博碩士論文 993203037 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:18.118.152.234
姓名 許辰陽(CHEN-YANG HSU)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 超音波檢測應用於鋁合金微結構之研究
(The investigation of ultrasonic measurement on aluminum microstructure evolution.)
相關論文
★ 7005與AZ61A拉伸、壓縮之機械性質研究★ 雷射去除矽晶圓表面分子機載污染參數的最佳化分析
★ 球墨鑄鐵的超音波檢測★ 模具溫度對TV前框高亮光澤產品研討
★ 高強度7075-T4鋁合金之溫間成形研究★ 鎂合金燃燒、鑽削加工與表面處理之研究
★ 純鈦陽極處理技術之研發★ 鋁鎂合金陽極處理技術之研發
★ 電化學拋光處理、陽極處理中硫酸流速與封孔處理對陽極皮膜品質之影響★ 電解液溫度與鋁金屬板表面粗糙度對陽極處理後外觀的影響
★ 製程參數對A356鋁合金品質的影響及可靠度的評估★ 噴砂與前處理對鋁合金陽極皮膜品質的影響
★ 鎂合金回收重溶之品質與疲勞性質分析★ 鋁合金熱合氧化膜與陽極氧化膜成長行為之研究
★ 潤滑劑與製程參數對Al-0.8Mg-0.5Si鋁合金擠壓鑄件的影響★ 摩擦攪拌製程對AA5052鋁合金之微觀組織及對陽極皮膜的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鋁合金因其重量輕、強度高與耐腐蝕,故廣泛的應用於工業界,材料在經過熱處理後,合金元素會在材料內部形成微顆粒,這些微顆粒會影響到材料的機械性質。因此,本研究的目標是建立以非破壞性檢測方式評估材料內部微顆粒的分佈。
在超音波探頭的選用上,低頻(5 MHz、10 MHz)的探頭適用於量測材料的晶界與晶粒尺寸,而高頻(20 MHz)的探頭則是用於量測微顆粒的分佈。在使用浸液式超音波檢測時,探頭與受測物間的距離在使用近場長度時可以降低誤差的產生,提高量測值的準確度。
使用頻率為5 MHz的探頭時,衰減率與內耗能的主要影響因素為材料內較巨觀的結構(晶界、差排密度與晶界上的微顆粒)。結合 R_L(單位面積上晶界長度)與 Q^(-1)(內耗能)間的關係,可以利用內耗能的變化來推測材料內部巨觀結構。超音波雜訊的振幅變化主要是由材料內部晶粒尺寸分佈不均勻所造成,而不是晶粒尺寸的大小。
本實驗使用超音波檢測法(Ultrasonic testing)量測7xxx 系鋁合金材料的超音波衰減率。討論材料內部微顆粒、基地、晶界與材料熱處理後微顆粒所產生的應力場對超音波衰減率的影響(∑▒〖f_pi A_i 、〖B_m 、α〗_GB 與〖 C〗_(σ_p ) 〗)。使用光學顯微鏡(Optical Microscope, OM)量測不同尺寸範圍的微顆粒數量,將微顆粒對衰減率的影響區分為 5~10 μm、10~20 μm、20~40 μm 與40~50 μm 分別佔材料的體積分率(f_p1、f_p2、f_p3 與 f_p4)對超音波衰減率的影響。結合超音波檢測得到的內耗能與渦電流檢測法(Eddy current testing)得到的導電度可以推算出材料內部微顆粒的分佈。
摘要(英) Having the light weight, higher mechanical strength and corrosion resistance, aluminum alloys have been widely used in industry. The material after heat treatment, alloy elements will be formed of particles in the matrix. The mechanical properties of material were affected by particles distribution. Therefore, the objective of this study is to use NDT (non-destructive testing) methods to assess the micro-structural changes inside the material.
The selection of the ultrasonic probe, at low frequency (5 MHz and 10 MHz) for measuring the grain boundary of the material, at high frequency (20 MHz) is used to measure the particles distribution. Immersion ultrasonic testing, the distance between the probe and measured sample is equal to the length of the near-field can reduce the measurement error and, increasing the accuracy of the measured values.
Using a 5 MHz probe, the ultrasonic attenuation and internal friction was affected by the grain boundary, dislocation density, and grain boundary. Combine the relationship between R_L(the length of grain boundary per unit area) and Q^(-1)(internal frication), could predict macro-structure by the variation of internal friction.The amplitude variation of the ultrasonic noise was mainly due to non-uniform distribution of grain, not’’s grain size.
The study used UT (ultrasonic testing) to obtain the attenuation of 7000 series aluminum alloy. We measure attenuation and separate into four parts for discuss: i) particles distribution set as ∑▒〖f_pi A_i 〗 ; The influence of particles on ultrasonic attenuation were divided to varied size range (5~10 μm, 10~20 μm, 20~40 μm and 40~50 μm). The range of particles of 7000 series aluminum alloy was observed by using OM (Optical microscope). ii) matrix set as B_m value. iii) grain boundary scattering set as α_GB value. iv) the particles stress field by heat treatment set as 〖 C〗_(σ_p ) value. Finally, combine ultrasonic attenuation, internal friction, and conductivity to estimate micro-structure of the aluminum alloys.
關鍵字(中) ★ 超音波衰減率
★ 內耗能
★ 微顆粒分佈
★ 超音波雜訊
關鍵字(英) ★ ultrasonic attenuation
★ ultrasonic noise
★ internal friction
★ particles distribution
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 ix
第一章 前言 1
第二章 理論探討與文獻回顧 2
2-1 超音波檢測(Ultrasonic Testing)原理 2
2-1-1 音波的種類 2
2-1-2 音波傳送速率 3
2-1-3 超音波作用音場及衰減 3
2-2 超音波量測材料微結構之相關研究 4
2-2-1 晶粒尺寸對超音波訊號的影響 4
2-2-2 孔洞率對超音波訊號的影響 8
2-2-3 氫含量對超音波訊號的影響 10
2-2-4 差排對超音波訊號的影響 11
2-2-5 相變化對超音波訊號的影響 15
2-2-6 微顆粒對超音波訊號的影響 16
2-2-7 雜訊對超音波訊號的影響 18
2-3 微顆粒基本性質 24
2-3-1 微顆粒的體積分率計算 24
2-3-2 微顆粒的應力場計算 24
2-4 7xxx 系鋁合金微顆粒簡介 25
2-4-1 鋁合金熱處理簡述 25
2-4-2 7xxx 系鋁合金析出物整理(TEM、SEM) 26
第三章 實驗方法與步驟 29
3-1 實驗目的 29
3-2 實驗材料與試片準備 29
3-3 實驗設備 30
3-4 實驗步驟 30
第四章 結果與討論 37
4-1 近場長度對超音波量測的影響 37
4-2 超音波訊號量測 39
4-3 微結構分析 43
4-4 不同頻率探頭的選用 52
4-5 鋁合金微結構對超音波內耗能(Internal Friction)的影響 54
4-5-1 內耗能計算 54
4-5-2 5N純鋁晶界與差排對內耗能的影響 56
4-5-3 鋁合金熱處理與晶界上微顆粒對內耗能的影響 58
4-5-4 綜論 59
4-6 雜訊對超音波訊號量測的影響 61
4-6-1 5N 純鋁雜訊分析 61
4-6-2 鋁合金雜訊分析 63
4-6-3 綜論 65
4-7 微顆粒分佈對超音波衰減率的影響 66
4-7-1 建立關係式 66
4-7-2 關係式係數的計算 66
4-7-3 微顆粒分佈對內耗能的影響 74
4-7-4 微顆粒對導電度的影響 75
4-7-5 本研究理論分析應用:微顆粒數量與晶界散射所造成的衰減之推估 76
第五章 結論 79
參考文獻 80
附錄 86
參考文獻 T.G. Leighton, The Acoustic Bubble, Institute of Sound and Vibration Research, Southampton, pp.3-10, pp.16-23, pp.30-31, 1994.
American Society for Nondestructive Testing, Nondestructive Testing Handbook, Vol. 7, second edition, pp.39, pp.170-173, pp.731-744, 1991.
陳永增, 鄧惠源, 非破壞檢測, 全華圖書有限公司, 台北,4-22-4-39頁, 民國88年.
A. S. Birks, “Nondestructive Testing Handbook”, 7, 2nd, American Society for Nondestructive Testing, pp.39 and pp. 197, 1991.
E. P. Papadakis, “Revised Grain-Scattering Formulas and Tables”, The journal of the acoustical society of America, Vol. 37, No. 4, pp.703-710, April 1965.
X.G. Zhang, et al., “Ultrasonic attenuation due to grain boundary scatteringin copper and copper-aluminum”, J. Acoust. Soc. Am., volume 116, Issue 1, pp.109-116, March 2004.
P. Palanichamy, et al., “Ultrasonic velocity measurements for estimation of grain size in austenitic stainless steel”, NDT&E International, Vol. 28, No. 3, pp.179-185, 1995.
R. Ambardar, “Effect of porosity, pore diameter and grain size on ultrasonic attenuation in aluminum alloy castings”, Insight: Non-Destructive Testing and Condition Monitoring, Vol. 37, No. 7, pp.536-543, July 1995.
R. Ambardar, “Ultrasonic velocity measurement to assess casting quality”, Insight: Non-Destructive Testing and Condition Monitoring, Vol. 38, No. 7, pp.502-508, July 1996.
C. F. Ying, et al., “The Effect Hydrogen On Ultrasonic Attenuation And Velocity Measurements In Titanium”, ACTA METALLURGICA, Vol. 2, pp.374-379, May 1954.
A. Granato, et al., “Theory of Mechanical Damping Due to Dislocations”, Journal of Applied Physics, Vol. 27, No. 6, pp.583-593, June 1956.
A. Hikata, et al., “Sensitivity of Ultrasonic Attenuation and Velocity Changes to Plastic Deformation and Recovery in Aluminum”, Journal of Applied Physics, Vol. 27, No. 4, pp.396-404, April 1956.
G. T. FEI, et al., “The Relation between the Variation of Stress, Energy Loss, Ultrasonic Attenuation, and Dislocation Configuration in Aluminium during the Early Stages of Fatigue”, phys. stat. sol. (a), Vol. 140, pp.119-125, 1993.
G. T. FEI, et al., “Ultrasonic Attenuation Study on the Interaction between Dislocations and Point Defects in 99.999 wt% A1 and A1-0.025 wt% Mg”, phys. stat. sol. (a), Vol. 153, pp.323-328, 1996.
J. Wang, et al., “Sensitivity of Ultrasonic Attenuation and Velocity Change to Cyclic Deformation in Pure Aluminum”, phys. stat. sol. (a), Vol. 169, pp.43-48, 1998.
G. Abrosimova, et al., “Orientation dependence of elastic properties and internal stresses in sub-microcrystalline copper produced by equal channel angular pressing”, Acta Materialia, Vol. 58, pp.6656-6664, 2010.
A. Kumar, et al., “Characterization of solutionizing behavior in VT14 titanium alloy using ultrasonic velocity and attenuation measurements”, Materials Science and Engineering A, Vol. 360, pp.58-64, 2003.
J. Stella, et al., “Characterization of the sensitization degree in the AISI 304 stainless steel using spectral analysis and conventional ultrasonic techniques”, NDT&E International, Vol. 42, pp.267-274, 2009.
C.H. Gür, “Investigation of microstructure–ultrasonic velocity relationship in SiCP -reinforced aluminium metal matrix composites”, Materials Science and Engineering A, Vol. 361, pp.29-35, 2003.
Andrei S. Dukhin and Philip J. Goetz, “Acoustic spectroscopy for concentrated polydisperse colloids with low density contrast”, American Chemical Society, Vol. 12, pp. 4998-5003, 1996.
Isaac Yalda, Frank J. Margetan, and R. Bruce Thompson, “Predicting ultrasonic grain noise in polycrystals: A monte carlo model”, Acoustical Society of America, Vol. 99, Issue 6, pp. 3445-3455, 1996.
R. Bruce Thompson, F. J. Margetan, “Use of elastodynamic theories in the stochastic description of the effects of microstructure on ultrasonic flaw and noise signals”, Wave Motion, Vol. 36, pp. 347-365, 2002.
F. J. Margetan, T. A. Gray, and R. B. Thompson, “Measurement and modeling of ultrasonic pitch/catch grain noise”, AIP Conf. Proc., Vol. 975, pp. 1132-1139, 2008.
F. J. Margetan, Anxiang Li, and R. B. Thompson, “The influence of inspection angle, wave type and beam shape on signal-to-noise ratios in ultrasonic pitch-catch inspections”, AIP Conf. Proc., Vol. 894, pp. 571-578, 2006.
F. J. Margetan, Pranaam Haldipur, Linxiao Yu, and R. B. Thompson, “Looking for multiple scattering effects in backscattered ultrasonic grain noise from jetengine nickel alloys”, AIP Conf. Proc., Vol. 760, pp. 75-82, 2005.
P. Haldipur, F. J. Margetan, R. B. Thompson, “Estimation of single-crystal elastic constant of polycrystalline materials from back-scattered grain noise.” AIP Conf. Proc., Vol. 820, pp. 1133-1140, 2006.
F. Margetan, E. Nieters, P. Haldipur, L. Brasche, T. Chiou, M. Keller, A. Degtyar, J. Umbach, W. Hassan, T. Patton, K. Smith, ”Fundamental studies of nickel billet materials – Engine Titanium Consortium II”, FAA William J. Hughes Technical Center, Atlantic City, N.J., Report DOT/FAA/AR-05/17 (June 2005). [Available for free download at www.tc.faa.gov/its/worldpac/techrpt/ar05-17.pdf].
M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, Prentice-Hall, Upper Saddle River, NJ, 1999, pp. 493.
M. Taya, et al., “Toughening of a Particulate-Reinforced Ceramic-Matrix Composite by Thermal Residual Stress”, J. Am. Ceram. SOC., Vol. 73, Issue 5, pp.1382-1391 ,May 1990.
黃振賢,「機械材料」,文京圖書股份有限公司,新竹,民國69年。
S.G. Lim, Y.S. Jung and S.S. Kim, ” CHARACTERISTICS OF RAPIDLY SOLIDIFIED Al 7075-xwt.%Mn ALLOYS”, Scripta Materialia, Vol.43, pp.1077-1081, 2000.
S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, S.P. Lynch, “Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al–Zn–Mg–Cu alloys”, Corrosion Science, Vol.52,pp.4073-4080, 2010.
J.B. Jordon, M.F. Horstemeyer, K. Solanki, J.D. Bernard, J.T. Berry, T.N. Williams, “Damage characterization and modeling of a 7075-T651 aluminum plate”, Materials Science and Engineering A, Vol.527,pp.169-179, 2009.
J. Wloka, S. Virtanen, “Detection of nanoscale η-MgZn2 phase dissolution from an Al-Zn-Mg-Cu alloy by electrochemical microtransients”, Surface and Interface Analysis, Vol.40, pp.1219-1225, 2008.
F. Y. Hung, J. D. Liao, T. S. Lui, L. H. Chen, “Electrical current induced mechanism in microstructure and nano-indention of AleZneMgeCu (AZMC) Al alloy thin film”, Current Applied Physics, Vol.11, pp.1269-1273, 2011.
F. Andreatta, M.M. Lohrengel, H. Terryn, J.H.W. de Wit, “Electrochemical characterisation of aluminium AA7075-T6 and vsolution heat treated AA7075 using a micro-capillary cell”, Electrochimica Acta, Vol.48, pp.3239-3247, 2003.
X.M. Li, M.J. Starink, “Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al–Zn–Mg–Cu alloys”, Journal of Alloys and Compounds,Vol.509, pp.471-476, 2011.
J. Wloka, G. Burklin, S. Virtanen, “Influence of second phase particles on initial electrochemical properties of AA7010-T76”, Electrochimica Acta, Vol.53, pp.2055-2059, 2007.
F. Wang, B. Q. Xiong, Y. G. Zhang, H. Q. Liu, X. Q. He, “Microstructural development of spray-deposited Al–Zn–Mg–Cu alloy during subsequent processing”, Journal of Alloys and Compounds, Vol.477, pp.616-621, 2009.
G. Sha, Y.B. Wang, X.Z. Liao, Z.C. Duan, S.P. Ringer, T.G. Langdon, “Microstructural evolution of Fe-rich particles in an Al–Zn–Mg–Cu alloy during equal-channel angular pressing”, Materials Science and Engineering A, Vol.527, pp.4742-4749, 2010.
F. Wang, B. Q. Xiong, Y. G. Zhang, Z. H. Zhang, Z. X. Wang, B. H. Zhu, H. Q. Liu,” Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy”, Materials and Design, Vol.28, pp.1154-1158, 2007.
M. Saenz de Miera, M. Curioni, P. Skeldon, G.E. Thompson, “Modelling the anodizing behaviour of aluminium alloys in sulphuric acid through alloy analogues”, Corrosion Science, Vol.50, pp.3410-3415, 2008.
A.K. Mukhopadhyay, “On the Nature of the Fe-Bearing Particles Influencing Hard Anodizing Behavior of AA 7075 Extrusion Products”, Metallurgical and Materials Transactions A, Vol.29, pp.978-987, 1998.
M. Saenz de Miera, M. Curioni, P. Skeldon and G. E. Thompson, “Preferential anodic oxidation of secondphase constituents during anodizing of AA2024-T3 and AA7075-T6 alloys”, Surface and Interface Analysis, Vol.42, pp.241-246, 2010.
M. Lugoa, J.B. Jordonb, M.F. Horstemeyera, M.A. Tschoppa, J. Harrisd, A.M. Gokhale, “Quantification of damage evolution in a 7075 aluminum alloy using an acoustic emission technique”, Materials Science and Engineering A, Vol.528, pp.6708-6714, 2011.
M. Saenz de Miera, M. Curioni, P. Skeldon, G.E. Thompson, “The behaviour of second phase particles during anodizing of aluminium alloys”, Corrosion Science, Vol.52, pp.2489-2497, 2010.
A. Abolhasani, A. Zarei-Hanzaki, H.R. Abedi, M.R. Rokni, “The room temperature mechanical properties of hot rolled 7075 aluminum alloy”, Materials and Design, Vol.34, pp.631-636, 2012.
ASTM International, “E112-10 Standard test methods for determining average grain size”, pp. 10, 2010.
魏兆廷, 「純鋁與鋁鎂矽合金微結構對超音波衰減率的影響」, 國立中央大學, 碩士論文, 民國100年.
R. El-Mallawany, A. Abousehly, A. A. El-Rahamani, E. Yousef, “Radiation effect on the ultrasonic attenuation and internal friction of tellurite glasses”, Materials Chemistry and Physics, Vol. 52, pp. 161-165, 1998.
Liming Zhanga, Julius Schneider, Reinhard Lu ̈ck, “Phase transformations and phase stability of the AlCuFe alloys with low-Fe content”, Intermetallics, Vol. 13, pp. 1195-1206, 2005.
M. A. Dellis, J. P. Keustermans and F. Delannay, “Zn-Al composite: investigation of the thermal expansion, creep resistance and fracture toughness”, Materials Science and Engineering, A135, pp. 253-257, 1991.
T. Ohba, Y. Kitano, and Y. Komura, “The charge-Density study of the Laves Phases, MgZn2 and AgCu2”, Acta Cryst., C40, pp.1-5, 1984.
W. F. Gale and T. C. Totemeier, Smithells Metals Reference Book, Eighth Edition, 2004.
Meng-Meng Wu, Li Wen, Bi-Yu Tang, Li-Ming Peng, Wen-Jiang Ding, “First-principles study of elastic and electronic properties of MgZn2 and ScZn2 phases in Mg–Sc–Zn alloy”, Journal of Alloys and Compounds, Vol. 506, pp. 412-417, 2010.
K. Liu, X. Cao, and X.-G. Chen, “Precipitation of iron-rich intermetallic phases in Al-4.6Cu-0.5Fe-0.5Mn cast alloy”, J Mater Sci, Vol. 47, pp. 4290-4298, 2012.
J E Bozek, J D Hochhalter, M G Veilleux, M Liu, G Heber, S D Sintay, A D Rollett, D J Littlewood, A M Maniatty, H Weiland, R J Christ Jr., J Payne, G Welsh, D G Harlow, P A Wawrzynek and A R Ingraffea, “A geometric approach to modeling microstructurally small fatigue crack formation, part I: probabilistic simulation of constituent particle cracking in AA 7075-T651”, Modelling and Simulation in Materials Science and Engineering, Vol. 16, No. 6, pp. 1-31, 2008.
G. Trambly de Laissardiere, D. Nguyen Manh, L. Magaud, J. P. Julien, F. Cyrot-Lackmann, and D. Mayou, “Electronic structure anti hybridization effects in Hume-Rothery alloys containing transition elements”, Physical Review B, Vol. 52, No. 11, pp. 7920-7933, 1995.
指導教授 施登士(Teng-shih Shih) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明