43. Mimura I, Tanaka T, Wada Y, et al. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: epigenetic regulation of the hypoxic response via hypoxia-inducible factor and histone modifying enzymes. Journal of pharmacological sciences. 2011;115(4):453-458.
44. Kizaka-Kondoh S, Kuchimaru T, Kadonosono T. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery:hypoxia-inducible factor-1 (HIF-1)-active cells as a target for cancer therapy. Journal of pharmacological sciences. 2011;115(4):440-445.
45. Tomita S, Kihira Y, Imanishi M, et al. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery:inflammatory responses of hypoxia-inducible factor 1alpha (HIF-1alpha) in T cells observed in development of vascular remodeling. Journal of pharmacological sciences. 2011;115(4):433-439.
46. Nagasawa H. Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: drug discovery for targeting the tumor microenvironment. Journal of pharmacological sciences. 2011;115(4):446-452.
47. Tin MM, Cho CH, Chan K, et al. Astragalus saponins induce growth inhibition and apoptosis in human colon cancer cells and tumor xenograft. Carcinogenesis. 2007;28(6):1347-1355.
48. Ren S, Zhang H, Mu Y, et al. Pharmacological effects of Astragaloside IV: a literature review. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan / sponsored by All-China Association of Traditional Chinese Medicine, Academy of Traditional Chinese Medicine. 2013;33(3):413-416.
49. Ma XQ, Shi Q, Duan JA, et al. Chemical analysis of Radix Astragali (Huangqi) in China: a comparison with its adulterants and seasonal variations. Journal of agricultural and food chemistry. 2002;50(17):4861-4866.
50. Agyemang K, Han L, Liu E, et al. Recent Advances in Astragalus membranaceus Anti-Diabetic Research: Pharmacological Effects of Its Phytochemical Constituents. Evidence-based complementary and alternative medicine : eCAM. 2013;2013:654643.
51. Kitagawa I, Wang, H. K., Saito, M. . Saponin and Sapogenol. XXXV. Chemical constituents of Astragali Radix, the root of Astragalus membranaceus Bunge. (2). Astragalosides I, II, and IV, acetylastragaloside I and isoastragalosides I and II. Chemical and Pharmaceutical Bulletin. 1983;31(2):698-708.
52. Kitagawa I, Wang, H. K., Saito, M., Yoshikawa, M. Saponin and Sapogenol. XXXVI. Chemical constituents of Astragali Radix, the root of Astragalus membranaceus Bunge. (3). Astragalosides III, V, and VI. Chemical and Pharmaceutical Bulletin. 1983;31(2):709-715.
53. Kitagawa I, Wang, H. K., Saito, M., Yoshikawa, M. Saponin and Sapogenol. XXXVII. Chemical constituents of Astragali Radix, the root of Astragalus membranaceus Bunge. (4) Astragalosides VII and VIII. Chemical and Pharmaceutical Bulletin. 1983;31(2):716-722.
54. Hong F, Xiao W, Ragupathi G, et al. The known immunologically active components of Astragalus account for only a small proportion of the immunological adjuvant activity when combined with conjugate vaccines. Planta medica. 2011;77(8):817-824.
55. Huang C, Xu D, Xia Q, et al. Reversal of P-glycoprotein-mediated multidrug resistance of human hepatic cancer cells by Astragaloside II. The Journal of pharmacy and pharmacology. 2012;64(12):1741-1750.
56. Wan CP, Gao LX, Hou LF, et al. Astragaloside II triggers T cell activation through regulation of CD45 protein tyrosine phosphatase activity. Acta pharmacologica Sinica. 2013;34(4):522-530.
57. Li ZP, Cao Q. Effects of astragaloside IV on myocardial calcium transport and cardiac function in ischemic rats. Acta pharmacologica Sinica. 2002;23(10):898-904.
58. Zhang N, Wang XH, Mao SL, et al. Astragaloside IV improves metabolic syndrome and endothelium dysfunction in fructose-fed rats. Molecules. 2011;16(5):3896-3907.
59. Zhu ZH, Wan HT, Li JH. Chuanxiongzine-astragaloside IV decreases IL-1beta and Caspase-3 gene expressions in rat brain damaged by cerebral ischemia/reperfusion: a study of real-time quantitative PCR assay. Sheng li xue bao : [Acta physiologica Sinica]. 2011;63(3):272-280.
60. Luo Y, Qin Z, Hong Z, et al. Astragaloside IV protects against ischemic brain injury in a murine model of transient focal ischemia. Neuroscience letters. 2004;363(3):218-223.
61. Li M, Qu YZ, Zhao ZW, et al. Astragaloside IV protects against focal cerebral ischemia/reperfusion injury correlating to suppression of neutrophils adhesion-related molecules. Neurochemistry international. 2012;60(5):458-465.
62. Chan WS, Durairajan SS, Lu JH, et al. Neuroprotective effects of Astragaloside IV in 6-hydroxydopamine-treated primary nigral cell culture. Neurochemistry international. 2009;55(6):414-422.
63. Cheng X, Gu J, Zhang M, et al. Astragaloside IV inhibits migration and invasion in human lung cancer A549 cells via regulating PKC-alpha-ERK1/2-NF-kappaB pathway. International immunopharmacology. 2014;23(1):304-313.
64. Zhang A, Zheng Y, Que Z, et al. Astragaloside IV inhibits progression of lung cancer by mediating immune function of Tregs and CTLs by interfering with IDO. Journal of cancer research and clinical oncology. 2014;140(11):1883-1890.
65. Auyeung KK, Law PC, Ko JK. Novel anti-angiogenic effects of formononetin in human colon cancer cells and tumor xenograft. Oncology reports. 2012;28(6):2188-2194.
66. Jin M, Zhao K, Huang Q, et al. Structural features and biological activities of the polysaccharides from Astragalus membranaceus. International journal of biological macromolecules. 2014;64:257-266.
67. Tian QE, Li HD, Yan M, et al. Astragalus polysaccharides can regulate cytokine and P-glycoprotein expression in H22 tumor-bearing mice. World journal of gastroenterology. 2012;18(47):7079-7086.
68. Tian QE, De Li H, Yan M, et al. Effects of Astragalus polysaccharides on P-glycoprotein efflux pump function and protein expression in H22 hepatoma cells in vitro. BMC complementary and alternative medicine. 2012;12:94.
69. Shen H, Xie, S. R., Zhao, S., Zhang, G. X., Liu, Z. W., Zheng, K., Chao, Y., Shi, R. H., Sun, W. H. Effects of Astragalus polysaccharides on proliferation and apoptosis of gastric cancer cell. Journal of Gastroenterology and hepatology. 2007;22:A176-A176.
70. Guo L, Bai SP, Zhao L, et al. Astragalus polysaccharide injection integrated with vinorelbine and cisplatin for patients with advanced non-small cell lung cancer: effects on quality of life and survival. Medical oncology. 2012;29(3):1656-1662.
71. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics. 2000;25(1):25-29.
72. Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431-432.
73. Hsu SD, Tseng YT, Shrestha S, et al. miRTarBase update 2014: an information resource for experimentally validated miRNA-target interactions. Nucleic acids research. 2014;42(D1):D78-D85.
74. Vlachos IS, Kostoulas N, Vergoulis T, et al. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic acids research. 2012;40(Web Server issue):W498-504.
75. Lamb J. The Connectivity Map: a new tool for biomedical research. Nature reviews Cancer. 2007;7(1):54-60.
76. Duan Q, Flynn C, Niepel M, et al. LINCS Canvas Browser: interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic acids research. 2014;42(Web Server issue):W449-460.
77. Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips. Science. 2001;293(5537):2101-2105.
78. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43(Database issue):D447-452.
79. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-674.
80. Evan GI, Vousden KH. Proliferation, cell cycle and apoptosis in cancer. Nature. 2001;411(6835):342-348.
81. Cho SM, Lee EO, Kim SH, et al. Essential oil of Pinus koraiensis inhibits cell proliferation and migration via inhibition of p21-activated kinase 1 pathway in HCT116 colorectal cancer cells. BMC Complement Altern Med. 2014;14:275.
82. Chu W, Ghahramani Z, Falciani F, et al. Biomarker discovery in microarray gene expression data with Gaussian processes. Bioinformatics. 2005;21(16):3385-3393.
83. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med. 2004;10(8):789-799.
84. Karius T, Schnekenburger M, Dicato M, et al. MicroRNAs in cancer management and their modulation by dietary agents. Biochemical pharmacology. 2012;83(12):1591-1601.
85. Li Y, Kong D, Wang Z, et al. Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharmaceutical research. 2010;27(6):1027-1041.
86. Neelakandan K, Babu P, Nair S. Emerging roles for modulation of microRNA signatures in cancer chemoprevention. Current cancer drug targets. 2012;12(6):716-740.
87. Teiten MH, Dicato M, Diederich M. Curcumin as a regulator of epigenetic events. Molecular nutrition & food research. 2013;57(9):1619-1629.
88. Maurya P, Meleady P, Dowling P, et al. Proteomic approaches for serum biomarker discovery in cancer. Anticancer research. 2007;27(3A):1247-1255.
89. Maric P, Ozretic P, Levanat S, et al. Tumor markers in breast cancer--evaluation of their clinical usefulness. Collegium antropologicum. 2011;35(1):241-247.
90. Mirabelli P, Incoronato M. Usefulness of traditional serum biomarkers for management of breast cancer patients. BioMed research international. 2013;2013:685641.
91. Kirwan A, Utratna M, O′Dwyer ME, et al. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics. BioMed research international. 2015;2015:490531.
92. Wang T, Xuan X, Li M, et al. Astragalus saponins affect proliferation, invasion and apoptosis of gastric cancer BGC-823 cells. Diagnostic pathology. 2013;8:179.
93. Auyeung KK, Law PC, Ko JK. Astragalus saponins induce apoptosis via an ERK-independent NF-kappaB signaling pathway in the human hepatocellular HepG2 cell line. International journal of molecular medicine. 2009;23(2):189-196.
94. Wu JJ, Sun WY, Hu SS, et al. A standardized extract from Paeonia lactiflora and Astragalus membranaceus induces apoptosis and inhibits the proliferation, migration and invasion of human hepatoma cell lines. International journal of oncology. 2013;43(5):1643-1651.
95. Yoshida Y, Wang MQ, Liu JN, et al. Immunomodulating activity of Chinese medicinal herbs and Oldenlandia diffusa in particular. International journal of immunopharmacology. 1997;19(7):359-370.
96. Wang Y, Qian XJ, Hadley HR, et al. Phytochemicals potentiate interleukin-2 generated lymphokine-activated killer cell cytotoxicity against murine renal cell carcinoma. Molecular biotherapy. 1992;4(3):143-146.
97. Shao BM, Xu W, Dai H, et al. A study on the immune receptors for polysaccharides from the roots of Astragalus membranaceus, a Chinese medicinal herb. Biochemical and biophysical research communications. 2004;320(4):1103-1111.
98. Auyeung KK, Mok NL, Wong CM, et al. Astragalus saponins modulate mTOR and ERK signaling to promote apoptosis through the extrinsic pathway in HT-29 colon cancer cells. International journal of molecular medicine. 2010;26(3):341-349.
99. Qin Q, Niu J, Wang Z, et al. Astragalus membranaceus Inhibits Inflammation via Phospho-P38 Mitogen-Activated Protein Kinase (MAPK) and Nuclear Factor (NF)-kappaB Pathways in Advanced Glycation End Product-Stimulated Macrophages. International journal of molecular sciences. 2012;13(7):8379-8387.
100. Auyeung KK, Woo PK, Law PC, et al. Astragalus saponins modulate cell invasiveness and angiogenesis in human gastric adenocarcinoma cells. Journal of ethnopharmacology. 2012;141(2):635-641.
101. Hsieh HY, Chiu PH, Wang SC. Epigenetics in traditional chinese pharmacy: a bioinformatic study at pharmacopoeia scale. Evidence-based complementary and alternative medicine : eCAM. 2011;2011:816714.
102. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12-27.
103. Virani S, Colacino JA, Kim JH, et al. Cancer epigenetics: a brief review. ILAR journal / National Research Council, Institute of Laboratory Animal Resources. 2012;53(3-4):359-369.
104. Feinberg AP, Tycko B. The history of cancer epigenetics. Nature reviews Cancer. 2004;4(2):143-153.
105. Demers C, Chaturvedi CP, Ranish JA, et al. Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. Molecular cell. 2007;27(4):573-584.
106. Glaser S, Lubitz S, Loveland KL, et al. The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics & chromatin. 2009;2(1):5.
107. Morin RD, Mendez-Lago M, Mungall AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476(7360):298-303.
108. Natarajan TG, Kallakury BV, Sheehan CE, et al. Epigenetic regulator MLL2 shows altered expression in cancer cell lines and tumors from human breast and colon. Cancer cell international. 2010;10:13.
109. Guo C, Chen LH, Huang Y, et al. KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget. 2013;4(11):2144-2153.
110. Guo C, Chang CC, Wortham M, et al. Global identification of MLL2-targeted loci reveals MLL2′s role in diverse signaling pathways. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(43):17603-17608.
111. Kim SY, Yang D, Myeong J, et al. Regulation of calcium influx and signaling pathway in cancer cells via TRPV6-Numb1 interaction. Cell calcium. 2013;53(2):102-111.
112. Monteith GR, Davis FM, Roberts-Thomson SJ. Calcium channels and pumps in cancer: changes and consequences. The Journal of biological chemistry. 2012;287(38):31666-31673.
113. Yang H, Zhang Q, He J, et al. Regulation of calcium signaling in lung cancer. Journal of thoracic disease. 2010;2(1):52-56.
114. Zeng L, Zhou MM. Bromodomain: an acetyl-lysine binding domain. FEBS letters. 2002;513(1):124-128.
115. Belkina AC, Denis GV. BET domain co-regulators in obesity, inflammation and cancer. Nature reviews Cancer. 2012;12(7):465-477.
116. Dawson MA, Prinjha RK, Dittmann A, et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature. 2011;478(7370):529-533.
117. Greenwald RJ, Tumang JR, Sinha A, et al. E mu-BRD2 transgenic mice develop B-cell lymphoma and leukemia. Blood. 2004;103(4):1475-1484.
118. Belkina AC, Nikolajczyk BS, Denis GV. BET protein function is required for inflammation: Brd2 genetic disruption and BET inhibitor JQ1 impair mouse macrophage inflammatory responses. Journal of immunology. 2013;190(7):3670-3678.
119. Munoz-Pinedo C, El Mjiyad N, Ricci JE. Cancer metabolism: current perspectives and future directions. Cell death & disease. 2012;3:e248.
120. Warburg O, Posener, K., Negelein, E. Ueber den stoffwechsel der tumoren. Biochem Z. 1924;152:319-344.
121. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-314.
122. DeBerardinis RJ, Lum, J. J., Hatzivassiliou, G., Thompson, C. The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation. Cell Metabolism. 2008;7(1):11-20.
123. Han S, Kim S, Bahl S, et al. The E3 ubiquitin ligase protein associated with Myc (Pam) regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling in vivo through N- and C-terminal domains. The Journal of biological chemistry. 2012;287(36):30063-30072.
124. Weidensdorfer D, Stohr N, Baude A, et al. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. Rna. 2009;15(1):104-115.
125. Nikiforov MA, Chandriani S, Park J, et al. TRRAP-dependent and TRRAP-independent transcriptional activation by Myc family oncoproteins. Molecular and cellular biology. 2002;22(14):5054-5063.
126. Han S, Witt RM, Santos TM, et al. Pam (Protein associated with Myc) functions as an E3 ubiquitin ligase and regulates TSC/mTOR signaling. Cellular signalling. 2008;20(6):1084-1091.
127. Yecies JL, Manning BD. Transcriptional control of cellular metabolism by mTOR signaling. Cancer research. 2011;71(8):2815-2820.
128. Zou F, Mao XQ, Wang N, et al. Astragalus polysaccharides alleviates glucose toxicity and restores glucose homeostasis in diabetic states via activation of AMPK. Acta pharmacologica Sinica. 2009;30(12):1607-1615.
129. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-1033.
130. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. The Journal of clinical investigation. 2001;108(8):1167-1174.
131. de Krijger I, Mekenkamp LJ, Punt CJ, et al. MicroRNAs in colorectal cancer metastasis. The Journal of pathology. 2011;224(4):438-447.
132. Dong H, Lei J, Ding L, et al. MicroRNA: function, detection, and bioanalysis. Chemical reviews. 2013;113(8):6207-6233.
133. Roy S, Levi E, Majumdar AP, et al. Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. Journal of hematology & oncology. 2012;5:58.
134. Qiu YY, Hu Q, Tang QF, et al. MicroRNA-497 and bufalin act synergistically to inhibit colorectal cancer metastasis. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35(3):2599-2606.
135. Chu Y, Ouyang Y, Wang F, et al. MicroRNA-590 promotes cervical cancer cell growth and invasion by targeting CHL1. Journal of cellular biochemistry. 2014;115(5):847-853.
136. Jiang X, Xiang G, Wang Y, et al. MicroRNA-590-5p regulates proliferation and invasion in human hepatocellular carcinoma cells by targeting TGF-beta RII. Molecules and cells. 2012;33(6):545-551.
137. Yang H, Zheng W, Zhao W, et al. [Roles of miR-590-5p and miR-590-3p in the development of hepatocellular carcinoma]. Nan fang yi ke da xue xue bao = Journal of Southern Medical University. 2013;33(6):804-811.
138. Fearon ER. Molecular genetics of colorectal cancer. Annual review of pathology. 2011;6:479-507.
139. Efferth T, Li PC, Konkimalla VS, et al. From traditional Chinese medicine to rational cancer therapy. Trends in molecular medicine. 2007;13(8):353-361.
140. Kannaiyan R, Manu KA, Chen L, et al. Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3 K/Akt signaling pathways. Apoptosis : an international journal on programmed cell death. 2011;16(10):1028-1041.
141. Creeden J, Junker F, Vogel-Ziebolz S, et al. Serum tests for colorectal cancer screening. Molecular diagnosis & therapy. 2011;15(3):129-141.
142. Kolaczkowski M, Kolaczowska A, Luczynski J, et al. In vivo characterization of the drug resistance profile of the major ABC transporters and other components of the yeast pleiotropic drug resistance network. Microb Drug Resist. 2009;4(3):143-158.
143. Alberts B. Molecular biology of the cell. New York: Garland Science 2002.
144. Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer cell. 2006;10(1):51-64.
145. Yang ZNJ, Chee CE, Huang SB, et al. The Role of Autophagy in Cancer: Therapeutic Implications. Mol Cancer Ther. 2011;10(9):1533-1541.
146. Yoshioka A, Miyata H, Doki Y, et al. LC3, an autophagosome marker, is highly expressed in gastrointestinal cancers. International journal of oncology. 2008;33(3):461-468.
147. Scherz-Shouval R, Weidberg H, Gonen C, et al. p53-dependent regulation of autophagy protein LC3 supports cancer cell survival under prolonged starvation. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(43):18511-18516.
148. Wen SJ, Zhu DQ, Huang P. Targeting cancer cell mitochondria as a therapeutic approach. Future Med Chem. 2013;5(1):53-67.
149. Riether C, Schurch CM, Ochsenbein AF. Regulation of hematopoietic and leukemic stem cells by the immune system. Cell death and differentiation. 2015;22(2):187-198.
150. Cho WC, Leung KN. In vitro and in vivo immunomodulating and immunorestorative effects of Astragalus membranaceus. Journal of ethnopharmacology. 2007;113(1):132-141.
151. Merzendorfer H, Zimoch L. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol. 2003;206(Pt 24):4393-4412.
152. Gloeckner C, Garner AL, Mersha F, et al. Repositioning of an existing drug for the neglected tropical disease Onchocerciasis. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(8):3424-3429.
153. Zheng T, Rabach M, Chen NY, et al. Molecular cloning and functional characterization of mouse chitotriosidase. Gene. 2005;357(1):37-46.
154. Chen AC. Chitin Metabolism. Arch Insect Biochem. 1987;6(4):267-277.
155. Yin J, Zhang H, Ye J. Traditional chinese medicine in treatment of metabolic syndrome. Endocr Metab Immune Disord Drug Targets. 2008;8(2):99-111.
156. Zhang N, Wang XH, Mao SL, et al. Astragaloside IV Improves Metabolic Syndrome and Endothelium Dysfunction in Fructose-Fed Rats. Molecules. 2011;16(5):3896-3907.
157. Brush J, Mendenhall E, Guggenheim A, et al. The effect of Echinacea purpurea, Astragalus membranaceus and Glycyrrhiza glabra on CD69 expression and immune cell activation in humans. Phytother Res. 2006;20(8):687-695.
158. Lee DH, Anderson KE, Harnack LJ, et al. Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women′s Health Study. Journal of the National Cancer Institute. 2004;96(5):403-407.
159. Foger N, Jenckel A, Orinska Z, et al. Differential regulation of mast cell degranulation versus cytokine secretion by the actin regulatory proteins Coronin1a and Coronin1b. J Exp Med. 2011;208(9):1777-1787.
160. Dabir S, Kluge A, McColl K, et al. PIAS3 activates the intrinsic apoptotic pathway in non-small cell lung cancer cells independent of p53 status. International journal of cancer Journal international du cancer. 2014;134(5):1045-1054.
161. Libreros S, Garcia-Areas R, Shibata Y, et al. Induction of proinflammatory mediators by CHI3L1 is reduced by chitin treatment: Decreased tumor metastasis in a breast cancer model. International Journal of Cancer. 2012;131(2):377-386.
162. Tran HT, Lee IA, Low D, et al. Chitinase 3-like 1 synergistically activates IL6-mediated STAT3 phosphorylation in intestinal epithelial cells in murine models of infectious colitis. Inflamm Bowel Dis. 2014;20(5):835-846.
163. Luqmani YA. Mechanisms of drug resistance in cancer chemotherapy. Medical principles and practice : international journal of the Kuwait University, Health Science Centre. 2005;14 Suppl 1:35-48.
164. Silverstein RA, Gonzalez de Valdivia E, Visa N. The incorporation of 5-fluorouracil into RNA affects the ribonucleolytic activity of the exosome subunit Rrp6. Molecular cancer research : MCR. 2011;9(3):332-340.
165. Guo X, Goessl E, Jin G, et al. Cell cycle perturbation and acquired 5-fluorouracil chemoresistance. Anticancer research. 2008;28(1A):9-14.
166. Tokunaga E, Oda S, Fukushima M, et al. Differential growth inhibition by 5-fluorouracil in human colorectal carcinoma cell lines. European journal of cancer. 2000;36(15):1998-2006.
167. Sharma S, Zeng JY, Zhuang CM, et al. Small-molecule inhibitor BMS-777607 induces breast cancer cell polyploidy with increased resistance to cytotoxic chemotherapy agents. Mol Cancer Ther. 2013;12(5):725-736.
168. Report of Taiwan Cancer Registry, 2009. http://tcrcphntuedutw/mainphp?Page=A5.
169. Xu X, Li F, Zhang X, et al. In vitro synergistic antioxidant activity and identification of antioxidant components from Astragalus membranaceus and Paeonia lactiflora. PloS one. 2014;9(5):e96780.
170. Awad AB, Chen YC, Fink CS, et al. beta-Sitosterol inhibits HT-29 human colon cancer cell growth and alters membrane lipids. Anticancer research. 1996;16(5A):2797-2804.
171. von Holtz RL, Fink CS, Awad AB. beta-Sitosterol activates the sphingomyelin cycle and induces apoptosis in LNCaP human prostate cancer cells. Nutrition and cancer. 1998;32(1):8-12.
172. Jourdain C, Tenca G, Deguercy A, et al. In-vitro effects of polyphenols from cocoa and beta-sitosterol on the growth of human prostate cancer and normal cells. European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation. 2006;15(4):353-361.
173. Choi YH, Kong KR, Kim YA, et al. Induction of Bax and activation of caspases during beta-sitosterol-mediated apoptosis in human colon cancer cells. International journal of oncology. 2003;23(6):1657-1662.
174. Awad AB, Chinnam M, Fink CS, et al. beta-Sitosterol activates Fas signaling in human breast cancer cells. Phytomedicine : international journal of phytotherapy and phytopharmacology. 2007;14(11):747-754.
175. Awad AB, Roy R, Fink CS. Beta-sitosterol, a plant sterol, induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells. Oncol Rep. 2003;10(2):497-500.
176. Vivancos M, Moreno JJ. beta-Sitosterol modulates antioxidant enzyme response in RAW 264.7 macrophages. Free radical biology & medicine. 2005;39(1):91-97.
177. Awad AB, Barta SL, Fink CS, et al. beta-Sitosterol enhances tamoxifen effectiveness on breast cancer cells by affecting ceramide metabolism. Molecular nutrition & food research. 2008;52(4):419-426.
178. Ionkova I, Momekov G, Proksch P. Effects of cycloartane saponins from hairy roots of Astragalus membranaceus Bge., on human tumor cell targets. Fitoterapia. 2010;81(5):447-451.
179. Zhai Y, Li P, Wang M, et al. Determination of astragaloside III in rat plasma by liquid chromatography-tandem mass spectrometry and its application to a rat pharmacokinetic study. Biomedical chromatography : BMC. 2015.
180. Qi H, Wei L, Han Y, et al. Proteomic characterization of the cellular response to chemopreventive triterpenoid astragaloside IV in human hepatocellular carcinoma cell line HepG2. International journal of oncology. 2010;36(3):725-735.
181. Deng Y, Chen HF. [Effects of Astragalus injection and its ingredients on proliferation and Akt phosphorylation of breast cancer cell lines]. Zhong xi yi jie he xue bao = Journal of Chinese integrative medicine. 2009;7(12):1174-1180.
182. Zhang Y, Hu G, Li S, et al. Pro-angiogenic activity of astragaloside IV in HUVECs in vitro and zebrafish in vivo. Molecular medicine reports. 2012;5(3):805-811.
183. Su CC, Chiou TL, Chan MH, et al. Astragaloside IV increases MMP-2 mRNA and protein expression in human lung cancer A549 cells. Molecular medicine reports. 2009;2(1):107-113.
184. Zhang ZG, Wu L, Wang JL, et al. Astragaloside IV prevents MPP(+)-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Molecular and cellular biochemistry. 2012;364(1-2):209-216.
185. Zhang D-M. Effects of calycosin-7-O-β-D-glucoside on cell apoptosis in cervical cancer HeLa cells and expression of Bcl-2/Bax. Chinese Traditional and Herbal Drugs. 2015;46:1498-1502.
186. Li Q, Xu, L., Wang. T-T, Jia, Y., Wang, Z-W, Bi, K-S. Determination and Pharmacokinetic Study of Calycosin-7-O β-d-glucoside in Rat Plasma After Intravenous Administration of Aidi Lyophilizer. Chromatographia. 2008;67:627-631.
187. Jiang YH, Sun W, Li W, et al. Calycosin-7-O-beta-D-glucoside promotes oxidative stress-induced cytoskeleton reorganization through integrin-linked kinase signaling pathway in vascular endothelial cells. BMC complementary and alternative medicine. 2015;15:315.
188. Zhao C, She T, Wang L, et al. Daucosterol inhibits cancer cell proliferation by inducing autophagy through reactive oxygen species-dependent manner. Life sciences. 2015;137:37-43.
189. Chen J, Zeng J, Xin M, et al. Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2011;43(10):681-686.
190. Jin YM, Xu TM, Zhao YH, et al. In vitro and in vivo anti-cancer activity of formononetin on human cervical cancer cell line HeLa. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35(3):2279-2284.
191. Huang J, Xie, M., Gao, P., Ye, Y., Liu, Y., Zhao, Y., Luo, W., Ling, Z., Cao, Y., Zhang, S., Gao, F., Tang, W. Antiproliferative effects of formononetin on human colorectal cancer via suppressing cell growth in vitro and in vivo. Process Biochemistry. 2015;50:912-917.
192. Zhang X, Bi L, Ye Y, et al. Formononetin induces apoptosis in PC-3 prostate cancer cells through enhancing the Bax/Bcl-2 ratios and regulating the p38/Akt pathway. Nutrition and cancer. 2014;66(4):656-661.
193. Li T, Zhao X, Mo Z, et al. Formononetin promotes cell cycle arrest via downregulation of Akt/Cyclin D1/CDK4 in human prostate cancer cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology. 2014;34(4):1351-1358.
194. Yang Y, Zhao Y, Ai X, et al. Formononetin suppresses the proliferation of human non-small cell lung cancer through induction of cell cycle arrest and apoptosis. International journal of clinical and experimental pathology. 2014;7(12):8453-8461.
195. Lee KW, Lee HJ, Cho HY, et al. Role of the conjugated linoleic acid in the prevention of cancer. Critical reviews in food science and nutrition. 2005;45(2):135-144.
196. Saleem M. Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer letters. 2009;285(2):109-115.
197. Saleem M, Afaq F, Adhami VM, et al. Lupeol modulates NF-kappaB and PI3K/Akt pathways and inhibits skin cancer in CD-1 mice. Oncogene. 2004;23(30):5203-5214.
198. Saleem M, Kweon MH, Yun JM, et al. A novel dietary triterpene Lupeol induces fas-mediated apoptotic death of androgen-sensitive prostate cancer cells and inhibits tumor growth in a xenograft model. Cancer research. 2005;65(23):11203-11213.
199. Murtaza I, Saleem M, Adhami VM, et al. Suppression of cFLIP by lupeol, a dietary triterpene, is sufficient to overcome resistance to TRAIL-mediated apoptosis in chemoresistant human pancreatic cancer cells. Cancer research. 2009;69(3):1156-1165.
200. Saleem M, Murtaza I, Tarapore RS, et al. Lupeol inhibits proliferation of human prostate cancer cells by targeting beta-catenin signaling. Carcinogenesis. 2009;30(5):808-817.
201. Prasad S, Nigam N, Kalra N, et al. Regulation of signaling pathways involved in lupeol induced inhibition of proliferation and induction of apoptosis in human prostate cancer cells. Molecular carcinogenesis. 2008;47(12):916-924.
202. Saleem M, Maddodi N, Abu Zaid M, et al. Lupeol inhibits growth of highly aggressive human metastatic melanoma cells in vitro and in vivo by inducing apoptosis. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(7):2119-2127.
203. Mu YM, Yanase T, Nishi Y, et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142(8):3590-3597.
204. Hsu CC, Lin TW, Chang WW, et al. Soyasaponin-I-modified invasive behavior of cancer by changing cell surface sialic acids. Gynecologic oncology. 2005;96(2):415-422.
205. Salyer J, Eswaranandam, S., Lee, S-O. Soyasaponin I, III, and Soyasapogenol B Inhibit Proliferation and Modulate PKC Expression in Caco-2 Human Colon Cancer Cells. Journal of Food Research. 2013;2:81-89.
206. Ellington AA, Berhow MA, Singletary KW. Inhibition of Akt signaling and enhanced ERK1/2 activity are involved in induction of macroautophagy by triterpenoid B-group soyasaponins in colon cancer cells. Carcinogenesis. 2006;27(2):298-306.
207. Gurfinkel DM, Rao AV. Soyasaponins: the relationship between chemical structure and colon anticarcinogenic activity. Nutrition and cancer. 2003;47(1):24-33.
指導教授 李弘謙、蘇立仁(Hoong-Chien Lee Li-Jen Su) 審核日期 2016-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明