博碩士論文 993202041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.235.137.159
姓名 陳柏翰(Po-Han Chen)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 礫石受剪之音波與振波特性
相關論文
★ 動力夯實之有效影響深度與地表振動阻隔研究★ 砂土層中潛盾機地中接合漏水引致地層下陷之案例探討
★ 動力壓密工法施工引致地表振動之阻隔★ 音波式圓錐貫入試驗於土層界面判定之應用
★ 孔洞開挖後軟弱地盤之沉陷行為★ 超載對打設排水帶後軟弱地盤壓密行為之影響
★ 山岳隧道湧水處理之研究★ 砂土中基樁側向位移之改良研究
★ 圓錐貫入試驗中土壤音壓之研究★ 水泥混合處理砂質土壤液化特性之改良研究
★ 扶壁改善深開挖擋土壁體變形行為之研究★ 微音錐應用於土壤音射特性之研究
★ 黏性土壤受定量擠壓變形後之力學行為★ 黏土中短樁側向位移之改良研究
★ 砂土經水泥改良後之力學性質★ 黏土中模型樁側向位移之改良研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以直接剪力試驗儀進行礫石材料之試驗剪動,將實驗分為兩種,一為在氣乾狀態下施加不同正向應力之剪動,另一則為施加相同的正向應力對部分飽和礫石進行之剪動,同時量測試驗時產生之音波與振波訊號。本實驗主要係量測礫石受剪時所產生之音波與振波,以探討礫石受剪時之力學特性。為找出礫石音波之主要頻率分佈,本研究確立了頻譜比對法,可藉以判斷音波與振波之變化並予以濾波。經比對後,發現大約為15 Hz以下範圍內受剪音波紅線之數值明顯增高,可視為主要頻率。利用此頻譜比對法可方便、迅速地找出主要頻率。另外亦發現此主要頻率不因含水量多寡而有所變動。至於振波加速度頻譜圖,大約在15 Hz以下有一顯著頻率,而音波頻譜圖中之相同位置亦有一次要頻率,說明振波加速度與音波間有密切之相關性。將試驗後之音波數據,濾除15 Hz以外之數值,以為後續分析之用。
作用於氣乾礫石之正向應力愈大,受剪破壞時所產生之音壓逐漸增大。至於部分飽和礫石破壞之音壓則均小於氣乾礫石之音壓。根據降伏剪應力及破壞剪應力與正向應力關係,得知氣乾礫石之降伏值大約為破壞剪應力之76%,部分飽和礫石之降伏值則約為破壞剪應力之74%,因此可利用加速度訊號所對應之剪應力來瞭解降伏之徵兆。另外,礫石於降伏後加速度訊號開始有略為增加且有連續之數值,而音波訊號則在破壞時才有明顯之數值,其原因應為音波之較弱訊號容易消散,最後只剩能量較強之音波訊號。而加速度訊號不易衰減,可與音波訊號結合,做輔助判斷。
摘要(英) This research performed a series of direct shear tests of gravel material under various conditions of normal stress and degree of saturation to study the properties of shear strength, sound waves and vibration waves. A spectrum comparison method of waves is proposed in this paper to distinguish and to filter the sound waves and vibration waves generated in the process of shearing. According to the results of experiments, it is found that within the area smaller than 15Hz, the magnitude of sound waves increased apparently compared to that of background noise and this can be seen as the apparent frequency or main frequency of this gravel material. The magnitude within this frequency area varied slightly in spite of the variation of water content. As to the spectrum of acceleration of vibration waves, similar apparent frequency was found before 15Hz by comparing the experimental data at the earth stage of shearing with that right before the period of failure. Furthermore, some other secondary frequencies were found at the same position of sound spectrum. This showed that there exists a close relationship between sound waves and vibration waves. To examine the shear strength properties of gravel in this study, the sound waves and the acceleration of vibration waves larger than 15Hz were filtered.
From the experimental results, it is found that larger sound pressure of air dried gravel will be caused at failure for larger normal stress. But the sound pressure of partially saturated gravel is smaller than that of air dried gravel. According to the relationships between shear stresses at yielding or failure with normal stress, it is recognized that the yielding stress of air dried gravel is about 76% of failure shear stress, and this value decreased to 74% for partially saturated gravel. Therefore, the shear stresses related to the acceleration signals may be used to realize the yielding premonition. Furthermore, after yield, the acceleration signals increased slightly and last continuously. But the sound signals only show some apparent values at failure. Because the sound signal is weak and its energy dissipates easily, so only few strong signals at failure remained. Conversely, the acceleration signal does not decrease apparently, so it can be combined with the sound signal to distinguish the yielding and failure of gravel.
關鍵字(中) ★ 剪力試驗
★ 音波
★ 加速度
★ 顯著頻率
關鍵字(英) ★ shear test
★ sound wave
★ acceleration
★ apparent frequency
論文目次 摘要 i
Abstract ii
表目錄 vii
照片目錄 viii
圖目錄 x
符號說明 xv
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 1
1.3 論文內容 2
第二章 文獻回顧 4
2.1 邊坡滑動之預警 4
2.2 震波與振波 5
2.3 音波之特性 6
2.3.1 音波之特點 6
2.3.2 頻率域分析 7
2.3.3 背景噪音之濾除 8
2.4 波傳之衰減特性 8
2.4.1 空氣中音波衰減特性 8
2.4.2 土層中振波衰減特性 9
2.5 乾燥砂土中音波及振波之傳遞特性 10
2.6 土壤中音波之研究 11
2.7 大地材料之音波與振波之特性 11
2.8 土石流地聲特性之研究 12
2.9 不穩定邊坡之音波量測 13
2.10 其他音波之應用 14
2.10.1 岩石中音波之研究 14
2.10.2 混凝土塊受壓之音波研究 15
第三章 試驗試體、儀器設備及試驗方法 30
3.1 試體製作 30
3.2 試體材料及基本物理性質 30
3.3 試驗儀器與相關設備 31
3.3.1 波傳量測系統 31
3.3.2 波傳量測儀器 31
3.3.3 改良式直接剪力試驗儀 33
3.3.4 量測系統設備 34
3.4 試驗方法及步驟 35
3.4.1 氣乾狀態礫石之試驗步驟 35
3.4.2 部分飽和礫石之試驗步驟 36
3.5 分析數據與比較音波之特性 36
3.6 波傳訊號之處理 36
第四章 試驗結果與分析 56
4.1 礫石剪力強度特性 56
4.1.1 剪力強度特性 56
4.1.2 部分飽和礫石之剪力強度特性 56
4.2 波傳訊號之濾波處理 57
4.3 礫石受剪之音波與振波之特性 59
4.3.1 礫石受剪之音波歷時曲線 60
4.3.2 礫石受剪時之加速度歷時曲線 60
第五章 結論與建議 99
5.1 結論 99
5.2 建議 100
參考文獻 101
參考文獻 1.方治國,「音洩檢測原理與應用」,檢測科技,第十六卷,第一期,第4-9頁 (1998)。
2.田坤國,「後921時期土地利用與交通發展」,公共工程學術研討會論文集,第87~97頁 (2004)。
3.田坤國、李俊億、馬經文、黃文駿,「南部軟岩區國道邊坡穩定監測與預警研究(III)」,南部軟岩區邊坡穩定工法研究成果發表會論文集,第71~84頁 (2003)。
4.行政院環保署,噪音原理防制材料簡介手冊 (2010)。
5.行政院農業委員會水土保持局,梨山地區地層滑動整治計畫 (2002)。
6.吳銘德、周丹,「探測岩石破裂的聲音以確定人工裂縫的方法」,國外測井技術,第八卷,第六期,第 19-22頁 (1993)。
7.李建中,「打樁引致之地表振動」,土木水利,第十卷,第四期,第46-59 頁 (1984) 。
8.李佳龍,「音射定位法於岩石材料之應用」,碩士論文,國立成功大學資源工程學系,台南 (2003)。
9.李豐博、黃安斌、饒正、蔡東霖、李瑞庭,「全光纖式邊坡穩定監測系統整合與現地應用測試」,交通部運輸研究所港灣技術研究中心,台中(2008)。
10.呂盈慧,「大地材料受剪時之音波與振波特性」,碩士論文,國立中央大學土木工程學系,中壢 (2011)。
11.林秀樺,「岩石摩擦之音波量測與應用」,碩士論文,國立中央大學土木工程學系,中壢 (2009)。
12.林榮渠,關於大地工程與安全監測,財團法人三聯科技教育基金會,台北 (2010)。
13.姚長安,「雷射監測系統自動通報適用性評估與地滑應用」,碩士論文,中原大學土木工程學系,中壢 (2005)。
14.張哲胤,「乾燥砂土中音波及振波之傳遞特性」,碩士論文,國立中央大學土木工程學系,中壢 (2007)。
15. 章書成、陳精日、葉明富,「泥石流地聲特性及NJ-2型無線遙測泥石流警報器的研製」,第二屆全國泥石流學術會議論文集,第36-41頁 (1991)。
16.游以民,「減振基樁與樁周土壤之振波傳遞行為」,碩士論文,國立中央大學土木工程學系,中壢 (2005)。
17.湯士弘、林志平、鐘志忠,「時域反射技術應用於邊坡監測—成效與問題」,台灣公共工程學刊,第二卷,第一期,第49-55頁 (2006)。
18.黃清哲、葉智惠、尹孝元、王晉倫,「地聲探測器應用於土石流監測之實驗」,中華水土保持學報,第三十六卷,第一期,第39-53頁 (2005)。
19.黃清哲、孫坤池、陳潮億、尹孝元,「不同型態土石流地聲特性之實驗研究」,中華水土保持學報,第三十八卷,第四期,第417-430頁 (2007)。
20.葉致翔,「TDR邊坡資訊自動化監測系統」,碩士論文,國立交通大學土木工程學系,新竹 (2003)。
21.謝榮宗,「雷射自動監測預警系統之研究」,第十一屆大地工程學術研討會,台北,第G25-1~G25-10頁 (2005)。
22.薛景壕,「人工岩體受剪變形之特性」,碩士論文,國立中央大學土木工程學系,中壢 (2010)。
23.蘇德勝,噪音原理及控制,臺隆書店,台北 (2003)。
24.鹽田正純,公害振動的預測手冊,景上書局,日本 (1985)。
25.Beard, F.D., “Predicting Slides in Cut Slopes,” Western Construction, pp. 72 (1961).
26.Bray, D.E., and McBride, D., “Acoustic Emission Technology,” Nondestructive Testing Techniques, New York, pp. 345-377, John Wiley & Sons Inc. (1992).
27.Bradley, C.C., and Lawrence, W., “Kaiser effect in snow,” International Association of Hydrological Sciences Publication No. 114 (1975).
28.Dixon, N., Hill, R., and Kavanagh, J., “Acoustic emission monitoring of slope instability:Development of an active waveguide system,” Geotechnical Engineering, Vol. 156, No. 2, pp. 83-95 (2003).
29.Dixon, N., and Spriggs, M., “Quantification of slope displacement rates using acoustic emission monitoring,” Canadian Geotechnical Journal, Vol. 44, pp. 966-976 (2007).
30.Goodman, R.E., “Subaudible noise during compression of rock,” Geological Society of America, Bulletin, Vol. 74, No. 4, pp. 90-487 (1963).
31.Gutowski, T.G., and Dym, C.L., “Propagation of Ground Vibration: A Review,” Journal of Sound and Vibration, Vol. 49, No. 2, pp. 179-193 (1976).
32.Hardy, H.R., “Application of acoustic techniques to rock mechanics research,” Acoustic Emission, ASTM STP505, American Society for Testing and Materials, pp. 41-83 (1972).
33.Itakura, Y., Taniguchi, S., Miyamoto, K., and Shimokawa, E., “Acoustic sensor for detecting the occurrence of debris flows,” Variability in Stream Erosion and Sediment Transport (1994).
34.Itakura, Y., Kamei, N., Takahama, J.I., and Nowa, Y., “Real time estimation of discharge of debris flow by an acoustic sensor,” 14th IMEKO World Congress, New Measurements-Challenges and Visions, Tampere, Finland, Vol. XA, pp. 127-131 (1997).
35.Kramer, S.L., Geotechnical Earthquake Engineering, Prentice-Hall, Upper Saddle River, N.J. (1996).
36.Koerner, R.M., and Lord, A.E., “Acoustic emissions in medium plasticity clayey silt,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 98, No. SM1 (1972).
37.Koerner, R.M., Lord, A.E., McCabe, W.M., and Curran, J.W., “Acoustic emission behavior of granular soils,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 122, No. GT7, pp. 761-773 (1976).
38.Koerner, R.M., McCabe, W.M., and Lord, A.E., “Acoustic emission behavior and monitoring of soils,” Acoustic Emissions in Geotechnical Engineering Practices, ASTM STP 750, pp. 93-141 (1981).
39.Koerner, R.M., McCabe, W.M., and Lord, A.E., “Overview of acoustic emission monitoring of rock structures,” Rock Mechanics, Vol. 14, pp. 27-35 (1981).
40.Miller, G.F., and Pursey, H., “On the Partition of Energy Between Elastic Waves in a Semi-Infinite Solid,” Proc. Royal Society, London, Vol. 233, pp. 55-69 (1955).
41.Matthews, J.R., and Hay, D.R., Nondestructive Testing Monographs and Tracts Vol. 2:Acoustic Emission, pp. 1-14 (1983).
42.Maji, A.K., and Shah, S.P., “Process Zone and Acoustic emission Measurement in Concrete,” Experimental Mechanics, Vol. 28 (1988).
43.O’Neill, D.B., “Vibration and dynamic settlement from pile driving,” Proceedings of Conference on Behavior of Piles, London, England, pp. 135-140 (1971).
44.Okuda, S., Okunishi, K., and Suwa, H., “Observation of debris flow at Kamikamihori Valley of Mt. Yakedade,” Excursion Guide-book of the 3rd Meeting of IGU commission on field experiment in geomorphology, Disaster Prevention Research Institute, Kyoto University, Japan, pp. 127-130 (1980).
45.Ranjith, P.G., Fourar, M., Pong, S.F., Chian, W., and Haque, A., “Characterisation of fractured rocks under uniaxial loading states,” Int.J, Rock Mech, Min, Sci, Vol.41, pp. 361-366 (2004).
46.Ranjith, P.G., Jasinge, D., Song, J.Y., and Choi S.K., “A study of the effect of displacement rate and moisture content on the mechanical properties of concrete:Use of acoustic emission,” Mechanics of Materials, Vol. 40, pp. 453-569 (2008).
47.Wiss, J.F., “Damage effect of pile driving vibrations,” Highway Research Record, No.155, pp. 14-20 (1967).
48.Ronnie, K.M., and McIntire, P., “Acoustic emission testing,” Nondestructive Testing Handbook, 2nd Ed., Vol. 5 (1986).
49.Richart, F.E., Woods, R.D., and Hall, J.R., Vibrations of Soils and Foundations, Prentice-Hall, Englewood Cliffs, N.J. (1970).
50.Woods, R.D., “Screening of Surface Waves in Soils,” Journal of the Soil Mechanics and Foundations Division, Proceedings of the ASCE, Vol. 94, No.4, pp. 951-979 (1968).
指導教授 張惠文(Huei-wen Chang) 審核日期 2013-3-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明