博碩士論文 993203012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.144.250.90
姓名 范綱傑(Gang-jie Fan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計
(Detection of grinding defect and the optimum design of kinematic mount for a primary mirror of a space-born remote sensing instrument)
相關論文
★ G10液晶玻璃基板之機械手臂牙叉結構改良與最佳化設計★ 線性齒頂修整對正齒輪之傳動誤差與嚙合頻能量影響分析
★ 沖床齒輪分析與改善★ 以互補型盤狀圓弧刀具創成之曲線齒齒輪有限元素應力分析
★ 修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究★ 應用經驗模態分解法於正齒輪對之傳動誤差分析
★ 小軸交角之修整型正齒輪與凹面錐形齒輪組設計與負載下齒面接觸分析★ 修整型正齒輪對動態模擬與實驗
★ 應用繞射光學元件之齒輪量測系統開發★ 漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計
★ 創成螺旋鉋齒刀之砂輪輪廓設計與最佳化★ 動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計
★ 非接觸式章動減速電機結構設計與模擬★ Helipoid齒輪接觸特性研究與最佳化分析
★ 高轉速正齒輪之多目標最佳化與動態特性分析★ 圓柱型齒輪之動力刮削刀具輪廓設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文主要研究對象為遙測取像儀之反射鏡加工與裝配,旨在探討加工與裝配對反射鏡光學品質之影響。加工缺陷檢測主要以殘留應力與次表層破壞為主,本研究利用不同粒徑之鑽石刀具,分別在試片上研磨,再以不同儀器觀察表面之殘留應力與次表層破壞,得到刀具粒徑對此兩種加工缺陷之影響。
一般光學分析流程中,不易計入運動學裝配與鏡片變形所降低的光學品質,本研究建立一套光機分析流程,整合有限元素與曲面擬合方法,能將主鏡受力產生之變形匯入光學軟體進行分析,模擬實際運作情況下之光學品質。利用此一流程,分析運動學裝配貼合位置對主鏡光學品質之影響,並找出具最佳品質之貼合位置;另外,此流程亦搭配田口法進一步改良裝配參數,使其對主鏡成像影響能降至最低。
摘要(英) This study investigates the effect of machining defects and the optimum mounting on a primary mirror of a remote sensing instrument. Processing defects discussed here are residual stress and subsurface damage. The specimens are ground by diamond tools with different grain-sized, and the effects of grain size of the grinding tool on the residual stress and subsurface damage are investigated.
Generally, optical simulation process does not consider the degraded optical performance caused by the deformations of mounting and mirror. This research established an opto-mechanical analysis process to integrate finite element analysis and surface fitting. After fitting, the data of the deformed primary mirror can be imported into optical simulation software to analyze its real optical performance. Based on the integrated opto-mechanical analysis, the best position to glue the kinematic mount and the primary mirror is determined. Furthermore, Taguchi method is adopted to determine the design parameters of the kinematic mount for the primary mirror which will yield a best optical performance.
關鍵字(中) ★ 光機整合分析
★ 有限元素法
★ 田口法
★ 像散
★ 調制轉換函數
★ 光彈法
★ 次表層破壞
★ 殘留應力
★ Zernike多項式
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第1章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 脆性材料加工應力與次表層破壞 2
1.2.2 反射鏡裝配設計分析 5
1.2.3 反射面變形分析 10
1.3 研究目的與動機 13
第2章 反射鏡加工應力與次表層破壞分析 14
2.1 光彈原理與應力殘留檢測 14
2.1.1 光彈原理 14
2.1.2 光彈法儀器架構 19
2.2 次表層破壞分析與檢測 21
2.3 實驗流程與規劃 23
2.4 實驗結果與討論 25
2.4.1 殘留應力量測結果 25
2.4.2 次表層破壞量測結果 31
2.5 結論 35
第3章 運動學裝配貼合位置分析 36
3.1 研究流程與架構 36
3.2 模型幾何外型與光學規格 37
3.3 貼合位置分析設定 42
3.4 有限元素模擬 44
3.4.1 邊界條件與網格設定 44
3.4.2 材料設定 47
3.5 Zernike多項式曲面擬合 48
3.5.1 反射面變形分析 48
3.5.2 Zernike多項式擬合 50
3.6 調制轉換函數模擬 52
3.7 貼合位置分析結果與討論 54
3.7.1 非球面鏡貼合位置分析 54
3.7.2 無減重結構之非球面鏡貼合位置分析 58
3.7.3 近似平面鏡貼合位置分析 62
3.7.4 貼合位置分析結論 63
3.8 結論 64
第4章 貼合位置實驗分析 65
4.1 實驗用干涉儀架構 65
4.2 模型與模擬設定 66
4.3 實驗與模擬結果討論 68
4.4 實驗與模擬偏差討論 71
4.4.1 實驗結果偏差討論 71
4.4.2 ISM組裝誤差模擬 73
4.5 結論 74
第5章 田口法與運動學裝配分析 75
5.1 田口法理論 75
5.1.1 品質特性 75
5.1.2 系統因子分析與選用 76
5.1.3 實驗規劃直交表 77
5.1.4 S/N比計算與分析 78
5.2 模擬流程與參數設定 80
5.2.1 模擬流程與品質特性定義 80
5.2.2 控制因子與水準數設定 82
5.2.3 模型與有限元素法邊界條件設定 86
5.3 L25直交表模擬結果與分析 87
5.3.1 有限元素法模擬結果 87
5.3.2 田口法結果與分析 93
5.4 L9直交表模擬結果與分析 99
5.4.1 田口法參數設定 99
5.4.2 模擬結果與討論 102
5.5 L9直交表第6組與其他組合綜合比較與討論 105
5.5.1 光學模擬結果與設計參數 105
5.5.2 鏡面變形量與最大主應力 110
5.5.3 模態分析 112
5.6 結果與討論 115
第6章 結論與未來工作 116
6.1 結論 116
6.2 未來工作 118
參考文獻 119
參考文獻 [1] P. P. Hed and D. F. Edwards, “Relationship between subsurface damage depth and surface roughness during grinding of optical glass with diamond tools”, Applied Optics, Vol. 26, No. 13, April 1987.
[2] J. A. Randi, J. C. Lambropoulos and S. D. Jacobs, “Subsurface damages in some single crystalline optical materials”, Applied Optics, Vol. 44, No. 12, April 2005.
[3] T. Suratwala, L. Wong, P. Miller, M. D. Feit, J. Menapace, R. Steele, P. Davis and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica”, Journal of Non-Crystalline Solid, Vol.352, pp. 5601-5617, October 2006.
[4] J. Wang, Y. Li, J. Han, Q. Xu and Y. Guo, “Evaluating subsurface damage in optical glasses”, Journal of the European Optical Society Rapid Publications, Vol. 6, No. 11001, pp. 1-16, February 2011.
[5] Schott AG, Thermal expansion of ZERODUR, TIE-37, August 2006.
[6] Schott AG, Design strength of optical glass and ZERODUR, TIE-33, January 2009.
[7] P. Hartmann, K. Nattermann, T. Dӧhring, R. Jedamzik, M. Kuhr, P. Thomas, G. Kling and S. Lucarelli, “ZERODUR glass ceramics for high stress applications”, Optical Materials and Structures Technologies IV, Proc. of SPIE 74250M, San Diego, CA, U.S.A., August 2009.
[8] P. Hartmann, K. Nattermann, T. Dӧhring, M. Kuhr, P. Thomas, G. Kling, P. Gath and S. Lucarelli, “Strength aspects for the design of ZERODUR glass ceramics structures”, Optical Materials and Structures Technologies III, Proc. of SPIE 666603, San Diego, CA, U.S.A., August 2007.
[9] T. Dӧhring, A. Thomas, R. Jedamzik, H. Kohlmann and P. Hartmann, “Manufacturing of lightweighted ZERODUR components at SCHOTT”, Optical Materials and Structures Technologies III, Proc. of SPIE 666602, San Diego, CA, U.S.A., August 2007.
[10] 詹佳諺,楊啟榮,黃鼎名和陳怡呈,「化學酸蝕時間對鏡片加工應力及表面粗糙度之效應」,精密機械與製造科技研討會,A0040-1~A0040-6頁,屏東、中華民國,2011年5月。
[11] D. Chin, “Optcial mirror-mount design and philosophy”, Applied Optics, Vol.3, No.7, pp. 895-901, July 1964.
[12] D. Vukobratovich and R. M. Richard, “Flexure mounts for high-resolution optical elements”, Optomechanical and Electro-Optical Design of Industrial Systems, Proc. SPIE 0959, pp. 18-36, 1988.
[13] P. S. Wilke and T. A. Decker, “Highly-damped exactly-constrained mounting of an x-ray telescope”, Smart Structures and Materials 1995: Passive Damping, Proc. SPIE 2445, pp. 2-13, San Diego, CA, USA, March 1995.
[14] C. B. Chu, Y. C. Li, W. Y. Chai and X. W. Fan, “Design of bipod flexures for space mirror”, International Symposium on Photoelectronic Detection and Imaging 2011: Space Exploration Technologies and Applications, Proc. SPIE 819620, Beijing, China, August 2011.
[15] R. W. Besuner, K. P. Chow, S. E. Kendrick and S. Streetman, “Selective reinforcement of a 2m-class lightweight mirror for horizontal beam optical testing”, Advanced Optical and Mechanical Technologies in Telescope and Instrumentation, Proc. SPIE 701816, Marseille, France, June 2008.
[16] 林育全,張勝聰,鄭羽成和黃鼎名,「衛載遙測取像儀實驗體光機結構設計與成像品質分析」,大口徑遙測酬載光機技術研討會,A1~A14頁,新竹、中華民國,2010年12月。
[17] Y. C. Lin, L. J. Lee, S. T. Chang, Y. C. Cheng and T. M. Huang, “Opto-mechanical structure design and modulation transfer function analysis for remote sensing instrument”, International Geoscience and Remote Sensing Symposium (IGARSS), pp. 2996-2998, Sendai, Japan, July 2011.
[18] M. Y. Hsu, W. C. Lin, M. Y. Yang, C. Y. Chan, Y. C. Lin, S. T. Chang, C. F. Ho and T. M. Huang, “The Cassegrain telescope primary mirror isostatic mount design for thermal stress”, Remote Sensing System Engineering III, Proc. of SPIE 78130M-1, CA, USA, August 2010.
[19] P. Mammini, A. Nordt, B. Holmes and D. Strubbs, “Sensitivity evaluation of mounting optics using elastomer and bipod flexures”, Optomechanics 2003, Proc. of SPIE 5176, pp. 26-35, San Diego, CA, USA, August 2003.
[20] E. T. Kvamme and Mark Sullivan, “A small, low stress, stable, 3DOF mirror mount with one arc-second tip/tilt resolution”, Space Systems Engineering and Optical Alignment Mechanisms, Proc. of SPIE 5528, pp. 264-271, Denver, CO, USA, August 2004.
[21] F. M. Tapos, D. J. Edinger, T. R. Hilby, M. S. Ni, B. C. Holmes and D. M. Stubbs, “High bandwidth fast steering mirror”, Optomechanics 2005, Proc. of SPIE 587701-1, CA, USA, August 2005.
[22] J. Fitzsimmons, D. Erickson, A. Hill, R. Bartos and J. K. Wallace, “Design and analysis of flexure mounts for precision optics”, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, Proc. of SPIE 70181K, Marseille, France, June 2008.
[23] C. Rossin, R. Grange, L. Martin, G. Moreaux, P. Blanchard, J. M. Deharveng, J. Evard, C. Martin, R. Mclean and D. Schiminovich, “Semi-kinematic mount of the FIREBALL large optics”, Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation, Proc. of SPIE 70181Q, Marseille, France, June 2008.
[24] D. Blanco, G. Pentland, T. Winrow and K. Rebeske, “The salt mirror mount: a high performance, low cost mount for segmented mirrors”, Future Giant Telescopes, Proc. of SPIE 4840, pp. 527-532, Waikoloa, HI, USA, August 2002.
[25] C. Chrzanowski, C. Frohlich, B. Shirgur and R. Mink, ”Design and structural/optical analysis of a kinematic mount for the testing of silicon carbide mirrors at cryogenic temperatures”, Space Systems Engineering and Optical Alignment Mechanisms, Proc. of SPIE 5528, pp. 204-214, Denver, CO, USA, August 2004.
[26] J. H. Clark, et al., “Mirror deformation versus contact area in mounted flat mirrors”, Advances in Optomechanics, Proc. of SPIE 747240C-1, San Diego, CA, USA, August 2009.
[27] A. Li, Z. Luan, Y. Bian and L. Liu, “Integrated analysis of strap mount for a circular mirror”, Optik, Vol. 122, Issue 17, pp. 1584-1587, September 2011.
[28] A. J. Malvick and E. T. Pearson, “Theoretical elastic deformations of a 4-m diameter optical mirror using dynamic relaxation”, Applied Optics, Vol.7, No. 6, pp. 1207-1212, June 1968.
[29] P. Mouroulis and J. Macdonald, Geometrical opticals and optical design, Oxford University Press, New York, 1997.
[30] J. Y. Wang and D. E. Silva, “Wave-front interpretation with Zernike polynomials”, Applied Optics, Vol. 19, No. 9, pp. 1510-1518, May 1980.
[31] V. L. Genberg, “Optical surface evaluation”, Structural Mechanics of Optical Systems I, Proc. of SPIE 0450, January 1983.
[32] V. L. Genberg, G. J. Michels and K. B. Doyle, “Orthogonality of Zernike Polynomials”, Optomechanical Design and Engineering 2002, Proc. of SPIE 4771, WA, U.S.A., July 2002.
[33] P. A. Coronato and R. C. Juergens, “Transferring FEA results to optical codes with Zernikes: a review of techniques”, Optomechanics 2003, Proc. of SPIE 5176, San Diego, CA, U.S.A., August 2003.
[34] R. C. Juergens and P. A. Coronato, “Improved method for transfer of FEA results to optical codes”, Novel Optical Systems Design and Optimization VI, Proc. of SPIE 5174, San Diego, CA, U.S.A., August 2003.
[35] F. D. Witt IV, G. Nadorff and M. Naradikian, “Self-weight distortion of lens elements”, Current Developments in Lens Design and Optical Engineering VII, Proc. of SPIE 62880H, San Diego, CA, U.S.A., August 2006.
[36] M. K. Cho, M. Liang and D. R. Neill, “Performance prediction of the LSST secondary mirror”, Advances in Optomechanics, Proc. of SPIE 742407, San Diego, CA, U.S.A., August 2009.
[37] J. H. Clark, F. E. Penado and J. Dugdale, “Deformation analysis of tilted primary mirror for and off-axis beam compressor”, Optomechanics 2011: Innovations and Solutions, Proc. of SPIE 81250C, San Diego, CA, USA, August 2011.
[38] Y. W. Ding, Z. You, E. Lu and H. Cheng, “A thermo-optical analysis method for a space optical remote sensor optostructural system”, Optical Engineering, Vol. 43, No. 11, pp. 2730-2735, November 2004.
[39] I. Moon, S. Lee and M. K. Cho, “Opto-mechanical design of a beam launch telescope”, Optomechanics 2005, Proc. of SPIE 58770I, San Diego, CA, U.S.A., August 2005.
[40] A. Li, L. Liu, J. Sun, Y. Zhu and Q. Shen, “Finite element analysis on a circular wedge prism with 400 mm diameter”, Optik, Vol. 118, pp. 589-593, 2007.
[41] A. Mazzoli, P. Saint-Georges, A. Orban, J. S. Ruess, J. Loicq, C. Barbier, Y. Stockman, M. Georges, P. Nachtergaele, S. Paquay and P. D. Vincenzo, “Experimental validation of opto-thermo-elastic modeling in OOFELIE multiphysics”, Optical Design and Engineering IV, Proc. of SPIE 81671I, Marseille, France, 2011.
[42] R. Q. Wu, K. Huang, H. Yang, J. Wang and Y. Liu, “Analysis of athermalizing performance of thermal infrared optical system with Cassegrain antenna”, Optik, Vol. 121, pp. 1904-1907, 2010.
[43] G. Cloud, Optical methods of engineering analysis, Cambridge University Press, New York, U.S.A., 1998.
[44] G. Cloud, “Part 29: Photoelasticity I—Birefringence and Relative Retardation”, Optical Methods in Experimental Mechanics, Vol. 31, Issue 6, pp. 27-29, November 2007.
[45] G. Cloud, “Part 30: Photoelasticity II—Birefringence in Materials”, Optical Methods in Experimental Mechanics, Vol. 32, Issue 1, pp. 13-16, January 2008.
[46] H. Aben and C. Guillement, Photoelasticity of Glass, Springer-Verlag, Berlin, Germany, 1993.
[47] G. Cloud, “Part 31: Photoelasticity III—Theory”, Optical Methods in Experimental Mechanics, Vol. 32, Issue 2, pp. 11-15, March 2008.
[48] G. Cloud, “Part 32: Photoelasticity IV—Observables and Interpretation”, Optical Methods in Experimental Mechanics, Vol. 32, Issue 3, pp. 15-17, May 2008.
[49] G. Cloud, “Part 36: Photoelasticity VIII—Recording and Numbering Isochromatic Fringes”, Optical Methods in Experimental Mechanics, Vol. 33, Issue 2, pp. 13-17, April 2009.
[50] G. Cloud, “Part 37: Photoelasticity IX—Fringes to Stress and Display of Results”, Optical Methods in Experimental Mechanics, Vol. 33, Issue 4, pp. 11-14, July 2009.
[51] G. Cloud, “Part 40: Photoelasticity XII—Recording Isoclinic Fringes”, Optical Methods in Experimental Mechanics, Vol. 34, Issue 2, pp. 15-18, March 2010.
[52] G. Cloud, “Part 41: Photoelasticity XIII—Stress Trajectories”, Optical Methods in Experimental Mechanics, Vol. 34, Issue 3, pp. 13-17, May 2010.
[53] G. Cloud, “Part 33: Photoelasticity V—Fringe Patterns”, Optical Methods in Experimental Mechanics, Vol. 32, Issue 5, pp. 13-16, September 2008.
[54] G. Cloud, “Part 34: Photoelasticity VI—The Circular Polariscope”, Optical Methods in Experimental Mechanics, Vol. 32, Issue 6, pp. 21-23, November 2008.
[55] G. Cloud, “Part 35: Photoelasticity VII—Basic Polariscope Setups”, Optical Methods in Experimental Mechanics, Vol. 33, Issue 1, pp. 13-16, February 2009.
[56] W. N. Sharpe, Springer Handbook of Experimental Solid Mechanics, Springer-Verlag, New York, U.S.A., 2008.
[57] K. B. Doyle, V. L. Genberg, G. J. Michels, Inegrated optomechanical analysis, SPIE Press, Bellingham Washington, 2002.
[58] Sigmadyne, SigFit reference manual, Version 2009R1,Sigmadyne, New York, 2009.
[59] D. Malacara, Optical shop testing, 3rd, John Wiley & Sons, Hoboken, New Jersey, 2007.
[60] G. D. Boreman, Modulation transfer function in optical and electro-optical systems, SPIE Press, Bellingham Washington, 2001.
[61] Optikos Corporation, How to measure MTF and other properties of lenses, Rev. 2.0, Optikos Corporation, U.S.A., 1999.
[62] P. R. Yoder, Opto-mechanical systems design, 3rd, CRC Press Taylor & Francis Group, New York, U.S.A., 2006.
[63] P. Y. Bely, The Design and Construction of Large Optical Telescopes, Springer-Verlag, New York, U.S.A., 2003.
[64] R. C. Hibbeler, Statics and mechanics of materials, Prentice Hall Pearson, Singapore, 2004.
[65] R. E. Fisher, T. G. Biljana and P. R. Yoder, Optical System Design, 2nd, Mc Graw Hill, R.O.C., 2008.
[66] 網路資料,http://www.photonics.com/Article.aspx?AID=24139
[67] Engineering Synthesis Design, Inc., Intellium H2000 Overview, Engineering Synthesis Design, Inc., U.S.A., 2010.
[68] 李輝煌,田口方法:品質設計的原理與實務,高立圖書有限公司,台北,2008。
指導教授 陳怡呈 審核日期 2012-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明