博碩士論文 993203045 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.144.230.82
姓名 李任翔(Jen-Hsiang Li)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微波照射對晶圓電漿加強鍵合強度影響之研究
(Study of the effect of Plasma-enhanced wafer bonding strength under microwave Irradiation)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在半導體產業中,因絕緣體上矽材料(Silicon on Insulator ; SOI)發展解決了傳統塊材矽所面臨到的問題,而且提昇了固態元件的效率和降低能量損耗,而通常是利用智切法(Smart-Cut)來製作SOI 材料的方法,它的步驟如下:晶圓清洗、氫離子佈植、晶圓鍵合、退火以及化學機械研磨。在上述步驟中,晶圓鍵合的階段是需要將晶圓維持在高溫,使鍵合強度達1.5 J/m2才得以進行薄膜轉移,原因是為了避免晶圓在剝離後,矽薄膜無法附著在另一片晶圓上;然而此階段容易因高溫熱處理而帶來熱應力的問題,使得生產良率降低,且利用傳統加熱的方式通常需要很長一段時間,才能使晶圓達到高溫。而希望藉由氧離子電漿方式活化晶圓表面,並且以微波取代傳統加熱,使晶圓在低溫與短時間內到達高鍵合強度。
  本研究目的在於晶圓經過了氧電漿活化後,鍵合強度對微波活化的影響:實驗是以相同氧電漿活化後的試片,施以不同微波功率與控制時間,再利用紅外光影像觀測微波後的晶圓對和裂縫開口法計算出鍵合強度。結果顯示,微波過後Si/Si、Si/Ox、Ox/Ox 三種晶圓對之鍵合強度在短時間與低溫可得到增強的效果,其中以Si/Ox 晶圓對在微波900W 20 分鐘後效果最為明顯。
摘要(英) In the semiconductor industry, the development of silicon on insulator (SOI) solves the happened problems of conventional bulk silicon, and improves the efficiency of solid state devices and reduces the loss of energy. It is usually using Smart-Cut to produce SOI, and it need following steps: wafer cleaning, the hydrogen implantation, wafer bonding, anneal and chemical mechanical polishing. On the stage of wafer bonding, wafer bonding strength needs 1.5 J/m2 on high temperature, in order to layer transfer, because the silicon films can’t bond the other wafer after peeling off wafer. But it’s easy to happen on this stage, the thermal stress for high temperature heating procedure that reduces producing yield rate, and conventional heating usually needs a long time to obtain high bonding strength. So we uses oxygen plasma to activate wafer surface, and using microwave replaces conventional heating, wafer bonding pair obtains high bonding strength at lower temperature and shorter time.
  This study is about the effect of microwave irradiation for bonding strength after wafers are activated by oxygen plasma. In the experiment, the test chips activated by some parameter of oxygen plasma use different microwave power and control time, and then use crack-opening method to measure bonding strength and infrared image topography. In experimental results, three bonding pairs of Si/Si, Si/Ox, and Ox/Ox, after using microwave irradiation, their bonding strength increase on lower temperature and shorter time. It is especially that the binding pair Si/Ox after using 900W microwave and twenty minutes, its effect is the most obvious.
關鍵字(中) ★ 微波
★ 晶圓鍵合
關鍵字(英) ★ wafer bonding
★ microwave
論文目次 中文摘要…………………………………………………………………………i
英文摘要…………………………………………………………………………ii
致謝………………………………………………………………………………iv
目錄………………………………………………………………………………v
圖目錄……………………………………………………………………………viii
表目錄……………………………………………………………………………xi
第一章 緒論………………………………………………………………………1
 1-1 研究背景……………………………………………………………………1
 1-2 研究動機……………………………………………………………………3
第二章 文獻回顧…………………………………………………………………7
 2-1 半導體晶圓鍵合技術………………………………………………………7
  2-1-1 直接鍵合………………………………………………………………8
   2-1-1.1 晶圓的初步鍵合…………………………………………………8
   2-1-1.2 親水性鍵結在升溫過程中的變化………………………………10
   2-1-1.3 比較Si/Si、Si/SiO2、SiO2/SiO2 鍵合的差異……………………12
  2-1-2 智切法…………………………………………………………………13
  2-1-3 低溫鍵合………………………………………………………………15
 2-2 微波理論……………………………………………………………………17
  2-2-1 微波加熱原理…………………………………………………………18
   2-2-1.1 微波與材料之間的相互反應……………………………………18
   2-2-1.2 材料吸收微波後分子反應………………………………………19
   2-2-1.3 材料的介電性質…………………………………………………21
  2-2-2 與傳統加熱作比較……………………………………………………22
第三章 實驗準備與研究步驟……………………………………………………33
 3-1 實驗目的……………………………………………………………………33
 3-2 研究步驟……………………………………………………………………33
第四章 結果與討論………………………………………………………………41
 4-1 室溫下微波對晶圓鍵合強度的影響………………………………………42
  4-1-1 對Si/Si 鍵合強度的影響………………………………………………42
  4-1-2 微波對Si/Ox 鍵合強度的影響…………………………………………44
  4-1-3 微波對Ox/Ox 鍵合強度的影響………………………………………45
 4-2 在氛圍溫度180℃下微波對晶圓鍵合強度的影響………………………45
  4-2-1 在180℃下微波,對Si/Si 鍵合強度的影響……………………………46
  4-2-2 在180℃下微波,對Si/Ox 鍵合強度的影響……………………………47
 4-3 實驗的應用實例……………………………………………………………47
第五章 結論與未來展望…………………………………………………………60
 5.1 結論…………………………………………………………………………60
 5.2 未來展望……………………………………………………………………61
參考文獻……………………………………………………………………………62
參考文獻 【1】 J. Bardeen, et al., “The Transistor, A Semi-Conductor Triode”, American Physical
Society Sites, Phys. Rev. 74, pp. 230-231, 1948.
【2】 Jack St. Clair Kilby, “Turning Potential into Realities: The Invention of the
Integrated Circuit (Nobel Lecture)”, WILEY-VCH-Verlag GmbH, Vol. 2, Issue: 8-9,
pp. 482–489, 2001
【3】 P. K. Bondyopadhyay, “Moore’’s law governs the silicon revolution”, IEEE, Vol. 86,
Issue: 1, pp. 78-81, 1998.
【4】 N. Weste and K. Eshraghian, “Principles of CMOS VU1 Design, A Systems
Perspective”, Reading, MA: Addison-Wesley Publishing Company, 1993.
【5】 R. H. Dennard et al., “Design of ion-implanted MOSFET’’s with very small physical
dimensions”, IEEE, J. Solid-State Circuits, vol. SC-9, p. 256, 1974.
【6】 莊達人,VLSI 製造技術,五版,高立圖書有限公司,臺北縣,民國九十一年。
【7】 G. K. Celler and S. Cristoloveanu, “Frontiers of Silicon-on-Insulator”, Journal of
Applied Physics, Vol. 93, Issue 9, pp. 4955-4978, May 2003.
【8】 J. B. Kuo and K.-W. Su, “CMOS VLSI Engineering: Silicon-on-Insulator (SOI)”,
Kluwer Academic Publishers, Boston, 1998.
【9】 J.-P. Colinge, “Silicon-on-Insulator Technology: Materials to VLSI, 3rd Edition”,
Springer Science+Business Media, Inc., New York, 2004.
【10】 M. Bruel, “Silicon on insulator material technology”. Electronics Letters, Vol. 31,
Issue 14, pp. 1201-1202, 1995.
【11】 Q.-Y. Tong and U. Gösele, “Semiconductor Wafer Bonding: Science and
Technology”, John Wiley&Sons, Inc., New York, 1999.
【12】 J. B. Lasky et al., “Silicon-on-Insulator (SOI) by Bonding and Etch-Back”,
Electron Devices Meeting, 1985 International, Vol. 31, pp. 684-687, 1985.
【13】 T.-H. Lee, “Semiconductor thin film transfer by wafer bonding and advanced ion
implantation layer splitting technologies”, Duke University, Ph.D. Dissertation,
1998.
【14】 J. M. Osepchuk, “A History of Microwave Heating Applications”, IEEE, Vol. 32,
Issue 9, pp. 1200-1224, Sep 1984.
【15】 J. Lin et al., “Nova CutTM Process: Fabrication of Silicon on insulator Materials”,
SOI Conference, IEEE International 2002, pp. 189-191, 2002.
【16】 M. Shimbo et al., “silicon-to-silicon direct bonding method”, Journal of Applied
Physics, Vol. 60, pp. 2987-2989, 1986.
【17】 L. R. Fisher and J. N. Israelachvili, “Direct measurement of effect of meniscus forces
on adhesion: A study of the applicability of macroscopic thermodynamics to
microscopic liquid interface”, Colloids and surface, Vol. 3, pp. 303-319, 1981.
【18】 R. Legtenberg, et al., “Stiction of surface micromachined structures after rinsing and
drying: model and investigation of adhesion mechanisms”, Sensors and Actuators,
Vol. 43, pp. 230-238, 1994.
【19】 Q.-Y. Tong and U. Gösele, “A model of low-temperature wafer bonding and its
applications”, Journal of the Electrochemical Society, Vol. 143, pp. 1773-1779,
1996.
【20】 C. G. Armistead et al., “The surface hydroxylation of silica”, The Journal of Physical
Chemistry, Vol. 73, pp. 3947-3953, 1969.
【21】 J. T. Borenstein, et al., “kinetic model for hydrogen reactions in boron-doped silicon”,
Journal of Applied Physics, Vol. 73, pp. 2751-2754, 1993.
【22】 Q.-Y. Tong et al., “A “smarter-cut” approach to low temperature silicon layer
transfer”, Journal of Applied Physics, Vol. 72, 1998.
【23】 G. Gawlika, et al., “Hydrogen-ionimplantation in GaAs”, Vaccum, Vol. 63, pp.
697-700, 2001.
【24】 Q.-Y. Tong, et al., “Low Vacuum Bonding”, Electrochemical and Solid-State Letters,
Vol. 1, pp. 52-53, 1998.
【25】 T. Suni, et al., “Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2”,
Journal of the Electrochemical Society, Vol. 149, pp. G348-G351, 2002.
【26】 G. Whittaker, “Microwave Heating Mechanisms”, http://homepoages.ed.ac.
uk/ah05/chla.html, 1994.
【27】 David E. Clark and Willard H. Sutton, “Microwave Processing of Materials”, Annu.
Rev. Mater. Sci., Vol. 26, pp. 299-331, 1996.
【28】 A. C. Metaxas, “Microwave heating”, IEE Power Engineering Journal 5, 1991.
【29】 D. Micael et al., “Application of Microwave Dielectric Heating Effects to Synthetic
Problems in Chemistry”, Chem. Soc. Rev., 20, pp. 1-47, 1991.
【30】 曾信富,「微波加熱處理與材料特性分析」,國立清華大學,碩士論文,民國九
十五年。
【31】 高健玲,「微波加熱與微波萃取教學與實驗教材之設計」,國立高雄師範大學,
碩士論文,民國九十一年。
【32】 A. De, et al., Ceram. Eng. Sci. Proc., 11(9-10), pp. 1743-53, 1990.
【33】 Morteza Oghbeei* and Omid Mirzaee, “Microwave versus conventional sintering: A
review of fundamentals, advantages and applications”, Journal of Alloys and
Compounds, 494, pp. 175-189, 2010.
【34】 徐育愷,「微波活化對被植入於矽中之氫離子之研究」,國立中央大學,機械工
程學系,碩士論文,民國九十五年。
【35】 蔡俊璋,「不同溫度下微波輻射對矽中氫離子活化效應之研究」,國立中央大學,
機械工程學系,碩士論文,民國九十六年。
【36】 I. Ahmad and K. R. Hicks, “Method Of Apparatus For Uniform Microwave
Treatment Of semiconductor Wafers”, US 7,939,456 B2, 2011.
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2012-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明