博碩士論文 993203033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.236.98.69
姓名 翁培鈞(Pei-chun Wong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
(Mechanical Properties of Magnesium Based Bulk Metallic Glass Composites with the Ti particles)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 不同製程對鋯基非晶質合金破裂韌性影響之研究
★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究
★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究
★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究
★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討
★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究
★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響★ 中低密度高熵合金之合金設計與其微結構變化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 由於醫學的進步,人類開始改善醫療環境及方法,甚至減少手術次數,減輕因醫療手術所產生的痛楚,因此能夠在體內被分解的可生物降解性材料受到了極大的關注。鎂鋅鈣塊狀非晶質合金材料具有較好的機械性質、生物相容性以及均勻的生物降解能力,適合用於骨釘、骨板等骨科植入物,但在室溫下的壓縮變形使得材料呈現粉碎性的破壞,為非常脆性的材料,進一步的應用較為困難。本實驗以Mg60Zn35Ca5為基材,添加球型延性Ti金屬顆粒製成非晶質合金複合材料,添加不同比例Ti顆粒進行壓縮試驗,結果顯示添加Ti金屬顆粒後破壞強度由655MPa提升至1187MPa,且可達到最高5.4%的塑性變形量。鎂基非晶質合金之彈性係數與所添加的Ti顆粒不同,因此能夠吸收裂紋(crack)的能量,阻止其快速傳遞與增生,但因Ti金屬顆粒與MgZnCa非晶質合金基材的附著力不佳,僅能吸收較弱的裂紋能量,但能使較強裂紋的傳遞距離拉長,減緩材料被破壞的時間。
摘要(英) Due to technology advancements, the medical treatment is being improved. One of being concerned is the attempt to simplify the procedure of implantation surgery, which possibly relieves the pain during the recovering process. The biodegradable material provides an attractive solution which is decomposable in human body with widely attention for decades. MgZnCa bulk metallic glass alloy, which has good mechanical properties, biocompatibility and uniform biodegradability, is suitable for the application in orthopedic implants, for example, the bone screws and bone plates. Unfortunately, such material is quite brittle where further application is limited. In this study, we have successfully synthesized the Ti particles reinforced Mg60Zn35Ca5 bulk metallic glass composites (BMGCs) rod with diameter of 2 mm by injection casting method in an argon atmosphere. The glass forming ability (GFA) and the mechanical properties of these Mg-based BMGCs have been systematically investigated as a function of the volume fraction (Vf) of Ti particles. The results showed that the compressive ductility increased with Vf of Ti particles. The mechanical performance with up to 5.4% compressive failure strain and 1187 MPa fracture strength at room temperature can be obtained for the Mg-based BMGCs with 50 vol.% Ti particles, which suggests that these dispersed Ti particles can absorb the energy of crack and branches the primary crack into multiple secondary crack. Therefore, further propagation of crack is blocked and then enhances the plasticity.
關鍵字(中) ★ 生物降解
★ 生物相容性
★ 裂紋
★ 非晶質合金
關鍵字(英) ★ bulk metallic glass composites (BMGCs)
★ biocompatibility
★ biodegradable
★ crack
論文目次 中文摘要.........................................................................................i
英文摘要.........................................................................................ii
總目錄.............................................................................................iii
圖目錄.............................................................................................vii
表目錄.............................................................................................ix
第一章 前言...................................................................................1
1-1 緒論.....................................................................................1
1-2 研究動機.............................................................................3
1-3 研究目的.............................................................................3
第二章 理論基礎...........................................................................3
2-1 非晶質合金概述.................................................................4
2-2 非晶質合金發展歷程.........................................................4
2-3 實驗歸納法則.....................................................................7
2-4 非晶質合金製造方法.........................................................8
2-5 非晶質合金熱力學............................................................11
2-5-1 非晶質是平衡的借穩定態..........................................11
2-5-2 玻璃轉換溫度Tg..........................................................12
2-5-3 玻璃形成能力(GFA)指標............................................13
2-5-3-1 簡化玻璃溫度Trg..................................................13
2-5-3-2 γ值..........................................................................14
2-5-3-3 γm值......................................................................15
2-5-3-4 △Tx值......................................................................15
2-6 非晶質合金特性................................................................15
2-6-1 機械性質......................................................................16
2-6-2 耐腐蝕性......................................................................17
2-6-3 磁性質..........................................................................17
2-6-4 抗菌性..........................................................................18
2-6-5 其他性質......................................................................18
2-7 非晶質合金的變形機制....................................................18
2-7-1 剪切轉變區..................................................................18
2-8 添加金屬顆粒之選擇法則................................................19
第三章 實驗步驟..........................................................................21
3-1 合金配置............................................................................21
3-2 合金熔煉............................................................................21
3-3 棒材試片製備....................................................................22
3-4 顯微組織分析....................................................................23
3-4-1 光學顯微鏡..................................................................23
3-4-2 X光繞射分析...............................................................24
3-4-3 掃描式電子顯微鏡觀察與能量散射質譜分析..........24
3-4-4 穿透式電子顯微鏡......................................................25
3-5 熱性質分析........................................................................25
3-5-1 示差掃描熱分析儀......................................................25
3-6 機械性質分析....................................................................26
3-6-1 壓縮測試......................................................................26
3-6-2 硬度分析......................................................................27
3-6-3 破壞韌性測試..............................................................27
第四章 結果與討論......................................................................29
4-1 顯微組織觀察分析............................................................29
4-1-1 顆粒與顆粒間之關係..................................................29
4-1-2 X光繞射分析................................................................30
4-1-3 壓縮前試片之掃描式電子顯微鏡觀察與成分分析..30
4-1-4 壓縮後試片之掃描式電子顯微鏡觀察......................31
4-2 熱性質分析........................................................................33
4-2-1 非恆溫熱性質分析......................................................33
4-3 機械性質分析....................................................................35
4-3-1 壓縮試驗......................................................................35
4-3-2 硬度試驗......................................................................39
4-3-3 破壞韌性試驗..............................................................39
第五章 結論..................................................................................41
參考文獻........................................................................................42
參考文獻 [1]. Bruno Zberg, Peter J. Uggowitzer and Jorg F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature, vol.8, pp.887-891.
[2]. Xuenan Gu, Yufeng Zheng, Shengping Zhong, Tingfei Xi, Junqiang Wang and Weihua Wang, “Corrosion of, and cellular responses to Mg-Zn-Ca bulk metallic glasses”, Biomaterials, vol.31, 2010, pp.1093-1103.
[3]. Qing-Feng Li, Hui-Ru Weng, Zhong-Yuan Suo, Ying-Lei Ren, Xiao-Guang Yuan and Ke-Qiang Qiu, “Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites”, Materials Science and Engineering A, vol.487, 2008, pp.301-308.
[4]. Yuan-Yun Zhao, Evan Ma and Jian Xu, “Reliability of compressive fracture strength of Mg-Zn-Ca bilk metallic glass: Flaw sensitivity and Weibull statistics”, Scripta Materialia, vol.58, 2009, pp.496-499.
[5]. Erne, P., Schier, M. and Resing, T. J., “The road to bioabsorbable stents: Reaching clinical reality?”, Cardiovasc, vol.29, 2006, pp.11-16.
[6]. Witte, F. et al., “In vitro and on vivo corrosion measurements of magnesium alloys.”, Biomaterials, vol.27, 2006, pp.1013-1018.
[7]. Song, G. L. and Atrens, A., “Understanding magnesium corrosion-a framework for improved alloy performance.”, Advance Engineering Materials, vol.5, 2003, pp.837-858.
[8]. Scully, J. R., Gebert, A. and Payer, J. H., “Corrosion and related mechanical properties of bulk metallicglasses”, Journal of Materials, vol.22, 2007, pp.302-313.
[9]. Gu, X. Shiflet, G. J., Guo, F. Q. and Poon, S. J., “Mg-Ca-Zn bulk metallic glasses with high strength and significant ductility”, Journal of Materials, vol.20, 2005, pp.1935-1938.
[10]. Zberg, B., Arata, E. R., Uggowitzer, P. J. and Loffler, J. F., “Tensile properties of glassy MgZnCa wires and reliability analysis using Weibull statistics”, Acta Materials, vol.57, 2009, pp.3223-3231.
[11]. Y.B. Wang, X.H. Xie, H.F. Li, X.L. Wang, M.Z. Zhao, E.W. Zhang, Y.J. Bai, Y.F. Zheng, L. Qin, “Biodegradable CaMgZn bulk metallic glass for potential skeletal application”, Acta Biomaterialia, vol.7, 2011, pp.3196-3208.
[12]. Frank Witte, Norbert Hort, Carla Vogt, Smadar Cohen, Karl Ulrich Kainer, Regine Willumeit, Frank Feyerabend, “Degradable biomaterials based on magnesium corrosion”, Current Opinion in Solid State and Materials Science, vol.12, 2008, pp.63-72.
[13]. Mark P. Staiger, Alexis M. Pietak, Jerawala Huadmai, George Dias, “Magnesium and its alloy as orthopedic biomaterials: A review”, Biomaterials, vol.27, 2006, pp.1728-1734.
[14]. M. Shanthi, M. Gupta, A.E.W. Jarfors, M.J. Tan, “Synthesis, characterization and mechanical properties of nano alumina particulate reinforced magnesium based bulk metallic glass composites”, Materials Science and Engineering A, vol.528, 2011, pp.6045-6050.
[15]. 王盈錦,林峰輝,胡孝光,黃琳惠,黃義侑,蔡瑞瑩,闕山璋,生物醫學材料,合記圖書出版社,2002年。
[16]. 林峰輝,白育綸,俞耀庭,張興棟,生物醫用材料,新文京開發出版有限公司,2004年。
[17]. 高材,林康平,林峰輝,陳家進,生物醫學工程導論,滄海書局,2008年。
[18]. J.Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, Journal of Applied Physics, vol.19, 1934, p.37.
[19]. A. Brenner, D. E. Couch, E. K. Williams and J. Res. “natn. Bur. Stand”, vol.44, 1950, pp.109.
[20]. P. Duwez and S. C. H. Lin, “Amorphous Ferromagnetic Phase in Iron-Carbon-Phosphorus Alloys”, Journal of Applied Physics, vol.38, 1967,pp.4096.
[21]. W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature, vol.187, 1960, pp.869.
[22]. D. Turnbull, “Phase changes”, Solid State Physics, vol.3, 1956, pp.225.
[23]. D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy systems”, Journal of Physics, vol.35, 1974, pp.1-10.
[24]. D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, Journal of Physical Chemistry, vol.7, 1966, pp.159.
[25]. H. A. Davies, “The formation of metallic glass”, Journal of Physics and Chemistry of Glasses, vol.17, 1976, pp.159.
[26]. 吳學陞著,“新興材料-塊狀非晶質金屬材料”,工業材料,第149期,1999年。
[27]. A. Inoue and K. Hashimoto, “Amorphous and Nanocrystalline Materials”, Springer, 1995, pp.7.
[28]. A. Inoue, “Bulk amorphous alloys with soft and hard magnetic properties” , Materials Science and Engineering A, vol.226-228, 1997,pp.357.
[29]. X.M. Wang, I. Yoshii, A. Inoue, Y-H. Kim and I-B. Kim, “Bulk Amorphous Ni75-xNb5MxP20-yBy(M=Cr, Mo)Alloys with Large Supercooling and High Strength”, Materials Transactions JIM, vol.40, 1999, pp.1130-1136.
[30]. A. Inoue, A. Kato, T. Zhang, S. G. Kim, and T. Masumoto, “Mg-Cu-Y Amorphous Alloys with High Mechanical Strengths Produced by a Metallic Mold Casting Method”, Materials Transactions JIM, vol.32-7, 1991, pp.609.
[31]. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, “Development of Mg based amorphous alloys with higher amounts of rare earth elements”, Materials Transactions JIM, vol.33, 1992, pp.937-945.
[32]. H. Choi-Yim, “Quasistatic and dynamic deformation of tungsten reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass matrix composites”, Scripta Materialia, vol.45, 2001, pp.1039-1045.
[33]. Y.K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scripta Materialia, vol.49, 2003, pp.843-848.
[34]. D. G. Pan, H. F. Zhang, A. M. Wang, and Z. Q. Hu., “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, vol.89, 2006.
[35]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates”, Materials Transactions JIM, vol.36, 1995, pp.866-875.
[36]. A. Inoue, T. Zhang and A. Takeuchi, “Ferrous and nonferrous bulk amorphous alloys”, Materials Science Forum, vol.269-272, 1998, pp.855-864.
[37]. A. Inoue, A. Takeuchi and T. Zhang, “Ferromagnetic bulk amorphous alloys”, Metallurgical and Materials Transactions, vol.29, 1998,pp.1779-1793.
[38]. R. E. Reed-Hill, Physical Metallurgy Principles, Boston, USA, 1994.
[39]. A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, vol.27, 1979.
[40]. W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sening indentation experiments”, Journal of Materials Research, vol.7, 1992, pp.1564.
[41]. S. R. Elliot, “Physics of Amorphous Materials”, 2nd Ed., USA, 1990.
[42]. F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, vol.25, 1997, pp.407.
[43]. R. W. Cahn, P. Hassen and E. J. Kramer(ed), Materials Science and Technology, vol.9, New York, USA, 1991.
[44]. W. Paul and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, 1973, pp.531.
[45]. K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, 1969.
[46]. B. Li, N. Nordstrom and E. J. Lavernia, “Spray forming of zircaloy-4”, Materials Science and Engineering, vol.237, 1997, pp.207.
[47]. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, “Formation and evolution properties of clusters in a large liquid metal system during rapid cooling processes”, Materials Science and Engineering, vol.94, 2002, pp.141.
[48]. P. S. Grant, “Spray forming”, Progress in Materials Science, vol.39, 1995, pp.497.
[49]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami and N. D. Bassim, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Lournal of Non-Crystalline Solid, vol.284, 2001, pp.134.
[50]. S. R. Elliot, “Physics of Amorphous Materials”, 1990, pp.30.
[51]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, vol.48, 2000, pp.279-306.
[52]. H. S. Chen, “Zridence of a Dlass-Liquid Transition in a Gold-Germanium”, Journal of Chemical Physics, vol.48, 1968, pp.2560-2565.
[53]. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, “Formation and mechanical properties of Cu-Hf-Ti bulk glassy alloys”, Journal of Materials Research, vol.16, 2001, pp.2836-2844.
[54]. Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta Materialia, vol.50, 2002, pp.3501-3512.
[55]. A. Inoue and J. S. Gook, “Fe-based ferromagnetic glassy alloys with wide supercooled liquid region”, Materials transaction, vol.36, 1995, pp.1180-1183.
[56]. 許樹恩、吳泰伯著,X光繞射原理與材料結構分析,中國材料科學學會, 1996年,pp.10。
[57]. H.-J. Guntherodt and H. Beck(ed), Glassy MetalsⅠ, Springer -Verlag, Berlin Heidelberg, Germany, 1981.
[58]. 鄭振東編譯,非金質金屬漫談,建宏出版社,1990年,p.39。
[59]. D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles” Physics Letters, vol.89, 2006, pp.261904.
[60]. A. Inoue, B. L. Shen, H. Koshiba, H. Kato and A. R. Yavari, “Cobalt-Based Bulk Glassy Alloy with Ultrahigh Strength and Soft Magnetic Properties”, Nature Material., vol.2, 2003, pp.661.
[61]. N. Nishiyama, K. Takenaka, T. Wada, H. Kimura, A. Inoue, “New Pd-based bulk glassy alloys with high glass-forming ability”, Journal of Alloys and Compounds, vol.434-435, 2007, pp.138-140.
[62]. F.X. Qin, X.M. Wang, A. Inoue, “Effect of annealing on microstructure and mechanical property of Ti-Zr-Cu-Pd bulk metallic glass”, Intermetallics, vol.15, 2007, pp.1337-1342.
[63]. Anstis GR, Chantikul P, Lawn BR, Marshall BD, “A critical evaluation of indentation
techniques for measuring fracture toughness: I, direct crack measurements”, Journal of
theAmerican Ceramic Society, vol.64, 198, pp.533-538.
[64]. J.S.C. Jang, T.H. Li, S.R. Jian, J.C. Huang, T.G. Nieh, “Effects of characteristics of Mo
dispersions on the plasticity of Mg-based bulk metallic glass composites”, Intermetallics, vol.19, 2011, pp.738-743.
[65]. P.J. Hsieh, L.C. Yang, H.C. Su, C.C. Lu, J.S.C. Jang, “Improvement of mechanical properties in MgCuYNdAg bulk metallic glasses with adding Mo particles”, Journal of Alloys and Compounds, vol.504, 2010, pp.98-101.
[66]. J.S.C. Jang, Y.S. Chang, T.H. Li, P.J. Hsieh, J.C. Huang, Chi Y.A. Tsao, “Plasticity enhancement of Mg58Cu28.5Gd11Ag2.5 based bulk metallic glass composites dispersion strengthed by Ti particles”, Journal of Alloys and Compounds, vol.504, 2010, pp.102-105.
[67]. Makoto Kinaka, Hidemi Kato, Masashi Hasegawa, Akihisa Inoue, “High specific strength Mg-based bulk metallic glass matrix composite highly ductilized by Ti dispersoid”, Materials Science and Engineering A, vol.494, 2008, pp.299-303.
[68]. 顧宜著,複合材料,新文京開發出版有限公司,1992年。
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明