博碩士論文 993203021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:54.221.145.174
姓名 陳建欽(Jian-cin Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 石英柱狀微結構之表面聲波感測器之研製與特性分析
(Fabrication and Analysis of Micro-pillared Quartz SAW Sensors)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 利用電子束微影製作高密度石英柱狀結構
★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備★ 石英微結構對表面接觸角與潤濕性影響之研究
★ 石英奈米針狀結構表面之潤濕性及遲滯性研究★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性
★ MOCVD噴淋式腔體沉積模擬與進氣系統分析★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition
★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質★ 柱狀微結構對液珠熱毛細運動之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 表面聲波感測器元件由於靈敏度高、體積小、高可靠度等優勢,被運用在氣體感測器、液體感測器、溫度及濕度感測器上,近幾年也開始應用於生醫、生物檢測上。隨著樣品體積逐漸縮小,感測器的靈敏度必須提升。隨著微奈米製造技術的進步,微結構提供較多的感測表面積以提升元件性能。本文利用微機電(MEMS)製程技術設計與製作一具有柱狀微結構之表面聲波元件,量測其元件特性,探討微結構來提升其表面聲波感測效能的可行性。
首先利用微影技術與乾蝕刻於石英基板上蝕刻出不同結構尺寸、數量與深度之微結構於感測區上,接著利用蒸鍍沉積金屬薄膜,經微影製程蝕刻出指叉電極,再利用舉離法在感測區上沉積鉻金屬薄膜當作負載。訊號量測使用高頻功率與雜訊量測系統,測量質量負載前與負載後其輸入電壓與輸出電壓跟頻率響應之關係,計算並繪出插入損失與頻率響應關係圖,探討在不同結構與蝕刻深度由質量負載造成中心頻率的偏移之結果。最後將實驗量測數據與模擬結果做比對分析,以期達到藉由模擬來預測實驗結果,減少實驗的次數來達到較佳的結構增加形態。
由實驗量測結果顯示無論是增加微結構物數量或是增加蝕刻深度都能達到中心頻率偏移量上升的效果,而又以結構物週期變小所造成的效益較增加蝕刻深度來的優秀,此結果與簡化微結構的模擬所提供之結論是互相呼應的,因此由模擬來預測實驗趨勢是可行的。
摘要(英) Due to the high sensitivity, small size and high reliability, surface acoustic wave (SAW) device has been used as a sensor in many fields, such as gas sensors, liquid sensors, temperature sensors, and humidity sensors. It is also used as biomedicine and biological sensors in recent years. In such applications, as the sample size reduces, the sensitivity of the sensor has to be improved. Incorporating micro/nano-structures into the sensors is a promising approach. The high surface-to-volume ratio of micro/nano-structures provides more surface area of sensing to improve the performance of the device. In this study, we use MEMS fabrication techniques to fabricate micro-pillars on the SAW device, characterize its performance, and study the impacts of micro-structures in improving the SAW sensor performance.
First, we use photolithography and dry etching to fabricate micro-pillar arrays on the quartz substrate with different pillar diameters, lengths, and the array patterns. Then, a metal film is deposited and patterned to make the inter-digital transducers. Finally, chromium is deposited in the sensing area by lift-off as the mass loading material. An oscillating voltage is then apply to the SAW device, and the output voltage is measured by HF power measurement system. The insertion loss frequency response can be obtained. From the shift of the center frequency after loading, the mass of the loading can be determined. The experimental results is analyzed and compared with the simulation results.
The experimental data show that either increasing the micro-structure density or deepening the micro-structure etching depth, the shift of center frequency will increase. In addition, increasing the micro-structure density is better than deepening the micro-structure etch depth. The result was consistent with the simplified numerical simulation.
關鍵字(中) ★ 表面聲波
★ 微結構
★ 感測器
★ 微機電製程
關鍵字(英) ★ SAW
★ micro-structures
★ sensor
★ MEMS
論文目次 目錄
摘要 i
Abstract ii
謝誌 iv
目錄 v
圖目錄 vii
表目錄 xii
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 文獻回顧 6
1.4 論文架構 7
第2章 理論基礎 8
2.1 壓電理論 8
2.1.1 壓電效應(piezoelectric effect) 8
2.1.2 壓電材料 10
2.1.3 機電耦合係數(electromechanical coupling factor,Ke2) 11
2.2 指叉電極(Interdigital Transducers, IDTs) 11
2.2.1 基板材料選擇 13
2.2.2 指叉電極指寬 13
2.3 表面聲波感測器 14
2.3.1 插入損失(Insertion Loss, IL) 14
2.3.2 質量負載效應(Mass Load Effect) 15
第3章 研究方法 17
3.1 研究流程架構 17
3.2 模擬方法 17
3.2.1 統御方程式 17
3.2.2 模擬外形及參數 18
3.2.3 邊界條件 20
3.3 分析方法 21
3.4 元件製作與量測 24
3.4.1 實驗用之試片 30
3.4.2 試片切割 31
3.4.3 清洗試片 31
3.4.4 試片烘烤 31
3.4.5 結構物微影製程 32
3.4.6 結構物之蝕刻 33
3.4.7 蒸鍍沉積金屬薄膜 33
3.4.8 指叉電極微影製程 34
3.4.9 金屬薄膜之蝕刻 35
3.4.10 試片第一次量測 35
3.4.11 蒸鍍負載之金屬薄膜 38
3.4.12 試片第二次量測 39
第4章 結果與討論 42
4.1 量測數據整理 42
4.2 模擬分析結果 56
4.3 模擬分析與實驗量測對照 60
4.3.1 固定週期下改變深度造成的影響 60
4.3.2 增加表面積與頻率偏移量關係 64
第5章 結論與未來展望 69
5.1 結論 69
5.2 未來展望 69
參考文獻 71
參考文獻 [1] L. Rayleigh, ”On waves propagation along the plane surface of an elastic solid”, Proc. London Math. Soc., vol.17, pp.4-11, 1885.
[2] T. T. Wu, Introduction to Surface Acoustic Wave, R.O.C. Taiwan, 2003.
[3] B. Drafts, “acoustic wave technology sensors”, Ieee Transactions on Microwave Theory and Techniques, pp. 795-802, 2001.
[4] TXC Corporation, “Technical Terminology”, R.O.C. Taiwan. 1983.
[5] TriQuint corporation, “Smallest Dual-Band power Amplifier Solution for 3G and 4G Smartphones”, 2012.
[6] Chevallier E., Scorsone E., Bergonzo P. New sensitive coating based on modified diamond nanoparticles for chemical SAW sensors. Sensors and Actuators, Vol.154 ,pp. 238–244, 2011.
[7] M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. Bassett, S. Fleming, R. C. McPhedran , C. M. de Sterke and N. A. P. Nicorovici, “Microstructured Polymer Optical Fibre”, Optics Express, Vol. 9, No. 7, pp.319-327, 2001.
[8] 葉建宏, 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析, 碩士論文, 國立中央大學機械工程所, 中華民國一百年七月.
[9] H. W. Chang, Y. J. Jou, S. Z. Tasi, H. P. Shiu, J. S. Shr,, “Preparation and Application of Homemade Surface Acoustic Wave Gas Sensors”, Chemistry (The Chinese Chemical Society, Taipei), pp. 487-498, R.O.C. Taiwan, 2007.
[10] G. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung”, Zeitschrift für Physik, pp.206-222, 1959.
[11] J. M. Stephen , C. F. Gregory and D. S. Stephen, , “Dynamics and Response of Polymer-Coated Surface Acoustic Wave Devices: Effect of Viscoelastic Properties and Film Resonance”, Analytical Chemistry, pp.2201-2219, 1994.
[12] L. Wu, J. Y. Shen and Y. T. Shen, “Surface Acoustic Wave Based Chemical Sensors”, Chemistry, R.O.C. Taiwan, pp. 279-286, 2001.
[13] K. Mitsakakis, A. Tsortos, J. Kondoh, and E. Gizeli, “Parametric Study of SH-SAW Device Response to Various Types of Surface Perturbations”, Sensors and Actuators B, pp. 408-416, 2009.
[14] Jr. A. J. Slobodnik, “Surface acoustic waves and SAW materials”, Proceedings of the IEEE, pp. 581 – 595, 1976.
[15] B. Drafts, “Acoustic Wave Technology Sensor”, IEEE Transactions on Microwave Theory and Techniques, pp. 795-802, 2001.
[16] K. R. Williams, K. Gupta and M. Wasilik, ”Etch Rates for Micromachining Processing-PartП”, Journal of Microelectromechanical system, pp. 761-778, 2003.
[17] I. D. Avramov, “Design of Rayleigh SAW Resonators for Applications as Gas Sensors in Highly Reactive Chemical Environments”, IEEE International Frequency Control Symposium and Exposition, pp. 381 – 388, 2006.
[18] M. Benetti, , D. Cannata, F. Di Pietrantonio, C. Marchiori, P. Persichetti and E. Verona, “Pressure Sensor based on Surface Acoustic Wave Resonators”, IEEE Sensors, pp. 1024 – 1027, 2008.
[19] M. Hofer, N.Finger, G. Kovacs, J. Sch¨oberl, S. Zaglmayr, U. Langer, and R. Lerch, "Finite Element Simulation of Wave Propagation in Periodic Piezoelectric SAW Structures", IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 1192-1201, 2006.
[20] K. N. Rama, B. N. Harshal and P. Roy, “Simulation of One-Port SAW Resonator using COMSOL Multiphysics”, Proceeding of the COMSOL Users Conference, Bangalore, pp. 1-5, 2006.
[21] N. Jamil , A. N. Nordin, I. Voiculescu and M. Mel, “Simulation of Surface and Bulk Acoustic Wave MEMS Biosensors”, Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), Seville, Spain, pp. 1-5. 2010.
[22] W. G. Julian, K. V. Vijay and O. A. Osama, “Microsensor MEMS and Smart Devices”, Wiley, 2001.
[23] B.D. Stephen, “Acoustic wave sensors:theory, design, and physico-chemical applications”, Elsevier, 1996.
[24] Jr. A. J. Slobodnik, “Surface acoustic waves and SAW materials”, Proceedings of the IEEE , pp. 581 – 595, 1976.
[25] Y. C. Hsu and N. B. Le, “Coupling Coefficient Determination Based on Simulation and Experiment for ST-Cut Quartz SAW Delay-Line Response”, Microsyst Technol, pp. 615-622, 2008.
[26] H. Matthews, “Surface Wave Filters Design, Construction, and Use”, John Wiley & sons, pp. 20, 1979
[27] A. J. Slobodnik, J. R. Thomas, L. Szabo and K. R. Laker, Proc. IEEE 67 129,1979.
[28] C. K. Campbell, “Surface Acoustic Wave Devices for Mobile and Wireless Communications”,Academic Press, INC, pp. 108-113, 1989.
[29] M. Hofer, N.Finger, G. Kovacs, J. Sch¨oberl, S. Zaglmayr, U. Langer and R. Lerch, “Finite Element Simulation of Wave Propagation in Periodic Piezoelectric SAW Structures”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 1192-1201, 2006.
[30] G. Sauerbrey, “Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung”, Zeitschrift für Physik, pp.206-222, 1959.
[31] D. H. Wu, and H. H. Chen, “Application of Taguchi Robust Design Method to SAW Mass Sensing Device”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, pp. 2403-2410, 2005.
[32] W. G. Julian, K. V. Vijay and O. A. Osama, “Microsensor MEMS and Smart Devices”, Wiley, 2001.
[33] K. Mitsakakis, A. Tsortos, J. Kondoh, and E. Gizeli, “Parametric Study of SH-SAW Device Response to Various Types of Surface Perturbations”, Sensors and Actuators B, pp. 408-416, 2009.
指導教授 洪銘聰(Ming-tsung Hung) 審核日期 2013-1-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明