博碩士論文 993203043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.206.48.142
姓名 陳彥豪(Yen-Hao Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 退火溫度對AA5083-H15鋁鎂合金沿晶腐蝕與應力腐蝕性質之影響
(Effects of annealing temperature on stress corrosion cracking and intergranular corrosion of AA5083-H15 alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響
★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響
★ 微量Sc對A356鑄造鋁合金機械性質之影響★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響
★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響★ Mn對含鐵A356鑄造鋁合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究藉由拉伸、抗蝕以及慢應變拉伸(SSRT)測試,探討退火溫度及敏化處理對AA5083-H15鋁鎂合金之機械性質、沿晶腐蝕與應力腐蝕破壞性之影響。分別以光學顯微鏡(OM)、穿透式電子顯微鏡(TEM) 以及掃描式電子顯微鏡(SEM)觀察合金的微結構變化、腐蝕形貌與破裂斷面。
AA5083-H15鋁鎂合金在低於200℃的退火處理(即敏化處理)會導致β相(Mg2Al3)於晶界連續析出,此連續析出相提供腐蝕傳播的路徑,導致合金嚴重的腐蝕破壞。AA5083鋁鎂合金於敏化處理中易使β相於晶界連續析出導致抗蝕性下降。而經250℃退火的合金於敏化處理過程能減少β相在晶界上連續析出,導致腐蝕的傳播路徑不連續而擁有良好的抗蝕性。
經敏化處理後,未經退火及低於200℃退火之AA5083合金因抗蝕性低,在腐蝕環境中進行慢應變拉伸會產生嚴重的應力腐蝕現象,導致延性大幅下降;而250℃退火之合金具優異的抗蝕性,無明顯的應力腐蝕現象;高於300℃退火的合金因低強度之特性,應力腐蝕裂縫不易成長,對應力腐蝕的敏感性較低,於慢應變拉伸試驗無明顯的延性損失。
摘要(英) Effect of annealing temperature and sensitization treatment on mechanical behavior, intergranular - corrosion property and stress – corrosion cracking susceptibility of AA5083-H15 alloys were estimated in this research. Optical microscopy(OM), Transmission Electron Microscopy(TEM) and scanning electron microscope(SEM) are used to observe the microstructure variation, corrosion surface and fracture surface of alloys.
β phase will precipitate continuously on grain boundary in alloys annealed below 200℃. The continuous precipitation on grain boundary offered a continuous path for corrosion and lead to the severe intergranular corrosion. β phase was prone to precipitate continuously along grain boundary during the sensitization treatment and made the alloys sensitive to intergranular corrosion. Precipitation on grain boundary was discontinuous in alloy annealed at 250℃. The discontinuous precipitation on grain boundary could hindered the spread of corrosion and lead to the good resistance to corrosion.
After the sensitization treatment, H15 and alloys annealed below 200℃ were sensitive to stress corrosion due to the poor resistance to corrosion. The sensitized, 250℃ -annealed alloy exhibited a great resistance to stress corrosion due to the great resistance to corrosion.
Alloys annealed above 300℃ exhibited a poor resistance to intergranular corrosion after the sensitization, but great resistance to stress corrosion due to the low strength which made the propagation of stress corrosion cracking harder.
關鍵字(中) ★ AA5083鋁鎂合金
★ 沿晶腐蝕
★ 應力腐蝕
★ β相(Mg2Al3)
關鍵字(英) ★ stress corrosion
★ AA5083 Al-Mg Alloy
★ intergranular corrosion
★ β phase (Mg2Al3).
論文目次 總目錄
中文摘要..................................................I
英文摘要.................................................II
謝誌....................................................III
總目錄...................................................IV
表目錄................................................ VII
圖目錄................................................. VIII
總目錄
一、前言與文獻回顧.........................................1
1.1 合金簡介與研究背景.....................................1
1.2 鋁鎂合金之沿晶腐蝕以及應力腐蝕理論.....................2
1.2.1 陽極溶解-伽凡尼腐蝕所導致之沿晶腐蝕及應力腐蝕理論...3
1.2.2 氫脆效應所導致之應力腐蝕理論.........................3
1.2.3 腐蝕與應力腐蝕之破壞形貌.............................5
1.3 應力腐蝕簡介...........................................6
1.4 影響鋁鎂合金沿晶腐蝕及應力腐蝕性質之因素...............8
1.4.1 鎂含量對沿晶腐蝕、應力腐蝕特性影響...................8
1.4.2 冷加工量對沿晶腐蝕、應力腐蝕特性影響.................9
1.4.3 金屬介在物對腐蝕性質的影響..........................10
1.4.4 敏化溫度與時間對沿晶腐蝕、應力腐蝕性質的影響........11
1.4.5 退火溫度對應力腐蝕特性影響..........................13
1.5退火溫度對冷加工後鋁鎂合金機械性質與微結構之影響.......15
1.6加工硬化型鋁合金的調質處理.............................17
1.7 實驗設計與目..........................................17
二、實驗步驟與方法.......................................19
2.1 均質化、輥軋、退火與敏化處理.........................19
2.1.1合金退火處理與成分..................................19
2.1.2 H15調質處理........................................19
2.1.3退火處理............................................20
2.1.4 敏化處理...........................................20
2.2、微結構分析..........................................20
2.2.1 光學顯微鏡 (Optical Microscopy)....................20
2.2.2掃描式電子顯微鏡(Scanning Electron Microscopes).....21
2.2.3穿透式電子顯微鏡(Transmission Electron Microscopy)..22
2.2.4 導電度量測(Electrical Conductivity, %IACS).........22
2.3機械性質分析..........................................23
2.3.1硬度試驗( Hardness, HRB )...........................23
2.3.2拉伸試驗(Tensile Test)..............................23
2.4、沿晶腐蝕與應力腐蝕性質分析..........................24
2.4.1ASTM G67Nitric Acid Mass Loss Test (NAMLT) :
沿晶腐蝕評估.............................................24
2.4.2慢應變速率拉伸(Slow Strain Rate Test):應力腐蝕評估.25
三、結果與討論............................................27
3.1微結構分析.............................................27
3.1.1.退火後晶粒組織......................................27
3.1.2 退火以及敏化處理後之β相析出型態....................31
3.1.3 場發射掃描式電子顯微鏡與穿透式電子顯微鏡觀察........35
3.1.4 導電度測試..........................................43
3.2 機械性質分析..........................................47
3.2.1 硬度試驗............................................47
3.2.2 拉伸試驗............................................50
3.3沿晶腐蝕與應力腐蝕性質分析.............................54
3.3.1 ASTM G67 重量損失測試...............................54
3.3.2慢應變速率拉伸測試...................................62
四、結論.................................................74
五、參考文獻..............................................76
表目錄
表1.1 Al-6.8Mg合金經100℃加熱七天後之電阻值變化..........10
表2.1 AA5083合金成分分析表(wt.%).........................19
表3.1 退火後微結構型態及退火程度區分.....................29
表3.2 AA5083鋁鎂合金於不同退火溫度及敏化處理後導電度測試
(IACS%)............................................ 46
表3.3 AA5083鋁鎂合金於不同退火溫度及敏化處理後之硬度
(HRB 荷重時間:15sec)...............................49
表3.4 AA5083-H15鋁鎂合金經不同退火處理之拉伸性質........52
表3.5 退火後AA5083-H15鋁鎂合金經敏化處理之拉伸性質......52
表3.6 AA5083鋁鎂合金於不同退火溫度及敏化處理後ASTM G67
重量損失測試(mg/cm2)...............................57
表3.6 敏化後慢應變拉伸試驗...............................67
表3.7 AA5083鋁鎂合金機械性質、抗蝕性質、
應力腐蝕性質比較...................................72
表3.8 線彈性破壞力學分析AA5083鋁鎂合金應力腐蝕性質.......72
圖目錄
圖1.1 AA5356-H112鋁合金於不同溫度下之微結構(a)常溫,無晶界
析出(b) 於100℃一年,晶界析出(c) 於150℃一年,晶界析
出(d)於205℃一年,無晶界析出.......................2
圖1.2 AA5083於0.01 M K2CrO4 + 3.5 wt.% NaCl水溶液之(a)應力
腐蝕裂縫與氧化鋁生成物(b)氧化鋁生成物EDX分析結果...4
圖1.3 5000系鋁鎂合金浸於硝酸24小時後的腐蝕形貌(a)冷軋組織
沿晶腐蝕(b)再結晶組織沿晶腐蝕(c)無沿晶腐蝕-孔蝕與均勻
腐蝕...............................................5
圖1.4 AA5083於3.5%NaCl水溶液進行U-bend測試後的沿晶斷裂,
別以 (a)光學顯微鏡(b)掃瞄式電子顯微鏡觀察..........6
圖1.5 AA5083超塑性材之慢應變拉伸合金(a)於空氣中(b)於
3.5wt.% NaCl水溶液無應力腐蝕現象(c)於3.5wt.%NaCl水溶
液具應力腐蝕現象之斷面.............................6
圖1.6 應力強度因子與應力腐蝕裂縫成長速率關係.............7
圖1.7 AA5083鋁鎂合金經175℃加熱十天後之TEM顯微組織
(a)bright-field image (b) the corresponding weak-
beam image.......................................10
圖1.8 鋁鎂合金以及其它元素、介金屬化合物之還原電位......11
圖1.9 鋁鎂二元相圖.....................................13
圖1.10 AA5083-H116經不同溫度、時間敏化處理後之腐蝕性質...13
圖1.11 (a)冷加工量50% (b)冷加工量50%經245℃退火12小時
(c)冷加工量50%經320℃退火三小時之Al-6.8Mg合金敏化
後β相析出型態..................................14
圖1.12 不同退火溫度之Al-6.8Mg合金經敏化後於2% NaCl +0.5%
Na2CrO4溶液進行慢應變速率拉伸,延性損失愈少,代表
抗應力腐蝕能力愈高.............................15
圖1.13 低溫冷加工(浸泡於液態氮15分中後進行冷輥)之AA5083
鋁鎂合金(a)退火溫度與硬度關係(b)經冷加工量85%後,退
火溫度與延展性、強度關係.........................16
圖1.14 Al-6.8Mg合金之晶粒組織(a)冷加工量50%(b) 冷加工量50%
經225℃退火三小時(c) 冷加工量50%經320℃退火三小時17
圖2.1 金相試片取樣位置..................................21
圖2.2 G67試片腐蝕形貌觀察取樣位置.......................22
圖2.3 拉伸試片尺寸圖....................................23
圖2.4 G67試片尺寸圖.....................................25
圖2.5 慢應變拉伸試片與腔體裝置示意圖....................26
圖2.6 拉伸試片、慢應變拉伸試片與G67試片取樣方向.........26
圖3.1 AA5083-H116之晶粒組織............................29
圖3.2 AA5083-H116經兩階段退火處理後之之晶粒組織........29
圖3.3 AA5083鋁鎂合金於不同退火條件下之晶粒組織(a) H15
(b)150℃退火3小時(c)200℃退火3小時(d)250℃退火3小時
(e)300℃退火3小時(f)350℃退火3小時..............30
圖3.4 AA5083鋁鎂合金於不同退火條件下之β相析出型態
(a)H15(b)150℃退火3小時(c)200℃退火3小時(d)250℃退火3
小時(e)300℃退火3小時(f)350℃退火3小時............33
圖3.5 AA5083鋁鎂合金於不同退火條件下經敏化處理(100℃加熱
七天)後之β相析出型態(a)H15s(b)150℃s(c)200℃s(d)
250℃s(e)300℃s(f)350℃s..........................34
圖3.6 AA5083鋁鎂合金於不同退火條件下經敏化處理後以FE-SEM
觀察之β相析出型態(a)H15s(b)250℃s(c)300℃s(d)300℃敏
化於160℃..........................................39
圖3.7 AA5083鋁鎂合金於不同退火條件之TEM微結構觀察
(a)H15(b)250℃退火三小時...........................40
圖3.8 AA5083-H15鋁鎂合金晶敏化處理後之TEM微結構觀察......41
圖3.9 AA5083合金經不同退火條件及敏化處理之微結構變化示意
圖...............................................42
圖3.10 AA5083鋁鎂合金於不同退火溫度及敏化處理後導電度測試
(IACS%)..........................................46
圖3.11 AA5083鋁鎂合金於不同退火溫度及敏化處理後之硬度
(HRB 荷重時間:15sec)..........................49
圖3.12 退火溫度及敏化處理對AA5083-H15鋁鎂合金降伏、抗拉
強度之影響......................................53
圖3.13 退火溫度及敏化處理對對AA5083-H15鋁鎂合金延展性之
影響............................................53
圖3.14 AA5083鋁鎂合金於不同退火溫度及敏化處理後ASTM G67
重量損失測試(mg/cm2).......................... 57
圖3.15 AA5083鋁鎂合金於不同退火條件下經G67測試後之OM腐
蝕形貌(a)H15(b)150℃退火3小時(c)200℃退火3小時
(d)250℃退火3小時(e)300℃退火3小時(f)350℃退火3小時
.................................................58
圖3.16 AA5083鋁鎂合金於不同退火條件下經G67測試後之OM腐
蝕形貌(a)H15(b)150℃退火3小時(c)200℃退火3小(d)250℃
退火3小時(e)300℃退火3小時(f)350℃退火3小時.......59
圖3.17 退火後AA5083鋁鎂合金敏化後經G67測試後之OM腐蝕
形貌(a)H15s(b)150℃s (c)200℃s (d)250℃s (e)300℃s
(f)350℃s .........................................60
圖3.18 不同退火條件合金敏化後經G67測試後之SEM腐蝕形貌
(a)H15s(b)150℃s (c)200℃s (d)250℃s (e)300℃s (f)
350s..............................................61
圖3.19 不同退火溫度之AA5083鋁鎂合金經敏化處理後於慢應變速
率拉伸測試的延性損失率............................67
圖3.20 不同退火條件合金敏化後於空氣中慢應變拉伸之斷面
(a)H15s(b)150℃s(c)200℃s(d)250℃s(e)300℃s(f)350℃
s..................................................68
圖3.21 不同退火條件之AA5083鋁鎂合金經敏化處理後於
3wt%NaCl+0.3wt%H2O2水溶液慢應變拉伸之斷面
(a)H15s(b)150℃s(c)200℃s(d)250℃s(e)300℃s(f)350℃s
..................................................69
圖3.22 不同退火條件之AA5083鋁鎂合金敏化後於3wt% NaCl +
0.3wt% H2O2水溶液慢應變拉伸之巨觀斷面(a)H15 (b)150℃
s(c)200℃s(d)250℃s(e)300℃s(f)350℃s(施力方向平行
LT direction)....................................70
圖3.23 300℃退火合金於160℃敏化3天之β相析出形貌.........71
圖3.24 300℃退火3小時之AA5083鋁鎂合金經160℃敏化3天後
於3wt.%NaCl+0.3wt.H2O2之慢應變拉伸破斷面..........71
圖3.25 A5083鋁鎂合金機械性質、抗蝕性質與應力強度因子於慢應
變拉伸測試關係示意圖..............................73
參考文獻 參考文獻
[ASTM 1] ASTM B928/B928M – 09 Standard Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments.
[ASTM 2] ASTM G67-04 Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss After Exposure to Nitric Acid (NAMLT Test).
[ASTM3]ASTM B557M – 07 Standard Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products.
[ASTM4 ]ASTM G129-95 Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking .
[ASTM5]ASTM E112-10 Standard Test Methods for Determining Average Grain Size.
[BEN] Joseph C Benedyk.“International Temper Designation Systems for Wrought Aluminum Alloys: Part-I Strain Hardenable (H Temper ) Aluminum Alloys,” Light Metal Age, pp.26-30.( 2009)
[BHA] N.R.M.R. BHARGAVA, I. SAMAJDAR, S. RANGANATHAN, and M.K. SURAPPA, “Role of Cold Work and SiC Reinforcements on the β’’/β Precipitation in Al-10 pct Mg Alloy,” METALLURGICAL AND MATERIALS TRANSACTIONS A, vol. 29A, pp.2835–2842.(1998)
[BOV] F.S. Bovard,“Corrosion in marine and saltwater environments II, in D.A. Shifler, T. Tsuru, P.M. Natishan, S. Ito (Eds.),”Electrochemical Society Proceedings, vol. 2004–14, pp. 232–243.(2005)
[CAL1] William D. Callister,“Materials science and engineering: an introduction 7th ed.,”WILEY,p.197.(2007)
[CAL2] William D. Callister,“Materials science and engineering: an introduction 7th ed.,”WILEY,p.174.(2007)
[CAL3] William D. Callister,“Materials science and engineering: an introduction 7th ed.,”WILEY,p.208.(2007)
[CHA] J.C. Chang and T.H. Chuang“Stress-Corrosion Cracking Susceptibility of the Superplastically Formed 5083 Aluminum Alloy in 3.5 PctNaCl Solution,” METALLURGICAL AND MATERIALS TRANSACTIONS A, vol.30A, pp.3191-3199.(1999)
[DAV1] J. R. Davis and Associates,“ASM Specialty Handbook: Aluminum and Aluminum Alloys ,”ASM International Materials Park, Ohio, p.579.(1994)
[DAV2] J. R. Davis and Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys ,ASM International Materials Park, Ohio, p.675.(1994)
[DAV3] J. R. Davis and Associates, ASM Specialty Handbook: Aluminum and Aluminum Alloys ,ASM International Materials Park, Ohio, p.493.(1994)
[DIX] E.H. Dix, Jr., W.A. Anderson, and M.B. Shumaker,“Influence of service temperature on the resistance of wrought aluminum-magnesium alloys to corrosion ,” Corrosion, vol. 15, pp. 19–26.(1959)
[ENJ1] Toshio Enjyo, Toshio Kuroda, Hideyuki Shinonaga, “Effect of Relatively Insoluble Compounds on β Phase Precipitation in 5083 Aluminum Alloy ,” Transaction of JWRI, Vol.7,pp.25-32. (1978)
[ENJ2] Toshio Enjyo, Toshio Kuroda, Hideyuki Shinonaga, “Effect of Relatively Insoluble Compounds and β Phase on Stress Corrosion Cracking in 5083 Aluminum Alloy ,” Transaction of JWRI Vol,8,p.p.67-75 (1979)
[GAO]Jie Gao and David J. Quesnel, “Enhancement of the Stress Corrosion Sensitivity of AA5083 by Heat Treatment,” METALLURGICAL AND MATERIALS TRANSACTIONS A,pp.356-364.(2010)
[GOS] R. Goswamia, G. Spanosa, P.S. Paoa, R.L. Holtza,“Precipitation behavior of the β phase in Al-5083,”Materials Science and Engineering A, vol.527, pp. 1089–1095.( 2010)
[GRU]John E. Gruzleski, Bernard M. Closset, “The Treatment of Liquid Aluminum-Silicon Alloys,”The American Foundrymen’s Society, Inc
[HAT] J.E. Hatch,“Aluminum: Properties and Physical Metallurgy,” ASM International Metals Park, Ohio, pp.356.(1984)
[HUM1] Humphreys, F ,“Recrystallization And Related Annealing Phenomena 2nd ed[electronic resource],” Elsevier, p.169.(2004)
[HUM2] Humphreys, F ,“Recrystallization And Related Annealing Phenomena 2nd ed[electronic resource],” Elsevier, p.215.(2004)
[JON1] D. A. Jones“Principles and Prevention of Corrosion 2nd ed.,” Prentice Hall International, Inc., p.235.(1996)
[JON2] R.H. Jones, D.R. Baer, M.J. Danielson, and J.S. Vetrano
“Role of Mg in the Stress Corrosion Cracking of an Al-Mg Alloy,” METALLURGICAL AND MATERIALS TRANSACTIONS A, vol. 32A, pp.1699-1711.(2001)
[JON3] R.H. Jones , V.Y. Gertsman, J.S. Vetrano, C.F. Windisch Jr.,“Crack-particle interactions during intergranular stress corrosion of AA5083 as observed by cross-section transmission electron microscopy,
”Scripta Materialia ,vol.50, pp.1355–1359.(2004)
[JON4] R.H. Jones,“The Influence of Hydrogen on the Stress-Corrosion Cracking of Low-Strength Al-Mg Alloys,” JOM pp.42-46.( 2003)
[LEE] Young Bum Lee , Dong HyukShin , Kyung-Tae Park , Won Jong Nam ,“Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature,” Scripta Materialia ,vol.51, pp.355–359. (2004)
[MAS]T.B. Massalski, J.L. Murray, L.H. Bennett, and H. Baker: Binary Alloy Phase Diagrams, ASM INTERNATIONAL, Metals Park, OH, 1984, vol. 1, pp. 129–31.
[MEY3]Marc Andre Meyers and Krishan Kumar Chawla, “Mechanical Behavior of Materials 2nd ed.,” CAMBRIDGE UNIVERSITY PRESS,p.321.(2009)
[MEY1]Marc Andre Meyers and Krishan Kumar Chawla, “Mechanical Behavior of Materials 2nd ed.,” CAMBRIDGE UNIVERSITY PRESS,p.251.(2009)
[MEY2]Marc Andre Meyers and Krishan Kumar Chawla, “Mechanical Behavior of Materials 2nd ed.,” CAMBRIDGE UNIVERSITY PRESS,p.815.(2009)
[NEB] S. Nebti, D. Hamana, G. Cizeron,“Calorimetric study of pre-precipitation and precipitation in Al-Mg alloy,” Acta Metall. Mater,Vol.43, pp. 3583–3588.(1995)
[OGU] I. N. A. Oguocha , O. J. Adigun , S. Yannacopoulos,“Effect of sensitization heat treatment on properties of Al–Mg alloyAA5083-H116,” J Mater Sci ,vol.43,pp.4208–4214.(2008)
[PIC]J.R. Pickens, J.R. Gordon, J.A.S. Green, “The Effect of Loading Mode on the Stress-Corrosion Cracking of Aluminum Alloy 5083,”METALLURGICAL AND MATERIALS TRANSACTIONS A, vol.14A, pp.925-930. (1983)
[POP1]Miljana Popovic, Endre Romhanji , “Stress corrosion cracking susceptibility of Al–Mg alloy sheet with high Mg content,” Journal of Materials Processing Technology,vol.125–126, pp.275–280.(2002)
[POP2] Miljana Popovi , Endre Romhanji ,“Characterization of microstructural changes in an Al-6.8 wt.% Mg alloy by electrical resistivity measurements,” Materials Science and Engineering A, vol.492, pp. 460–467.(2008)
[REE1]Robert E. Reed-Hill, Reza Abbaschian, “Physical metallurgy principles third ed.,”CENGAGE Learning,p.168.(1994)
[REE2] Robert E. Reed-Hill, Reza Abbaschian, “Physical metallurgy principles third ed.,”CENGAGE Learning,p.479.(1994)
[REE3] Robert E. Reed-Hill, Reza Abbaschian, “Physical metallurgy principles third ed.,”CENGAGE Learning,p.227.(1994)
[SAR]Filiz Sarıog˘lu,“The effect of tempering on susceptibility to stress corrosion cracking of AISI 4140 steel in 33% sodium hydroxide at 80°C,” Materials Science and Engineering A,vol.A315 p.p98–102. (2001)
[SEA] J.L. Searles, P.I. Gouma, R.G. Buchheit,“Stress Corrosion Cracking of Sensitized AA5083(Al-4.5Mg-1.0Mn),”METALLURGICAL AND MATERIALS TRANSACTIONS A, vol. 32, pp.2859–2867.(2001)
[TAN] L. Tan , T.R. Allen, “Effect of thermomechanical treatment on the corrosion of AA5083,” Corrosion Science ,vol.52, pp. 548–554.(2010)
[WEI]R.P. Wei, R.P. Gangloff, in: R.P. Wei, R.P. Gangloff (Eds.), Environmentally Assisted Crack Growth in Structural Alloys:Perspectives and New Directions, ASTM STP 1020, American Society for Testing Materials, Philadelphia, pp. 233–264 (1989)
[YAS] Kiryl A. Yasakau , Mikhail L. Zheludkevich ,Sviatlana V. Lamakaa, Mario G.S. Ferreira “Role of intermetallic phases in localized corrosion of AA5083,” Electrochimica Acta ,vol.52 pp.7651–7659.(2007)
[莊東漢]莊東漢,材料破損分析,五南圖書出版股份有限公司,p.415.(2007)
[張志鴻] 張志鴻,“合金元素(銀與鎂)與熱處理對A201鋁合金應力腐蝕與熱穩定性之影響”,國立中央大學博士論文(2005)
[楊益郎] 楊益郎,“5083 鋁合金經等通道彎角擠製後之微結構及機械性質研究” ,國立中央大學博士論文(2005)
[羅兵辉] 羅兵辉,单毅敏,柏振海,“退火温度對淬火后冷軋5083鋁合金组織及腐蝕性能的影響”,中南大學學報(自然科學版),第38 卷,pp.802-808. (2007)
[江根貴]江根貴,“鋁鎂合金再結晶之研究” 國立中央大學碩士論文(1988)
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2012-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明