博碩士論文 993203051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:52.204.98.217
姓名 陳瑞捷(Jui-Chieh Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用暫態熱微影技術製備高分子微結構
(Transient Thermolithography for Polymer Thin Film Patterning)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 石英柱狀微結構之表面聲波感測器之研製與特性分析★ 利用電子束微影製作高密度石英柱狀結構
★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備★ 石英微結構對表面接觸角與潤濕性影響之研究
★ 石英奈米針狀結構表面之潤濕性及遲滯性研究★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性
★ MOCVD噴淋式腔體沉積模擬與進氣系統分析★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition
★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質★ 柱狀微結構對液珠熱毛細運動之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在一般半導體製程中,大多採用光微影的方式達到圖形轉移的目的,而光微影所能製作出的最小線寬會受到光學繞射極限的物理現象,使得線寬尺寸受到限制。利用熱微影的方式以熱傳導的形式來傳遞能量將可避免光繞射的限制,除此之外,熱的傳導速度遠低於光波的傳輸速度,因此具有控制傳輸距離的可行性。本文主要對光阻劑在加熱時結構產生交聯反應(cross-link)作為探討,實驗利用薄膜加熱器配合脈衝熱源,控制不同的脈衝寬度及週期,觀察光阻劑輪廓隨著加熱時間及溫度的變化,以及厚度的趨勢,並討論光阻劑加熱時的化學反應對於光阻劑結構交聯的程度,及顯影後留下被加熱區域的光阻劑所達到圖形轉移的效果,製作出不同厚度之微結構。另外透過有限元素分析軟體COMSOL建立模型,探討溫度分佈的影響,進而了解熱於高分子阻劑中的暫態傳輸現象。
摘要(英) Photolithography is widely used in semiconductor industry and many micro/nano-manufacturing. Its resolution is usually limited by the wavelength of the light source. Thermal lithography use heat as the exposure source which has the possibility to generate patterns with minimum feature size exceeding the diffraction limit in photolithography. In addition, heat transport is much slower than light which allows us to control the transport distance. In this manuscript, we use transient heating to generate resist patterns with different thicknesses and study the heat transport and crosslinking in polymer thin films. The experiments use thin film heaters with pulsed Joule heating. Different pulse widths and periods are used to control the temperature rises and accumulated heating durations. The trend of the resulting resist thicknesses reveals the important role of the relaxation time in the cross-linking reaction. In addition, through the finite element analysis, we can simulate temperature distribution, and then to understand the thermal transient transport phenomena in polymer resists.
關鍵字(中) ★ 微影術
★ 微加工
★ 高分子薄膜
關鍵字(英) ★ lithography
★ micro fabrication
★ polymer thin film
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機與目的 4
1-3 文獻回顧 5
1-4 論文架構 9
第二章 理論背景 10
2-1 熱微影技術原理 10
2-2 光阻劑之性質 11
2-2-1 光阻劑組成成分 12
2-2-2 光阻劑特性相關參數 14
2-3 影像反轉(Image Reversal) 15
第三章 研究方法 17
3-1 研究架構 17
3-2 模擬方法 19
3-2-1 模擬系統建立 19
3-2-2 熱傳導方程式 20
3-2-3 網格測試 21
3-3 實驗步驟 22
3-3-1 試片製作 23
3-3-2 穩態與暫態加熱溫度量測方法 27
第四章 結果與討論 31
4-1 穩態加熱 31
4-1-1 穩態加熱下阻劑溫度的模擬 32
4-1-2 穩態加熱下溫度對阻劑輪廓的影響 37
4-2 暫態加熱 41
4-2-1 暫態加熱溫度模擬 41
4-2-2 脈衝寬度對溫度影響之模擬 45
4-3 暫態加熱實驗 46
4-3-1 週期脈衝累積時間對阻劑厚度之影響 50
4-3-2 不同脈衝寬度對阻劑厚度之影響 53
4-3-3 不同週期對阻劑厚度之影響 57
4-4 參數組合對阻劑輪廓之影響 60
4-4-1 脈衝寬度與累積加熱時間隨週期變化對光阻厚度的影響 61
4-4-2 不同週期下加功能率隨累積加熱時間對阻劑輪廓影響 69
第五章 結論與未來工作 73
參考文獻 75
參考文獻 [1] D.J. Nagel and M.E. Zaghloul , MEMS : Micro Techanology : Mega
Impact, IEEE Circuit Devices Magazine. Vol. 28, pp. 14-25, 2001.
[2] K. Kurihara, T. Nakano, H. Ikeya, M. Ujiie and J. Tominaga, “High-speed
fabrication of large-area nanostructure optical devices”,
Microelectronic Engineering,Vol. 85, pp. 1197-1201, 2008.
[3] Y. Ozaki, T.Ohyama, T. Yasuda and I. Shimoyama , “An air flow sensor modeled on wind receptor hairs of insects”, Proc. MEMS, pp. 531-536, 2000.
[4] E.V. Mukerjee, A.P. Wallace, K.Y. Yan, D.W. Howard, R.L. Smith, S.D.
Collins, “Vaporizing liquid microthruster”, Sensors and Actuators, Vol.83,
pp. 231-236, 2000.
[5] G.M.Whitesides,“The origins and the future of microfluidics”, Nature, Vol. 422, pp. 368-373, 2006.
[6] L.J.Lee , “BioMEMS and Micro-/Nano-Processing of Polymers-An
Overview”, Annals of biomedical Engineering, Vol.34, pp. 25-46, 2003.
[7] 楊錫行, 黃廷合 編著, 微機械加工概論, 全華科技圖書股份有限公司, 2004.
[8] D. Zhu1, K. Wang and N. S. Qu, “ Micro wire electrochemical
cutting by using in situ fabricated wire electrode”, CIRP Annals -
Manufacturing Technology , Vol.56, pp.241-244, 2007.
[9] X. M. Zhao, Xia Y,G. M. Whitesides, “Soft lithographic methods for
nano-fabrication, ” Journal of Materials Chemistry, Vol.7, pp. 1069-1074, 1997.
[10] D. Qin, Y. N. Xia, and G. M. Whitesides, “Soft lithography for micro- and nanoscale patterning, ”Nat. Protoc. Vol.5, pp. 491-502, 2010.
[11] Y. Kawamura, K. Toyoda, and S. Namba, “Effective deep ultraviolet photoetching of polymethyl methacrylate by an exclmer laser”, Appl. Phys. Lett. Vol. 40, pp.374-375, 1982.
[12] S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices”, Nature Vol. 412, pp. 697-698, 2001.
[13] L. Strong and G. M. Whitesides, "Structures of self-assembled monolayer films of organosulfur compounds adsorbed on gold single-crystals - Electron-Diffraction Studies", Langmuir ,Vol.4, pp. 546-558, 1988.
[14] G. M. Whitesides and B. Grzbowski, “Self-assembly at all scales”, Sciencei, Vol.295, pp. 2418 -2421, 2002.
[15] S. Y. Chou and P. R. Krauss, “Imprint lithography with 25-nanometer resolution”, Science Vol.272, pp.85-87, 1996.
[16] H. Ahmed, “Electron-beam lithography for microcircuit fabrication”, Electronics and Power , pp. 433-436, 1976.
[17] T. H. P. Chang, M. Mankos, K. Y. Lee, and L. P. Muray, “Multiple electron-beam lithography”, Microelectron. Eng, pp. 117-135, 2001.
[18] M. Kuwahara , C. Mihalceaa, N. Atodaa, J. Tominagaa, H. Fujib, T. Kikukawac,“Thermal lithography for 0.1 mm pattern fabrication” Microelectronic. Eng., Vol. 61-62, pp. 415-420, 2002.
[19] C. P. Liu , Y. X. Huang , C. C. Hsu , T. R. Jeng, and J. P. Chen, “Nanoscale fabrication using thermal lithography technique with blue laser”, IEEE Trans. Magnetics, Vol. 45, pp.2206-2208, 2009.
[20] A. S. Basu, S. McNamara, and Y. B.Gianchandani, “Scanning thermal lithography: Maskless, submicron thermochemical patterning of photoresist by ultracompliant probes”, J. Vac. Sci. Technol. Vol. 22, pp. 3217-3220, 2004.
[21] Y. M. Hua, S. Saxena, H. Clifford, W. P. King, “ Nanoscale thermal lithography by local polymer decomposition using a heated atomic force microscope cantilever tip” , J. Micro/Nanolith.MEMS MOEMS,Vol. 6, 023012, pp.1-6, 2007.
[22] A. Schmidt X. Chen, and G. Chen, “ Contact thermal lithography”,IMECE, 2005.
[23] M.T. Hung, J. Kim, and Y. S. Ju, “Exploration of Thermolithography for micro- and nanomanufacturing,” Appl. Phys. Lett. Vol. 88, 123110, 2006.
[24] A. Reiser, J.P. Huang, X. He, T.F. Yeh, S. Jha, H.Y. Shih, M.S. Kim, Y.K. Han, and K. Yan, “The molecular mechanism of novolak–diazonaphthoquinone resists, ” European Polymer Journal vol. 38, pp.619–629, 2002.
[25] 龍文安, 半導體微影技術, 五南圖書公司, 2004.
[26] M. Spak, D. Mamato, S. Jain, and D. Durham, “Mechanism and lithographic evaluation of image reversal in AZ 5214 photoresist ”, AZ Electronic Material.
[27] J. D. Plummer, M. D. Deal, P. B. Griffin著, 羅正忠, 李嘉平, 鄭湘原 譯, “半導體工程”,台灣培生教育出版股份有限公司, 2005.
[28] J. Aizenberg, J. A. Rogers, K. E. Paul, and G. M. Whitesides, “Imaging profiles of light intensity in the near field: applications to phase-shift photolithography”, Applied Optic, Vol. 37, pp.2145-2152, 1998.
[29] F. P. Incropera, D. P. Dewitt, Fundamentals of heat and mass transfer, 2002.
[30] E. Gogolides E. Tegou, K. Beltsios b, K. Papadokostakib, and M.
Hatzakis, “Thermal and mechanical analysis of photoresist and silylated photoresistfilms: Application to AZ 5214”, Microelectronic Eng. Vol. 30, pp.267-270, 1996.
[31] K. Kato and K. Ito, “Dynamic transition between rubber and sliding states
attributed to slidable cross-links”, Soft Matter, Vol.7, pp. 8737-8740, 2011.
指導教授 洪銘聰(Ming-Tsung Hung) 審核日期 2012-10-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明