博碩士論文 993203034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:56 、訪客IP:18.118.152.191
姓名 陳泳良(Yung-liang Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 複合電鍍琴鋼線應用於高速鋼切削之研究
(A Study of Composite Plating Piano Wire Used in High-Speed Steel Cutting)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要改善傳統游離磨料線鋸加工時,因磨粒並未利用完全便隨切削屑及磨漿排出,使其所需加工時間增長且線鋸上的磨料廢棄率高,而相對所需之成本也較高等缺點進行改善。因此,本研究研發一種以複合電鍍法的方式將鎳-鑽石披覆於琴鋼線上,使琴鋼線本身即具有切削性質之工具,希望藉此能有效改善傳統游離磨料鋸切加工的問題,進而降低製程上之成本。
研究主要分為兩大部分,第一部分為琴鋼線複合線材的製備:將鎳-鑽石複合電鍍液以電鍍方式披覆於琴鋼線材上。實驗結果顯示,隨著電流密度、電鍍時間的增加,鍍層厚度也隨之增加。在電流密度7 A/dm2 與鑽石濃度100 g/L 等參數進行電鍍實驗時,琴鋼線複合線材具有較佳鍍層厚度及鑽石披覆。第二部分則利用田口實驗設計針對高速鋼棒進行切削,探討各參數對切削深度的影響。由實驗結果得知,較佳製程參數組合為:切削荷重500 g、工件轉速3000 rpm、進給速率3.5 mm / min、線張力1500 g 和琴鋼線於電鍍時間10 min、電流密度7 A/dm2、鑽石濃度100 g/L 進行切削加工,切削深度可達27.01 μm。
摘要(英) This study was to improve the traditional free-abrasive wire saw machining,due to the abrasive doesn’t completely will immediately cutting debris andrefining discharged.High abrasive waste so that the required processing time of growth on the wire saw, the relative costs to be incurred higher shortcomings toimprove. In this study, the evelopment of composite plating nickel - diamond coated to the piano wire, the research study of piano wire itself cutting of the tool, hoping to effectively improve the traditional free-abrasive sawing, therebyreducing the cost of the process.
The study divided into two parts, the first part of the preparation of piano wire: nickel - diamond composite lating solution to plating coated on the piano wire. Experimental results show that, with the increase of current density and plating time, the coating thickness increases. Current density of 7 A/dm2 and diamond concentration of 100 g/L, the parameters of the plating experiments, piano wire has a better coating thickness and diamond coated. The second part of the Taguchi experimental design for high-speed steel cutting, explore the impact of various parameters on the depth of cut. From the experimental results, better process parameters combination: Cutting load 500 g, workpiece rotation 3000 rpm, feed rate 3.5 mm/min, thread tension 1500 g, co-deposition time 10 min, current density 7 A/dm2 and diamond concentration 100 g/L for cutting, cutting depth up to 27.01 μm.
關鍵字(中) ★ 琴鋼線
★ 切削深度
★ 複合電鍍沉積
★ 線鋸加工
關鍵字(英) ★ composite plating deposition
★ wire sawing
★ depth of cut
★ piano wire
論文目次 目錄
摘 要 ............................................................................................................. i
Abstract ....................................................................................................... ii
謝 誌 ........................................................................................................... iii
目 錄 ........................................................................................................... iv
圖 目 錄 ..................................................................................................... vii
表 目 錄 ....................................................................................................... x
第一章 緒論 ................................................................................................ 1
1-1 研究背景 ............................................................................................... 1
1-2 研究動機與目的 ................................................................................... 3
1-3 文獻回顧 .............................................................................................. 4
1-3-1 複合電鍍 ........................................................................................... 4
1-3-2 線鋸切削 ........................................................................................... 5
1-3-3 田口實驗法探討 ............................................................................... 6
1-4 研究方法 .............................................................................................. 8
第二章 基本原理 ....................................................................................... 9
2-1 電鍍原理 .............................................................................................. 9
2-1-1 電極電位 (Electro Potential) ........................................................... 10
2-1-2 極化 ................................................................................................. 10
2-1-3 電雙層 ............................................................................................. 11
2-2 複合電鍍原理 ..................................................................................... 12
2-3 線鋸切削原理 ..................................................................................... 15
2-3-1 線鋸切削 ......................................................................................... 15
2-3-2 多線式線鋸切技術 ......................................................................... 17
2-4 田口品質工程原理 ............................................................................. 18
第三章 實驗設備、機構與流程 .............................................................. 22
3-1 實驗相關設備 .................................................................................... 22
3-2 實驗材料 ............................................................................................ 30
3-2-1 氨基磺酸鎳鍍液 ............................................................................. 30
3-2-2 琴鋼線 ............................................................................................. 31
3-2-3 鑽石磨粒 ......................................................................................... 32
3-2-4 高速鋼 ............................................................................................. 33
3-2-5 電解液 ............................................................................................ 33
3-3 實驗機構 ........................................................................................... 34
3-3-1 琴鋼線複合電鍍機構與加工方法 ................................................ 34
3-3-2 琴鋼線切削機構與加工方法 ......................................................... 36
3-4 實驗參數設定 .................................................................................... 38
3-4-1 琴鋼線複合電鍍實驗設定 ............................................................. 38
3-4-2 複合線材切削實驗設定 ................................................................. 39
3-5 實驗流程 ............................................................................................ 41
第四章 結果與討論 .................................................................................. 43
4-1 製程參數對鍍層厚度影響 ................................................................ 43
4-1-1 時間對鍍層厚度影響 ..................................................................... 43
4-1-2 電流對鍍層厚度影響 ..................................................................... 47
4-1-3 濃度對鍍層厚度影響 ..................................................................... 50
4-2 製程參數對磨粒附著之影響 ............................................................ 53
4-2-1 時間對磨粒附著之影響.................................................................. 53
4-2-2 電流密度對磨粒附著之影響 ......................................................... 56
4-2-3 濃度對磨粒附著之影響.................................................................. 59
4-3 利用田口實驗探討切削深度及切削參數 ......................................... 61
4-3-1 實驗結果分析 ................................................................................. 62
4-3-2 驗證實驗 ......................................................................................... 66
4-4 對切削深度的顯著因子驗證 ............................................................. 69
4-4-1 實驗條件與實驗規劃 ...................................................................... 69
4-4-2 工件轉速與切削深度之關係 .......................................................... 70
4-4-3 進給速率與切削深度之關係 .......................................................... 74
第五章 結論 ............................................................................................... 78
參考文獻 .................................................................................................... 80
參考文獻 1.Kalpakjian, Serope, Schmid, Steven. R, Manufacturing Engineering and Technology, Prentice Hall, 2011.
2.K. H. Hou, M. D. Ger, L. M. Wang and S. T. Ke, The wear behaviour of electro-codeposited Ni–SiC composites, Wear, Vol. 253, pp. 994-1003, 2002.
3.M. Ghouse, M. Viswanathan and E. G. Ramachandran, Occlusion Plating of Copper-Silicon Carbide Composites, Metal Finishing, Vol. 78, pp. 331-35, 1980.
4.J. Zahavi amd J. Hazan, Electrodeposited Nickel Composites Containing Diamond Particles, Plating Surface Finishing, Vol. 70, pp. 57-61, 1983.
5.A. Hocestad, L. J. J. Janssen, Electrochemical Co-deposition of Inert Particles in a Metallic Matrix, Journal Of Applied Electrochemistry, Vol. 25, pp. 519-527, 1995.
6.H. Ferkel, B. Muller, W. Riehemann, Electrodeposition of article-Strengthened Nickel films, Vol. 234, pp. 474-476, 1997.
7.E. C. Lee and J. W. Choi, A study on the mechanism of formation of electrocodeposited Ni–diamond coatings, Surface and Coatings Technology, Vol. 148, pp. 234-240, 2001.
8.Y. Chiba, Y. Tani, Development of a High-Speed Manufacturing Method
for Electroplated Diamond Wire Tools, Vol. 52, pp. 281-284, 2003.
9.L. Du, B. Xu, S. Dong, H. Yang and W. Tu, Study of tribological characteristics and wear mechanism of nano-particle strengthened nickel-based composite coatings under abrasive contaminant lubrication, Wear, Vol. 257, pp. 1058-1063, 2004.
10.L. Wang, Y. Gao, H. Liu, Q. Xue and T. Xu, Effects of bivalent Co ion on the co-deposition of nickel and nano-diamond particles, Surface & Coatings Technology, Vol. 191, pp. 1-6, 2005.
11.T. Tsubota, S. Tanii, T. Ishida, M. Nagata and Y. Matsumoto, Composite electroplating of Ni and surface-modified diamond particles with silane coupling regent, Diamond & Related Materials, Vol. 14, pp. 608-612, 2005.
12.H. K. Lee, H. Y. Lee and J. M. Jeon, Codeposition of micro- and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating, Surface & Coatings Technology, Vol. 201, pp. 4711-4717, 2007.
13.N. K. Shrestha, T. Takebe and T. Saji, Effect of particle size on the co-deposition of diamond with nickel in presence of a redox-active surfactant and mechanical property of the coatings, Diamond & Related Materials, Vol. 15, pp. 1570-1575, 2006.
14.H. K. Park, H. Onikura, O. Ohnishi and A. Sharifuddin, Development of micro-diamond tools through electroless composite plating and investigation into micro-machining characteristics, Precision Engineering, Vol. 34, pp. 376-386, 2010.
15.M. Kojima, Development of new wafer slicing equipment, Sumitomo Met, vol. 42, pp. 218-224, 1990.
16.M.B. Smith , Multi-Wire FAST slicing for photovoltaic applications, IEEE, pp. 979-981, 1991.
17.F. Schmid, M. B. Smith and C. P. Khattak, Kerf reduction using sharp wire, IEEE, pp. 205-208, 1993.
18.K. Ishikawa, H. Suwabe, Study on machining characteristics of wire tool with electrodeposited diamond grains, JSPE, Vol. 60, pp. 329-334 ,1994.
19.M. Bhagavat, V. Prasad, I. Kao, Elasto-hydrodynamic interaction in the free abrasive wafer slicing using a wiresaw: modeling and finite element analysis, ASME Journal of Tribology, Vol. 122, pp. 394-404, 2000.
20.M. Nakai et. al, Development of a fixed diamond wire saw for electronics application, Osaka Diamond Co., pp. 233-240, 2001.
21.K.Liu, X.P.Li, Ductile Cutting of tungsten carbide, Journal of Materials Processing Technology, Vol. 113, pp. 348-354, 2001.
22.H. K. Tonshoff, H. Hillmann-Apmann, Diamond tools for wire sawing metal components, Diamond and Related Materials, Vol. 11, pp. 742–748, 2002.
23.M. S. Phadke, Quality engineering using robust design, AT&T Laboratories, 1989.
24.F. C. Khaw, B. S. Lim and L. E. N. Lim, optimal design of neural networks using the taguchi method, neural computing, Vol. 7, pp. 225–245, 1995.
25.W. H. Yang, Y. S. Tarng, Design optimization of cutting parameters for turning operations based on the taguchi method, Journal of Materials Processing Technology, Vol. 84, pp. 122-129, 1998.
26.J. H. Lau, C. Chang, Taguchi design of experiment for wafer bumping by stencil printing, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 233, pp. 219–225, 2000.
27.A. Mertol, Application of the Taguchi Method to chip scale package (CSP) design, IEEE Transactions on Advanced Packaging, Vol. 23, pp. 266–276, 2000.
28.G. Taguchi, Taguchi Methods in LSI fabrication process, IEEE International Workshop on 2001 , pp. 1–6, 2001.
29.Y. S. Tarng, S. C. Juang and C. H. Chang, The use of grey-based Taguchi Methods to determine submerged arc welding process parameters in hardfacing, Journal of Materials Processing Technology, Vol. 128, pp. 1–6, 2002.
30.J. M. Liang, P. J. Wang, Self-learning control for injection molding based on neural networks optimization, Journal of Injection Molding Technology, Vol. 6 , pp. 58–72, 2002.
31.J. A. Ghani, I. A. Choudhury and H. H. Hassan, Application of Taguchi method in the optimization of end milling parameters, Journal of Materials Processing Technology, Vol. 145, pp. 84–92, 2004.
32.B. J. Hwang, C. S. Hwang , Mechanism of codeposition of silicon carbide with electrolytic cobalt, Vol. 140, pp. 979-984, 1993.
33.N. Gulielmi, Kinetics of the Deposition of inert particles from electrolytic baths, Journal of the Electrochemical Society, Vol. 119, pp. 1009-1012, 1972.
34.J. P. Celis, J. R. Roos and C. Buelens, A mathematical model for the electrolytic codeposition of particles with a metallic matrix, Journal of the Electrochemical Society, Vol. 134, pp. 1402-1408, 1987.
35.B. J. Hwang, C. S. Hwang, Mechanism of codeposition of silicon carbide with electrolytic cobalt, Journal of the Electrochemical Society, Vol. 140, pp. 979-984, 1993.
36.T. Liedke, M. Kuna, A macroscopic mechanical model of the wire sawing process, Vol. 51, pp. 711-720, 2011.
37.李輝煌,「田口設計的原理與實務」,高立出版社,2000。
38.張國龍,「矽晶圓拋光時溫度及磨粒對表面性質之影響」,國立清華大學,博士論文,民國88年。
指導教授 顏炳華(Biing-hwa Yan) 審核日期 2012-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明