博碩士論文 993202019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.22.181.209
姓名 陳冠廷(Kuan-Ting Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 以整合力法為分析工具之結構離散輕量化設計效率的探討
(Discrete optimum design of structures using integrated force method)
相關論文
★ PSO-DE混合式搜尋法應用於結構最佳化設計的研究★ 考量垂直向效應之多項式摩擦單擺支承之分析與設計
★ 最佳化設計於結構被動控制之應用★ 多項式摩擦單擺支承之二維動力分析與最佳參數研究
★ 構件考慮剛域之向量式有限元素分析研究★ 矩形鋼管混凝土考慮局部挫屈與二次彎矩效應之軸壓-彎矩互制曲線研究
★ 橋梁多支承輸入近斷層強地動極限破壞分析★ 穩健設計於結構被動控制之應用
★ 二維結構與固體動力分析程式之視窗介面的開發★ 以離心機實驗與隱式動力有限元素法模擬逆斷層滑動
★ 以離心模型實驗探討逆斷層錯動下群樁基礎與土壤的互制反應★ 九二一地震大里奇蹟社區倒塌原因之探討
★ 群樁基礎之最低價設計★ 應用遺傳演算法於群樁基礎低價化設計
★ 應用Discrete Lagrangian Method於群樁基礎低價化設計★ 九二一地震『台中綠色大地社區』 受損原因之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文主要是以整合力法(Integrated force method, IFM)搭配和聲搜尋(Harmony Search, HS)與離散拉格朗日法(Discrete Lagraingian Method, DLM)組成之混合演算法進行離散結構之最佳化設計。探討整合力法與傳統贅力法、位移法所需結構分析時間之差異,並利用混合式搜尋法希望藉以提升最佳解之品質,藉以改善最佳解整體之計算效率。本文使用整合力法進行結構分析運算過程中,使用虛擬反矩陣法(Psedo-inverse method)與奇異值分解法(Singular Value Decomposition, SVD)求得諧和矩陣;另外透過有限元分析建立力平衡矩陣,透過諧和矩陣與力平衡矩陣即可直接求得各桿件內力,並藉此反求結構各自由度位移。本文藉由數個結構離散輕量化設計例比較本文方法之優異性,並於部分算例同時考慮LRFD鋼結構設計規範。結果顯示整合力法能夠較位移法節省許多計算時間,並且可有效利用HS-DLM混合搜尋法獲得可能之整體最佳解。
摘要(英) In this article, the discrete structural optimization problem solves by using HS-DLM in conjunction with the integrated force method (IFM) of analysis is presented. In IFM, all the element forces are taken as the independent variables instead of the redundants as the prime unknowns.
The equilibrium matrix is generated automatically through the finite element analysis and the compatibility matrix is obtained directly using the displacement-deformation relations and singular value decomposition (SVD) technique. By combining the compatibility and equilibrium matrix, the structural element forces are obtained directly. And the displacement can de back-calculated through the element forces. The results of the analysis are compared with the results of the redundant force method and displacement method. The design examples have been demonstrated that integrated force method is efficient and equally viable as compared to the displacement method. The results also shows HS-DLM algorithm is reliable, and the solution quality of the optimum design problems studies in the literature is comparable to other optimal method.
關鍵字(中) ★ 整合力法
★ 和聲搜尋法
★ 離散拉格朗日法
★ 結構輕量化設計
關鍵字(英) ★ Harmony search method
★ Discrete lagrangian method
★ Optimum structural design
★ Integrated force method
論文目次 中文摘要 I
英文摘要 III
目錄 V
表目錄 XI
圖目錄 XV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 4
1.2.1 最佳化方法 4
1.2.2 整合力法(Integrated Force Method, IFM) 9
1.3 研究方法與內容 12
第二章 整合力法分析 13
2.1 前言 13
2.2整合力法之理論推導 14
2.3 整合力法分析程序 19
2.3.1 建立力平衡方程 20
2.3.2 產生諧和條件 30
2.3.3 組合平衡方程與諧和條件,求解桿件未知內力 34
2.3.4 藉由桿件內力,求解節點位移 36
2.4 整合力法運算流程算例 36
第三章 HS-DLM混合搜尋法 43
3.1 最佳化問題之數學模式 43
3.2 和聲搜尋法(HS)理論回顧 44
3.2.1 HS搜尋流程 50
3.3 離散拉格朗日法(DLM)理論回顧 52
3.3.1 加權離散拉格朗日函數 52
3.3.2 鄰點(Neighborhood) 54
3.3.3 離散梯度(Discrete Gradient, DG) 55
3.3.4 離散鞍點(Discrete Saddle Point, DSP) 56
3.3.5 一階搜尋公式與收斂準則 57
3.3.6 合向量策略 61
3.3.7 DLM演算程序 63
3.4 HS-DLM 混合式演算法 66
第四章 數值計算例 71
4.1 分析流程 71
4.2.1 範例一 10桿平面桁架 74
4.2.2 範例二 25桿空間桁架 77
4.2.3 範例三 36桿空間桁架 81
4.2.4 範例四 72 桿空間桁架 86
4.2.5 範例五 132桿空間桁架 91
4.2.6 範例六 160桿空間桁架 97
4.2.7 範例七 200桿空間桁架 102
4.2.8 範例八 582桿空間桁架 106
4.2.9 範例九 單跨雙層平面構架 110
4.2.10 範例十 雙跨五層平面構架 114
4.2.11 範例十一 單跨八層平面構架 117
4.3 考慮極限設計法與構材束制條件 121
4.3.1 範例十二 單層樓8桿空間構架 121
4.3.2 範例十三 雙垮三層平面構架 127
4.3.3 範例十四 四層樓84桿空間構架 130
第五章 建議與結論 135
5.1 結論與建議 135
5.2 未來研究方向 138
參考文獻 139
附錄A 10桿平面桁架細部資料及設計結果 149
A.1 細部設計資料 149
A.2 HS-DLM-IFM 設計結果 150
附錄B 25桿空間桁架細部資料及設計結果 153
B.1 細部設計資料 153
B.2 HS-DLM-IFM 設計結果 155
附錄C 36桿空間桁架細部資料及設計結果 157
C.1 細部設計資料 157
C.2 HS-DLM-IFM 設計結果 159
附錄D 72桿空間桁架細部資料及設計結果 161
D.1 細部設計資料 161
D.2 HS-DLM-IFM 設計結果 163
附錄E 132桿穹頂桁架細部資料及設計結果 167
E.1 細部設計資料 167
E.2 HS-DLM-IFM 設計結果 171
附錄F 160桿空間桁架細部資料及設計結果 179
F.1 細部設計資料 179
F.2 HS-DLM-IFM設計結果 184
附錄G 200桿平面桁架細部資料及設計結果 195
G.1 細部設計資料 195
G.2 HS-DLM-IFM設計結果 199
附錄H 582桿空間桁架細部資料及設計結果 207
H.1 細部設計資料 207
H.2 HS-DLM-IFM 設計結果 214
附錄I 單跨雙層平面構架細部資料及設計結果 225
I.1 細部設計資料 225
I.2 HS-DLM-IFM 設計結果 227
附錄J 雙跨五層平面構架細部資料及設計結果 229
J.1 細部設計資料 229
J.2 HS-DLM-IFM 設計結果 232
附錄K 單跨八層平面構架細部資料及設計結果 235
K.1 細部設計資料 235
K.2 HS-DLM-IFM 設計結果 242
參考文獻 1.Pedersen, P. “Optimal Joint Positions for Space Trusses,” Journal of the Structural Division, ASCE, Vol. 99, No. 12, pp. 2459-2475, 1973.
2.Erbatur, F., Hasancebi, O., Tutuncu, I., and Kilic, H., “Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, pp. 209-224, 2000.
3.Cheng, F. Y. and Juang, D. S., “Assessment of Various Code Provisions Based on Optimum Design of Steel Structures”, Earthquake Engineering and Structural Dynamics, Vol. 16, pp 45-61, 1988.
4.Chai, S., and Sun, H. C., “A Relative Difference Quotient Algorithm for Discrete Optimization,” Structural Optimization, Vol. 12, pp. 46-56, 1996.
5.Toakley, R., “Optimum Design Using Available Sections, ” Journal of Structural Division, ASCE, Vol.94, ST-5, pp. 1219-1242, 1968.
6.Kaneko, L., Lawo M., and Thierauf G., “On Computational Procedures for the Force Method,” International Journal of Numerical Method in Engineering, Vol. 18, pp.1469-1495, 1982.
7.S.N. Patnaik, “The Variational Energy Formulation for the Integrated Force Method”, AIAA J., Vol.24, pp. 129–137 ,1986.
8.S.N. Patnaik and R.H. Gallagher, “Gradients of Behaviour Constraints and Reanalysis via the Integrated ForceMethod”, Int. J. Numer. Meth. Engrg., Vol. 23, pp. 2205–2212 , 1986.
9.Hajela, P., “Genetic Search – an Approach to the Nonconvex ptimization Problem”, Proceeding of the 30th conference AIAA/ASME/ASCE/AHS/ASC Structures, Structural dynamics and Materials, Mobile, Atlanta, pp. 165-175, AIAA, Reston., 1989.
10.Jenkins, W. M., “On the Application of Natural Algorithms to Structural Design Optimization”, Engineering Structures, Vol. 19, No. 4, pp. 302-308, 1997.
11.Balling, R. J., “Optimal Steel Frame Design by Simulated Annealing”, Journal of Structural Engineering, Vol. 117, No. 6, pp.1780-1795, 1991.
12.May, S. A. and Balling, R. J., “A Filtered Simulated Annealing Strategy for Discrete Optimization of 3D Steel Frameworks”, Structural Optimization, No. 4, pp. 142-146, 1992.
13.Geem, Z. W., Kim, J. H., and Loganathan, G.V., “A New Heuristic Optimization Algorithm: Harmony Search,” Simulation, Vol. 76(2), pp.60-68, 2001.
14.Holland, John H, “Adaptation in Natural and Artificial Systems”, University of Michigan Press, Ann Arbor, 1975.
15.Grierson, D. E. and Pak, W. H., “Discrete Optimal Design Using a Genetic Algorithm”, In: Bendnsoe, M.P. and Mota Soares, C.A. (eds.), Topology Design of Structures, pp. 89-102, Kluwer Acadimica Publishers, The etherlands, 1993.
16.S. D. Rajan, “Sizing, Shape, and Topology Design Optimization of Trusses Using Genetic Algorithm”, Journal of Structural Engineering, ASCE, Vol.121, No. 10, pp.1480-1487, 1995.
17.S. Kirkpatrick, C. D. Gelatt, Jr. and M. P. Vecchi., “Optimization by simulated annealing”, Science Vol. 220, No. 4598, PP. 671-680, 1983.
18.Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller and Edward Teller., “Equation of State Calculations by Fast Computing Machines”, The Journal of Chemical Physics, Vol. 21, No. 6, June 1953.
19.K. S. Lee and Z. W. Geem, S. –H. Lee, and K. –W. Bae, “The Harmony Search Heuristic Algorithm for Discrete Structural Optimization,” Engineering Optimization, vol. 37, no. 7, pp. 663-684, 2005.
20.Z. W. Geem, “Optimal Cost Design of Water Distribution Networks using Harmony Search,” Engineering Optimization, vol. 38, no. 3, pp. 259-280, 2006.
21. Z. W. Geem, K. S. Lee, and Y. Park, “Application of Harmony Search to Vehicle Routing,” American Journal of Applied Sciences, vol. 2, no. 12, pp. 1552-1557, 2005.
22.羅冠君,「基於和聲搜尋法與離散拉格朗日法之混合演算法於結構最佳化設計的研究」,碩士論文,國立中央大學土木工程研究所,中壢,2008年3月。
23.Wah, B. W. and Shang, Y., “A Discrete Lagrangian-Based Global-Search Method for Solving Satisfiability Problems”, Proc. DIMACS workshop on Satisfiability Problems, Theory and Applications, Du, D. Z., J., and Pardalos, P., AMS 1996.
24.Y. Shang and B. W. Wah. “A discrete Lagraingian- based global search method for solving satisfiability problems”, J. of Globle Optimization, Vol. 12(1), pp. 61-99, January 1998.
25.吳泳達,「離散拉朗日法於結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢,2003年1月。
26.Timoshenko, S., “History of Strength of Material”, New York: McGraw-Hill, 1953.
27.James Clerk Maxwell, “On the calculation of the Equilibrium and Stiffness of Frames”, Philosophical Magazine, Vol. 4, no. 27, 1864.
28.Carlo Alberto Castigliano, “Théorie de I’equilibre des systémes élastiques etses applications,” Turin, 1879; Translated in English by E. S. Andrews, ElasticStresses in Structures, Scott, Greenwood, and Son, London, 1919.
29.Otto Mohr, “Bietrag zur Theorie des Fachwerks,” Zietschrift des Architektenund Ingenieur – vereins su Hannover, Vol. 20, 1874.
30.Patnaik, S. N., Joseph, K. T., “Generation of the Compatibility Matrix in the Integrated Force Method”, Computer Methods in Applied Mechanics and Engineering, Vol. 55, pp. 239-257, 1986.
31.Patnaik S. N., Berke, L., Gallagher, R. H., “Integrated Force Method Versus Displacement Method for Finite Element Analysis”, Computers & Structures, Vol. 38, No. 4, pp. 377-407, 1991.
32.Patnaik, S. N., “The Integrated Force Method Verses the Standard Force Method”, Computers & Structures, Vol. 22, No. 2, pp. 151-163, 1986.
33.Raju, Krishnam NRB and Nagabhushanam, J., “Nonlinear structural analysis using integrated force method”, In: Sadhana Academy Proceedings In Engineering Sciences, 25 . pp. 353-365, 2000.
34.Surya N. Patnaik, Rula M. Coroneos, and Dale A. Hopkins, “Dynamic analysis with stress mode animation by the integrated force method”, International Journal for Numerical Methods In Engineering, Vol. 40, pp. 2151-2169, 1997.
35.Denke, P. H., “A general digital computer analysis of statically ondeterminate structures”, Engineering paper 834, Douglas Aircraft Co., 1959.
36.Love, A. E. H., “A Treatise on the Methmatical Theory of Elasticity”, 4 th edn. Dover Publications, New York, P.17, 1944
37.Thodhunter, I. & Pearson, K., “A History of the Thory of Elasticity and the Strehgth of Materials”, Vol 1-2, Cambridge University Press, 1886.
38.Hsieh, Sheng-Taur Mau, Elementary Theory of Structures, Fourth Edition, Pearson Education Taiwan Ltd.
39.Kaneko, L., Lawo M., and Thierauf G., “On Computational Procedures for the Force Method,” International Journal of Numerical Method in Engineering, Vol. 18, pp.1469-1495, 1982.
40.S.N. Patnaik and K. T. Joseph, “Compatibility Conditions from Deformation Displacement Relationship”, AIAA, Vol. 23, pp. 1291-1293., 1985.
41.Reddy, J.N., “An Introduction to The Finite Element Method”, Third Edition, McGraw-Hill, 2006.
42.Moore, E. H., "On the reciprocal of the general algebraic matrix". Bulletin of the American Mathematical Society 26: 394–395, 1920.
43.Penrose, Roger, "A generalized inverse for matrices". Proceedings of the Cambridge Philosophical Society, Vol. 51, pp. 406–413, 1955.
44.Golub, G. H., Van Loan, C. F., “Matrix Computations”, third ed. The johns Hopkins University Press, Baltimore and London, 1996.
45.James M. Gere and William Weaver, Jr., “Analysis of Framed Structures”, Princeton, 1965.
46.Wu, Z., “The Discrete Lagrangian Theory ans its Application to Solve Nonlinear Discrete Constrain Optimization Problems”, Master Thesis, Department of Computer Science, University of Illinois at Urbana-Champaign, 1998.
47.藍志浩,「考慮動態反應束制及關連性離散變數之結構最佳化設計」,碩士論文,國立中央大學土木工程研究所,中壢,2005年7月。
48. Wang, D., Zhang, W. H., and Jiang, J. S., “Truss Shape Optimizationwith Multiple Displacement Constraints,” Computer Methods Application Mech. Engrg., Vol. 191, No. 33, pp. 3597-3612, 2002.
49.張慰慈,「DLM-GA混合搜尋法於結構離散最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢, 2003年7月。
50.鐘明劍,「樁基礎最佳化設計之研究」,博士論文,國立中央大學土木工程研究所,中壢,2006年7月。
51.Rajeev, S., and Krishnamoorthy, C. S., “Discrete Optimization of Structures Using Genetic Algorithms”, Journal of Structural Engineering, ASCE., Vol. 118, pp. 1233-1250, 1992.
52.Cai, J., and Thierauf , G., “Discrete Optimization of Structures Using an Improved Penalty Function Method”, Engineering Optimization, Vol. 21, pp. 293-306, 1993.
53.Coello, C. A., Rudnick, M., and Christiansen, A. D., “Using Genetic Algorithms for Optimal Design of Trusses”, Sixth International Conference on Tools with Artifical Intelligence, IEEE, pp. 88-94, 1994.
54.Galante, M., “Genetic Algorithms as an Approach to Optimize Real World Trusses”, International Journal for Numerical Methods in Engineering, Vol. 39, pp. 361-382, 1996.
55.Groenwold, A. A., Stander, N., and Snyman, J. A., “A Pseudo Discrete Rounding Method for Structural Optimization”, Structural Optimization, Vol. 11, pp. 218-227, 1996.
56.Camp, C., Pezeshk, S., and Cao, G., “Optimized Design of Two Dimensional Structures Using a Genetic Algorithm”, Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 551-559, 1998.
57.Nanakorn, P., and Meesomklin, K., “An Adaptive Penalty Function in Genetic Algorithms for Structural Design Optimiation”, Computers and Structures, Vol. 79, pp. 2527-2539, 2001.
58.Tong, W. H., and Liu, W. H., “An Optimization Procedure for Truss Structures with Discrete Design Variables and Dynamics Constrains.” Computers and Structures, Vol. 79, pp. 155-162, 2001.
59.林俊榮,「以力法為分析工具之結構離散輕量化設計效率的探討」,碩士論文,國立中央大學土木工程研究所,中壢,2011年4月。
60.Wu, S. J., and Chow, P. T., “The Application of Genetic Alogirthms to Discrete Optimation Problems,” Journal of the Chinese Society of Mechanical Engineers, Vol. 16, No. 6, pp. 587-598, 1995.
61.Ponterosso, P., and Fox, D. S. J., “Heuristically Seeded Genetic Algorithms Applied to Truss Optimisation,” Engineering with Computers, Vol. 15, pp. 345-355, 1999.
62.Erbatur, F., Hasancebi, O., Tutuncu, I., and Kilic, H., “Optimal Design of Planar and Space Structures with Genetic Algorithms,” Computers and Structures, Vol. 75, pp. 209-224, 2000.
63.Ringertz, U. T., “On methods for discrete structural optimization”, Eng. Opt., Vol. 13, pp. 47-64, 1988.
64.Groenwold, A. A., Stander, N., and Snyman, J. A., “A Regional Genetic Algorithms for the Discrete Optimal Design of Truss Structures,” International Journal for Numerical Methods in Engineering, Vol. 44, No.6, pp. 749-766, 1999.
65.Sun, H. C., Chai, S., and Wang, Y. F., Discrete Optimum Design of Structures, Dalian University of Technology, 1995.
66.Kavile, D., and Powell, G. H., “Efficient Reanalysis of Modified Structures,” Journal of the Structural Division, ASCE., Vol. 97, No. 1, pp. 377-392, 1971.
67.Salajegheh, E., and Vanderplaats, G. N., “Efficient Optimum Design of Structures with Discrete Design Variables,” Space Structures, Vol. 8, pp. 199-208, 1993.
68.Salajegheh, E., and Salajegheh, J., “Optimum Design of Structures with Discrete Variables Using Higher Order Approximation,” Computer Methods in Applied Mechanics and Engineering, Vol. 191, pp. 1395-1419, 2002.
69.Groenwold, A. A., and Stander, N., “Optimal Discrete Sizing of Truss Structure Subject to Buckling Constraints,” Structural Optimization, Vol. 14, pp. 71, 1997.
70.莊玟珊,「PSO-SA混合搜尋法與其它結構最佳化設計之應用」,碩士論文,國立中央大學土木工程研究所,中壢,2007年7月。
71.鐘昀展,「PSO-DE混合式搜尋法應用於結構最佳化設計之研究」,碩士論文,國立中央大學土木工程研究所,中壢,2011年1月。
72.Arora, J. S., and Govil, A. K., “An Efficient Method for Optimal Structural Design by Substructuring,” Computers and Structures, Vol. 7, No.4?B, pp. 507-515, 1977.
73.Cai, J., and Thierauf, G., “A Parallel Evolution Strategy for Solving Discrete Structural Optimization,” In: Topping, B. H. V., and Papadrakakis, M., Advances in parallel and vector processing for structural mechanics, Edinburgh: Civil?Comp Limited, pp. 239-244, 1994.
74.Jivotovski, G., “A Gradient Based Heuristic Algorithm and its Application to Discrete Optimization of Bar Structures,” Structural and Multidisciplinary Optimization, Vol. 19, pp. 237-248, 2000.
75.Hasançebi, O., Çarbaş, S., Doğan, E., Erdal, F. and Saka, M.P., “Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed structures”, Computers and Structures, Vol. 87, No. 5-6, 284-302, 2009.
76.Mustafa Sonmez, “Discrete optimum design of truss structures using artificial bee colony algorithm”, Structural and Multidisciplinary Optimization, Vol. 43, pp. 85-97, 2011.
77.Sui, Y., and Lin, Y., “The Optimization of Beam?Containing Structure with Discrete Cross?Section and its Computer Implementation on Plane Frame Structure,” Chinese Journal of Computational Mechanis, Vol. 4, pp. 62-69, 1987.
78.Hayalioglu, M. S., “Optimum Load and Resistance Factor Design of Steel Space Frames Using Genetic Algorithm”, Structural and Multidisciplinary Optimization, Vol. 21, pp. 292-299.
79.Pezeshk, S., Camp, C. V. and Chen, D., “Design of Nonlinear Framed Structures Using Genetic Optimization”, Journal of Structural Engineering, Vol. 126, No. 3.
指導教授 莊德興(Der-shin Juang) 審核日期 2011-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明