博碩士論文 993203027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.222.22.244
姓名 劉昆明(Kun-ming Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究
(Study of the thermoelectric material Zn4Sb3 synthesized by the process of rapidly-quenched melt spinning and mechanical metallurgy and the thermoelectric property)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究★ 不同製程對鋯基非晶質合金破裂韌性影響之研究
★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究
★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究
★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究
★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討
★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究
★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響★ 鈦基非晶填料應用於Ti-6Al-4V合金硬焊之微結構及機械性能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 能源短缺以及環境污染問題越來越嚴重,尋找替代性能源方案是刻不容緩。熱電發電原理根據某些材料特有的熱電(Thermoelectric)特性,材料在無做功的情形下,可以將熱能和電能做互相轉換。半導體熱電材料發電模組係根據 Seebeck 熱電原理,只要在材料兩端建立溫度差,發電模組的線路即可獲得電位差,此現象不須外加做功即可將熱能轉換電能,具有體積小、無做動部件、無噪音、無汙染、維修成本低廉等優點。熱電材料的優劣取決於材料的 ZT 值,Z是熱電優值(Figure of merit),定義為 α2σ/κ,其中α=ΔV/ΔT,為材料的Seebeck 係數;σ 是材料的導電率;κ 是材料的導熱率,T 是絕對溫度。因此可以看出一個優良的熱電材料需要高Seebeck 係數、高導電率、低熱傳導率。現階段而言,熱電值大多在 1以下,無法有更出色的應用,本研究將利用急冷旋鑄法製備具有奈米晶粒 Zn4Sb3 中溫型熱電材料粉末,並以熱壓燒結製作具有奈米結構的熱電塊材,以求增進功率因數(α2σ)和降低熱導性,最後探討熱電材料在不同急冷旋鑄條件下之晶粒尺度、微結構的不同以及利用不同熱壓粉末燒結條件對熱電塊材特性之影響。
摘要(英) The problems of energy shortage and environment pollution are going seriously. It is important to find alternative energy source project. Thermoelectric materials have thermoelectric properties that can transport heat energy to electric energy without external work. Semiconductor thermoelectric materials power generator is working under Seebeck thermoelectric Law. By establishment of the temperature difference across the materials circuit, we can get voltage across power generator. The advantage of this technology is small volume, quiet, no vibration, no pollution and low maintenance cost. Thermoelectric materials properties can be defined as the figure of merit. The figure of merit is defined as ZT = α2σ/κ, where α is the Seebeck coefficient, σ is the electrical conductivity, κ is the thermal conductivity and T is the temperature in Kelvin. Therefore, a good material should possess high electrical conductivity, large Seebeck coefficient and low thermal conductivity to retain the heat at the junction and to reduce the heat transfer losses. Most of thermoelectric materials’ ZT value are lower than 1. They do not have potential for commercial application.
The purpose of this program will prepare high performance medium-temperature thermoelectric alloy powder, Zn4Sb3 with nano-structure by means of rapidly-quenched melt-spinning (MS) technique. Then, these rapidly quenched nano-structured alloy ribbons will be ball milled into fine powder and pressed by hot pressing under vacuum to form the bulk samples. The final product fabricated via this new process is expected to increase its power factor ( α2σ ) and reduce thermal conductivity in comparison with the conventional process. In addition, the relationship between the microstructure (grain size) of alloy and its process condition as well as the effect of microstructure on the thermoelectric performance will be investigated.
關鍵字(中) ★ 熱電材料
★ 急冷旋鑄法
★ Seebeck 係數
★ 導電度
關鍵字(英) ★ Seebeck coefficient
★ Melt-spinning method
★ thermoelectric materials
論文目次 中文摘要…………………………………………………………………… i
英文摘要…………………………………………………………………… ii
誌謝………………………………………………………………………… iv
目錄………………………………………………………………………… v
圖目錄……………………………………………………………………… viii
表目錄……………………………………………………………………… xi
一、 緒論…………………………………………………………………… 1
1.1 研究背景……………………………………………………… 1
1.2. 研究方向以及動機…………………………………………… 2
二、 文獻回顧與整理……………………………………………………… 4
2.1. 熱電效應基本原理…………………………………………… 4
2.1.1. Seebeck 效應………………………………………………… 5
2.1.2. Peltier 效應…………………………………………………… 6
2.1.3. Thomson效應………………………………………………… 6
2.2. 熱電材料性能的物理參數…………………………………… 7
2.2.1. Seebeck 係數 α ……………………………………………… 7
2.2.2. 導電率 σ ……………………………………………………… 8
2.2.3. 導熱率 κ ……………………………………………………… 9
2.3. 熱電材料分類及研究進展…………………………………… 11
2.4. β-Zn4Sb3 熱電材料現今概況………………………………… 15
2.4.1. β-Zn4Sb3 化合物的結構特點……………………………… 15
2.4.2. β-Zn4Sb3 化合物的熱電性能……………………………… 16
2.4.3. β-Zn4Sb3 化合物的相變化…………………………………… 17
2.5. 奈米塊材於熱電之應用……………………………………… 19
2.5.1 奈米塊材對熱傳導係數之影響……………………………… 20
2.5.2. 奈米塊材對 Seebeck 係數之影響…………………………… 20
三、 實驗方法及實驗設備………………………………………………… 23
3.1. 實驗流程圖…………………………………………………… 23
3.2. 實驗設備介紹………………………………………………… 25
3.3. 熱電材料基礎性質分析……………………………………… 27
3.3.1. XRD - X射線繞射分析 ……………………………………… 27
3.3.2. 顯微結構觀察與分析………………………………………… 27
3.3.3. 熱電塊體材料密度量測……………………………………… 27
3.3. 熱電材料熱電性質分析 ……………………………………… 28
3.3.1 Seebeck 係數量測 …………………………………………… 28
3.3.1 導電率量測…………………………………………………… 28
四、 實驗結果與討論……………………………………………………… 30
4.1. X-ray 繞射結果分析………………………………………… 30
4.1.1. 融熔擴散製程與急冷旋鑄製程的合金相組成……………… 30
4.1.2. 各製程 Zn4Sb3 熱電塊材之相組成………………………… 31
4.1.3. Zn4Sb3 熱電塊材之元素組成………………………………… 32
4.2. 微結構分析…………………………………………………… 33
4.2.1. Zn4Sb3 速凝粉末穿透式電子顯微鏡分析 ………………… 33
4.2.2. 掃描式電子顯微鏡分析……………………………………… 33
4.3. 速凝粉末之 DSC 分析……………………………………… 35
4.4. 塊體材料之熱電性能………………………………………… 36
4.4.1 Seebeck 係數………………………………………………… 36
4.4.2. 導電率………………………………………………………… 37
五、 結論 ………………………………………………………………… 38
參考文獻…………………………………………………………………… 74
圖 1-1 Seebeck 效應示意圖…………………………………………… 39
圖 1-2 電子電洞運行模擬圖…………………………………………… 39
圖 1-3 熱電發電模組原理圖…………………………………………… 40
圖 1-4 Peltier 效應示意圖……………………………………………… 40
圖 1-5 熱電致冷器原理圖……………………………………………… 41
圖 2-1 Zn4Sb3 晶體結構模擬圖………………………………………… 41
圖 2-2 β-Zn4Sb3 與其他熱電材料之 ZT 值與溫度的比較…………… 42
圖 2-3 為 Zn-Sb 二元相圖……………………………………………… 42
圖 2-4 熱電材料性能演進圖……………………………………………… 43
圖 2-5 Schematic of energy distribution of carriers before and after filtered by energy barrier……………………………………………………… 43
圖 2-6 Relationship between power factor and energy barrier height……………………………………………………………… 44
圖 3-1 急冷旋鑄法設備………………………………………………… 44
圖 3-2 粉末冶金熱壓設備……………………………………………… 45
圖 3-3 Bruker, KAPPA Apex II…………………………………………… 45
圖 3-4 掃描式電子顯微鏡……………………………………………… 46
圖 3-5 Seebeck 係數和導電度量測示意圖…………………………… 46
圖 3-6 DSC 機台………………………………………………………… 47
圖 3-7 熱擴散係數量測機台…………………………………………… 47
圖 4-1 速凝粉體與母合金之 XRD 圖…………………………………… 48
圖 4-2 Zn4Sb3 母合金熱電塊材之 XRD 圖…………………………… 48
圖 4-3 Zn4Sb3 銅輪轉速 7.6 m/s 之塊材 XRD 圖……………………… 49
圖 4-4 Zn4Sb3 銅輪轉速 11.2 m/s之塊材 XRD 圖……………………… 49
圖 4-5 Zn4Sb3 銅輪轉速 19 m/s 之塊材 XRD 圖……………………… 50
圖 4-6 Zn4Sb3 粉末(銅輪線速度 7.6 m/s) 之 TEM 圖………………… 51
圖 4-7 Zn4Sb3 (銅輪線速度 7.6 m/s) 之 TEM 圖……………………… 52
圖 4-8 Zn4Sb3 粉末(銅輪線速度 11.2 m/s) 之 TEM 圖…………………53
圖 4-9 Zn4Sb3 粉末(銅輪線速度 11.2 m/s) 之 TEM 圖…………………54
圖 4-10 Zn4Sb3 粉末(銅輪線速度 19 m/s) 之 TEM 圖……………… 55
圖 4-11 Zn4Sb3 粉末(銅輪線速度 19 m/s) 之 TEM 圖……………… 56
圖 4-12 (a) Zn4Sb3 速凝薄帶之 自由面 SEM 圖……………………… 57
圖 4-12 (b) Zn4Sb3 速凝薄帶之 自由面 SEM 圖……………………… 58
圖 4-13 Zn4Sb3 母合金粉末冶金塊材…………………………………… 59
圖 4-14 Zn4Sb3 銅輪線速度(7.6m/s)粉末冶金塊材 …………………… 60
圖 4-15 Zn4Sb3 銅輪線速度(11.2m/s)粉末冶金塊材 …………………… 61
圖 4-16 Zn4Sb3 銅輪線速度(19m/s)粉末冶金塊材……………………… 62
圖 4-17 Zn4Sb3 母合金與速凝薄帶 DSC 圖…………………………… 63
圖 4-18 300℃ 熱壓試塊之 Seebeck 係數 α …………………………… 64
圖 4-19 400℃ 熱壓試塊之 Seebeck 係數 α …………………………… 65
圖 4-20 300℃ 熱壓試塊之導電度 σ …………………………………… 66
圖 4-21 400℃ 熱壓試塊之導電度 σ …………………………………… 67
圖 4-22 300℃ 熱壓試塊之功率因子………………………………………68
圖 4-23 400℃ 熱壓試塊之功率因子………………………………………69
表 1 β−Zn4Sb3 晶體結構理論模型比較表……………………………… 70
表 2 β-Zn4Sb3 室溫下的物理參數………………………………………… 71
表 3 β-Zn4Sb3 銅輪速率與晶粒尺寸對照表……………………………… 72
表 4 300℃ 下各試塊密度值……………………………………………… 72
表 5 400℃ 下各試塊密度值……………………………………………… 72
表 6 各試塊之 EDS 分析………………………………………………… 73
參考文獻 [1]. Gerald Mahan, Brian Sales, and Jeff Sharp,’’Thermoelectric materials: New approaches to an old problem”, Physics Today, vol. 42, March 1997,
[2]. DiSalvo E J.,”Thermoelectric cooling and power generation”, Science, 285:703-706.,1999
[3]. Service R.E, “Semiconductor advance may help reclaim energy from‘lost’ heat”, Science, 2006.311:1860-1861.
[4]. I De-Kui, YAN Yong-Gao, LI Han, TANG Xin-Feng, “Effects of Rapid Solidification Method on Thermoelectric and Mechanical Properties of β- Zn4+xSb3 Materials.”, Journal of Inorganic Materials, Vol. 25 No. 6
[5]. Seebeck, T.J., “Magnetic polarization of metals and minerals”, 
 Abhandlungen der Deutschen Akademie Wissenschaften zu Berlin, 
 265, 1823.
[6]. Rowe D.M.,CRC Handbook of Thermoelectrics,Boca Raton, CRC Press, Interscience Publishers, 1995.105.
[7]. Guff K.E., Horst RB.,Weaver J.L., ”Thermomagmetic figure of merit and ettingshausen cooling in Bi-Sb alloys”, Applied Physics Letter, Vol 145, 1963.
[8]. Rowe D.M., Bhandari C.M., ”Modem Thermoelectricity”, Holt Rinchalt and Wiston London, 1983.
[9]. Sales, B.C., “Atomic displacement parameters: a useful tool in the search for new thermoelectric materials”, Materials Research Society Symposium Proceedings, 545:13.15, 1999.
[10]. Yoon C.O., Moses M.D., ”Transports in blends of conducting polymers, Synthetic Metals” ,69:255-258., 1995.
[11]. Thomson, W., An account of Carnot`s theory of the motive power of heat, 
 Proc. R. Soc. Edinburgh, 16, 541, 1849
[12]. Thomson, W., On a mechanical theory of thermo-electric currents, Philos. Mag. , [5] 3, 529, 1852.
[13]. Thomson, W., Account of researches in thermo-electricity, Philos.
Mag., Vol. 8, 62, 1854.
[14]. Thomson, W., ”On the electrodynamic qualities of metals”, Philos. Trans. R. 
 Soc. London, 146, 649, 1856.
[15]. H. J. Goldsmid, “CRC Handbook of Thermoelectrics” by Rowe D.M. (Boca Raton, 1995), Ch3
[16]. Skrabeck E.A., Trimmer D.S., “CRC Handbook of Thermoelectric Handbook”, 1995, 274-275
[17]. Mahan G.D., “Bartkowiak M. Wiedemanm Franz law at boundaries” , Applied physics Letters, 1999.74(7):953-954.
[18]. T. M. Tritt, G. S. Nolas, G. A. Slack, Journal of Applied Physics, Vol. 79: 8412-8418, 1996.
[19]. B.C. Sales, D. Mandrus, R.K. Williams, “Filled skutterudite antimonides: a new class of thermoeletric materials”, Science, Vol. 272, pp. 1325–1328, 1996.
[20]. Poudel B.,Hao Q.,Ma Y., “High-Thermoelectric Performance of Nanostructured BismuthAntimony Telluride Bulk Alloys”, Science, Vol.320, pp.634-638, 2008.
[21]. Xie W.J.,Tang X.E, Yan Y.G, “Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys”, Appl. Phys. Lett., 94(102111):1-3, 2009.
[22]. Xie W.J., Tang X F, Yan Y.Q., “High thermoelectric performance BiSbTe alloy with unique low-dimensional structure”, Journal of Applied physics, 105(113713):l-7.,2009.
[23]. Tang X.F., Xie W.J., ”Preparation and thermoelectric transport properties of high-performance P-type Bi2Te3 with layered nanostructure”, Appl. Phys. Lett., 2007. 90(012102):1-3.
[24]. H. Wang, J.F. Li, C.W. Nan, M. Zhou, W.S. Liu, B.P. Zhang, T. Kita. “High performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering”. Appl. Phys. Lett. 88 (2006).
[25]. E. Polychroniadis, M. Kanatzidis, ”Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit.”, Science. Vol. 203,818, 2004.
[26]. Hsu K. F., Loo S., Fu G., “Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of mefit”, Science, 2004, 303: 818-821
[27]. Y. Gelbstein, O.B. Yehuda, E. Pinhas, T. Edrei, T. Sadia, Z. Dashevsky, M.P. Dariel., ”Nanostructures in high-performance (GeTe)(x)(AgSbTe2)(100-x) thermoelectric materials”. Nanotechnology 19 (2008) 245707.
[28]. Terasaki I.,Sasago Y,Uchinokura K., “Large thermoelectric power in NaCo2O4 , Physical Review B,1977.56:685.
[29]. Mikami,M., “Bi-substitution effects on crystal structure and thermoelectric properties of Ca3Co4O9 single crystals”, Japanese Joumal of Applied Physics Part 1-Regular Papers , Vol.45:4131, 2006
[30]. Moon J.M.,Masude Y.,Seo W.S., ”Ca-doped HoCoO3 as p-type oxide thermoelectric material”, Materials Letters,.48:225, 2001
[31]. Fujita K.,Mochida T.,and Nakamura K., ”High temperature thermoelectric properties of NaxCoO2--delta single crystals”, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes&Review Papers,2001.40(7): 4644-4647.
[32]. Nagira T., Furumoto D., Synthesis of NaxCoO2 thermoelectric oxides by the polymerized complex method. Scfipta Material , 2003.48(4):403-408.
[33]. Ponnambalam V, Gao X., Lindsey S., Thermoelectric properties and electronic structure calculations of low thermal conductivity Zintl phase series M16X1l (M=Ca & Yb ; X=Sb & Bi). Journal of Alloys & Compounds 2009.484(1.2): 80.85.
[34]. May,A.E,Toberer E.S.,Snyder G J.,Transport properties of the layered Zintl compound SrZnSb2.Journal ofApplied Physics,2009.106(013706):1-4..
[35]. FritschV, Thompson J. D., Synthesis structure and properties of the new rare-earth Zintl phase YbI JGaSb9, Journal of Solid State Chemistry, 2005.178(4): 1071.1079.
[36]. Gascoin E,Ottensmann S.,Stark D.,et a1.Zintl phases as thermoelectric materials:Tuned transport properties of the compounds CaxYbl-xZn2Sb2, Advanced Functional Materials, 2005.15(1 1):1860—1864.
[37]. T. Caillat, J.P. Fleurial, Preparation and thermoelectric properties of semiconducting Zn4Sb3, Journal of Physics and Chemistry of Solids, 1997. 58:1119-1125.
[38]. Mayer H.W-,Milallail I.,Schubert K,J.Less Common Met. 1978.59:43.
[39]. Tapiero M.,Tarabichi S.,Gies J.Ct,et al,S01.Energ.Mater.1 985.12,257.
[40]. Snyder G J.,Christensen M.,Nishibori E.,et al,Disordered zinc in Zn4Sb3 with phonon-glass and electron—crystal thermoelectric properties.Nat.Mater. 2004.3:458-463.
[41]. Cargnoni E,Nishibori E.,Rabiller P.,et al,Interstitial Zn Atoms Do the Trick in Thermoelectric Zinc Antimonide,Zn4Sb3: A Combined Maximum Entropy Method X-ray Electron Density and Ablnitio Electronic Structure Study,Chem.Eur.J.,2004.10: 3861—3870.
[42]. Bhattacharya S., Hermann R.P., Keppens V, Effect of disorder on the thermal 
 transport and elastic properties in thermoelectric Zn4Sb3,Phys.Rev.B. 2006.74(1 34 1 08): 1.5.
[43]. H. Okamoto, JPEDAV 29 (2008) 290.
[44]. Izard V, Record M.C., Discussion on the Stability of the Antimony-Zinc Binary
Phases,Calphad,2001.25:567—58 1.
[45]. Izard V, Record M.C., Mechanical alloying of a new promising thermoelectric material,Sb3Zn4.Journal ofAlloys and Compounds, 2002.345:257-264.
[46]. Mozharivskyj Y., Alexandra O. Pecharsky, A Promising Thermoelectric Material: Zn4Sb3 or Zn6-δSb5. Its Composition, Structure, Stability, and Polymorphs Structure and Stability of Zn1-δSb, Chemistry Material. 2004.16:1580—1589.
[47]. R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O’’Quinn, Nature, Vol. 413, Oct. 2001, p.597.
[48]. C. W. Nan, R .Birringer, “Determining the Kapitza resistance and the thermal conductivity of polycrystals: A simple model,” Phys. Rev. B, 57, 8264 (1998)
[49]. J. Martin, Li Wang, Lidong Chen, G. S. Nolas, “Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites,” Physical review B, 79, 115311 (2009)
[50]. P. H Joseph., C. M. Thrush, and T. M .Donald, “Thermopower enhancement in lead telluride nanostructures,” Physical review B, 70, 115334 (2004)
[51]. D. M. Rowe, “CRC Handbook of Thermoelectrics,” (Boca Raton, 1994) Ch7
[52]. K. Kishimoto, M. Tsukamoto, and T Koyanagi, “Temperature dependence of the Seebeck coefficient and the potential barrier scattering of n-type PbTe films 
 prepared on heated glass substrates by sputtering” J. Appl. Phys, 92, 5331 (2002)
[53]. QI De-Kui, YAN Yong-Gao, LI Han, Tang Xin-Feng, “Effects of Rapid Solidification Method on Thermoelectric and Mechanical Properties of Zn4+xSb3 Materials”, Journal of Inorganic Materials, 2010, Vol.25 No.6, 603-608
[54]. Ahn, J. H., Oh, M. W., Kim, B. S., Park, S. D., Min, B. K., Lee, H. W., & Shim, Y. J. (2011). Thermoelectric properties of Zn4Sb3 prepared by hot pressing. Materials Research Bulletin, 46(9), 1490–1495.
[55]. Mozharivskyj, Y., A. O. Pecharsky, S. Bud’’ko, and G. J. Miller. "A Promising Thermoelectric Material: Zn4Sb3 or Zn6-dSb5. Its Composition, Structure, Stability, and Polymorphs. Structure and Stability of Zn1-d Sb". Chem. Mat., 2004. 16(8): p. 1580-1589.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明