博碩士論文 993203039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.229.122.219
姓名 王晨宇(Chen-yu Wang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 單晶矽材料電化學放電鑽孔及同軸電度之研究
(The study of monocrystalline silicon electrochemical discharge drilling and coaxial electroplating.)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 矽奈米結構對於質譜離子化效率探討之研究
★ 微滾軋製程應用於高分子材料轉印微結構之研究★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究
★ 利用熱壓製造類多孔隙介質之 微流道模型研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
★ 應用磁性粒子於微流體裝置之可逆接合★ 運用慣性感測器於遠距復健之偵測與診斷
★ 裝置於微流體晶片上的環狀超聲波共振壓電片套用於微流體技術與質譜儀分析之間的介面應用★ Fabrication of 2.5D Micromodel for Air-Liquid Interaction Experiment
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今電子元件大多邁入輕、薄、短、小的時代,而單晶矽材料因其具有相當良好的機械與化學性質故相當廣泛應用於3C、MEMS及微電子元件的製作但其硬、脆的特性很難利用傳統加工法加工,現今加工法大多使用高強酸鹼電解液,如氫氟酸、氟化氨等溶液來加工,再加上其為半導體的特性,在電鍍製程上也具有相當高的難度,目前研究大多以填充通孔或盲孔加工為主,故本研究提出了以電化學放電加工的方式加工出微孔其電解液以氫氧化鈉主,能大大降低對環境的危害,並以方錐螺旋電極的方式取代一般傳統的螺旋電極,其兩側平面能形成穩定氣膜,獲得均勻的放電火花;螺旋面能增加電解液的循環且改善其加工屑排出的方式,並配合脈衝電壓,最後我們以脈衝週期50%、電極轉速800-900rpm、加工電壓15V、電解液濃度3M的加工條件下,成功在單晶矽上加工出直徑約為210μm之單晶矽微孔,並利用此電化學放電加工機制所做出之微孔,我們更將其導入一同軸電鍍裝置,也就是在微孔製成後,更換電極極性,由電解裝置改為電鍍裝置,並將電極深入通孔後,在經過無電鍍製程,於試片上產生種晶層後實施硫酸銅電鍍製程,實驗結果證明其電極旋轉能有效的增加電鍍液的循環且其因旋轉所形成之側向力能把銅離子導入放電坑內部,而通電之電極更能增加孔內之電場效應,大大的減少電鍍時間,最後我們在加工電壓0.3V、電極轉速100-200rpm、脈衝週期50%的加工條件下,成功的製作出一均勻且平坦的中空孔鍍層。
摘要(英) We propose a new way that combined micro chemical electro discharge machining and plating on silicon wafer which can machining a hollow plating layer.
In tradition micro hole machining on Si wafer , there are almost using the strong acid or alkali, which is harm for the environment and the operator, but in our way, we replaced by strong acid with sodium hydroxide, it is not only we success to machining a micro hole on Si wafer but also it is more friendly to the environment and operator.
In micro electrochemical discharge machining, we propose a new electrode that we called square helical drill tool. Square helical drill tool electrode is fabricated by wire electrical discharge grinding. Shape feature of its parallel surface on both sides, can reduce the side discharge phenomenon and the helical surface to increase the electrolyte circulation, which can effectively improve machining efficiency and accuracy.
In tradition plating hole on Si wafer, there are almost to fill the thong hole or blind hole, there are no paper is about the hollow plating hole, it is harm for the solar because it’s difficult to radiating and to discharge the steam because it’s always been long time in the sun and rain.
In our study, we propose a new way that plating a hollow plating layer in micro hole on Si wafer, the micro hole which is after palladium activation, we put the electrode into the hole and make it roation and electrify, final we use the process condition, the working voltage 0.3V, electrode spin 100rpm and duty factor 50%, we success to machining a uniform and flat hollow plating layer in micro hole on Si wafer.
關鍵字(中) ★ 電化學放電加工
★ 方錐螺旋電極
★ 中空孔電鍍
★ 單晶矽
關鍵字(英) ★ Electrochemical discharge machining
★ square helical drill tool
★ Hollow hole plating layer.
★ Monocrystalline silicon
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目 錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1研究動機 1
1-2文獻回顧 4
1-2-1探討電化學放電加工應用及加工機制的相關文獻 4
1-2-2探討電鍍原理及其製程的相關文獻 6
第二章 實驗基礎理論 8
2-1 放電加工基礎理論 8
2-1-1 放電加工原理 8
2-1-2 放電加工去除機制 9
2-1-3 放電加工的參數與影響 13
2-1-4 放電加工的優缺點 17
2-2電化學加工的基礎理論 18
2-3電化學放電加工原理 25
2-3-1 電化學放電加工原理 25
2-3-2 放電加工與電化學放電加工之比較 27
2-4線放電研磨加工製程 28
2-5 電鍍基本理論 30
2-5-1 鈀活化製程 32
2-5-2 化學銅製程 33
2-5-3 酸性光澤銅製程 33
第三章 實驗設備與材料 36
3-1 基礎實驗相關設備 36
3-2 電解液 47
3-4 工具電極 48
3-5 試片材料 50
第四章 單晶矽之電化學放電鑽孔研究 51
4-1 實驗目的 51
4-2 實驗流程 52
4-3 實驗設備與方法 53
4-4 結果與討論 56
4-4-1 電解液濃度對加工結果的影響 56
4-4-2 不同電極外形對加工結果的影響 59
4-4-3 脈衝週期對加工結果的影響 67
4-4-4 電極轉速對加工結果的影響 73
4-5 結論 79
第五章 單晶矽微孔之同軸電鍍研究 80
5-1 實驗目的 80
5-2 實驗流程 81
5-3 實驗設備與方法 82
5-4 結果與討論 87
5-4-1 加工時間對鍍層之影響 87
5-4-1-1 無電極通入加工 87
5-4-1-2 有電極通入加工 87
5-4-2不同脈衝電壓及加工電壓對鍍層加工的影響 91
5-4-2-1不同脈衝週期對鍍層加工的影響 91
5-4-2-2不同加工電壓對鍍層加工的影響 92
5-4-3不同電極轉速對鍍層加工的影響 96
5-4結論 105
第六章 總結論 106
參考文獻 107
參考文獻 [1]C.S. Taylor, 1925. “Investigation on anode discharge in electrolysis of melted sodium chloride”, Trans. Electro-chemical Society, Vol.47, pp. 301-305.
[2]H. H. Kellog, 1950 “The interface observation of poles in water ectrolysis”,Journal of Electrochemical Society, Vol. 97, pp.133-137.
[3]Kurafuji H and Suda K ,1968. “Electrical discharge drilling of glass ”Ann. CIRP 16 415–9.
[4]Dae-Jin Kim, Yoomin Ahnb, Seoung-Hwan Lee, Yong-Kweon Kim ,2005. “Voltage pulse frequency and duty ratio effects in an electrochemical discharge microdrilling process of Pyrex glass”. International Journal of Machine Tools & Manufacture.46 1064–1067.
[5]Wüthrich R, Despont B, Maillard P and Bleuler H ,2006. “ Improving the material removal rate in spark-assisted chemical engraving (SACE) gravity-feed micro-hole drilling by tool vibration”. J. Micromech. Microeng. 16 N28-N31.
[6]Biing-Hwa Yan, Ching-Tang Yang, Fuang-Yuan Huang ,Zhe-Hong Lu ,2007. “Electrophoretic deposition grinding (EPDG) for improving the precision of microholes drilled via ECDM”. J. Micromech. Microeng. 17 376-383.
[7]Zheng Z P, Su H C, Huang F Y and Yan B H ,2007 .“The tool geometrical shape and pulse-off time of pulse voltage effects in a Pyrex glass electrochemical discharg microdrilling process”. J. Micromech. Microeng. 17 265-272
[8]Zheng Z P, Lin J K, Huang F Y and Yan B H ,2008. “Improving the
machining efficiency in electrochemical discharge machining (ECDM) microhole drilling by offset pulse voltage”. J. Micromech. Microeng. 18 025014.
[9]Han M S, Min B K and Lee S J,2009 .“Geometric improvement of electrochemical discharge micro-drilling using an ultrasonic-vibrated electrolyte ”.J. Micromech. Microeng. 19 065004.
[10]Chih-Ping Cheng, Kun-LingWu, Chao-ChuangMai ,
Cheng-KuangYang , Yu-Shan Hsu, Biing-Hwa Yan,2010. “Study of gas film quality in electrochemical discharge machining”. Journal of Machine Tools & Manufacture. 50 689–697.
[11]Chih-Ping Cheng, Kun-LingWu, Chao-Chuang Mai, Yu-Shan Hsu, Biing-Hwa Yan,2010.“Magnetic field-assisted electrochemical discharge machining”. J. Micromech. Microeng. 20 075019.
[12]Cheng-Kuang Yang , Chih-Ping Cheng , Chao-Chuang Mai, A. Cheng Wang,Jung-Chou Hung , Biing-Hwa Yan ,2010. “Effect of surface roughness of tool electrode materials in ECDM performance”. International Journal of Machine Tools & Manufacture.50 1088-1096.
[13]Cheng-Kuang Yang , Kun-LingWu, Jung-ChouHung, Shin-MinLee, Jui-CheLin , Biing-HwaYan,2011. “Enhancement of ECDM efficiency and accuracy by spherical tool electrode”.International Journal of Machine Tools & Manufacture.51 528–535.
[14]Jana D.Abou Ziki , Tohid Fatanat Didar , Rolf Wüthrich,2012. “Micro-texturing channel surfaces on glass with spark assistedchemical engraving”. International Journal of Machine Tools & Manufacture.57 66-72.
[15]Jana D. Abou Ziki , Rolf Wüthrich,2012. “Tool wear and tool thermal expansion during micro-machining by spark assisted chemical engraving”. Int J Adv Manuf Technol .61 481–486.
[16]Takeshi Kobayashi, Junichi Kawasaki, Kuniaki Mihara, Hideo Honma 2001“Via-filling using electroplating for build-up PCBs”, Electrochimica Acta, Vol.47, pp.85–89.
[17]Sung Chul Hong , Wang Gu Lee , Won Joong Kim, Jong Hyeong Kim , Jae Pil Jung, 2011 “Reduction of defects in TSV filled with Cu by high-speed 3-step PPR for 3D Si chip stacking”, Microelectronics Reliability , Vol.51, pp.2228–2235.
[18]Byung-Nam Park , Young-Soo Sohn, Sie-Young Choi, 2007 “Effects of a magnetic field on the copper metallization using the electroplating process”, Microelectronic Engineering , Vol.85, pp.308–314.
[19]Qianwen Chen, Zheyao Wang, Jian Cai, Litian Liu, 2010 “The influence of ultrasonic agitation on copper electroplating of blind-vias for SOI three-dimensional integration”, Microelectronic Engineering , Vol.87, pp.527–531.
[20]Shuhei Miura, Hideo Honmab, 2003 “Advanced copper electroplating for application of electronics”, Surface and Coatings Technology, Vol.169 –170, pp. 91–95.
[21]Wei-Ping Dow, Ming-Yao Yen, Cheng-Wei Liu, Chen-Chia Huang, 2008 “Enhancement of filling performance of a copper plating formula at low chloride concentration”, Electrochimica Acta , Vol.53, pp.3610–3619.
[22]Cheng Fang , Alain Le Corre, Dominique Yon, 2011 “Copper electroplating into deep microvias for the‘ SiP‘application”, Microelectronic Engineering, Vol.88, pp.749–753.
[23]Chien-Hung Chen, Chun-Wei Lu, Su-Mei Huangb, Wei-Ping Dow, 2011 “Effects of supporting electrolytes on copper electroplating for filling through-hole”, Electrochimica Acta, Vol.56, pp.5954–5960.
[24]R. Manu*, Sobha Jayakrishnan, 2012 “Effect of organic dye on copper metallization of high aspect ratio through hole for interconnect application”, Materials Chemistry and Physics, Vol.135, pp.425-432.
[25]楊景棠,「微電化學放電加工法應用於硼矽玻璃的精微加工及精度改善之研究」,國立中央大學,博士論文,民國96年。
[26]鄭志帄,「微電化學放電加工法應用於硼矽玻璃的精微加工技術之研究」,國立中央大學,博士論文,民國97年。
[27]楊程光,「電化學放電加工法應用於石英的精微加工研究」,國立中央大學,博士論文,民國100年。
[28]林軍屹,「應用可調變磁場輔助電化學放電加工石英之研究」,國立中央大學,碩士論文,民國101年。
[29]王祥安,「電化學微加工於精微球狀鎢電極精修製程之研究」,國立中央大學,碩士論文,民國101年。
指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2013-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明