博碩士論文 993203602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.223.172.199
姓名 凱魯南(Khairul Anam)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Simulation of Cracking Behavior in Solid Oxide Fuel Cells
(固態氧化物燃料電池破裂行為模擬研究)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在較高的工作溫度下,固態氧化物燃料電池(SOFC)可增加其能源轉換效率,然而在高溫下,各零組件間的交互反應可能導致材料的強度減弱,除此之外,SOFC在高溫下運作會因熱膨脹係數不匹配與溫度梯度產生熱應力,過大的熱應力將造成結構上的破壞,此二因素都將影響SOFC的可靠度。
本研究主旨是計算電池片(陽極-電解質-陰極)在不同工作階段的應力強度因子,計算時將考慮裂縫形態,並考慮實際使用時,週期運轉對應力強度因子的影響。利用ABAQUS專業級有限分析軟體分別計算在常溫與工作溫度下,不同的表面裂縫形狀(半圓形、半橢圓形)與裂縫大小(1 μm、10 μm、100 μm)時的應力強度因子,並計算20次熱循環以了解運轉週期對應力強度因子的影響。根據最大主應力、最大x方向正應力σ_xx、最大y方向正應力σ_yy選定臨界應力區,最大主應力發生在常溫下,其值為53.16 MPa,x與y方向的最大正應力發生在工作溫度下,分別為28.88 MPa、16.76 MPa。
應力強度因子計算結果顯示,對於較尖銳的半橢圓形裂縫,裂縫成長趨勢為向表面旁邊擴展,而較淺的半橢圓裂縫,裂縫成長趨勢為向中間深處延伸。常溫下,隨著循環數增加,應力強度因子逐漸減小,在高溫時,應力強度因子則會小幅度的增加,此乃應力場隨著熱循環作用變化所致。在本研究中所計算的應力強度因子皆小於其對應材料的破裂韌性,預估將不會發生破壞。
摘要(英) The high operating temperature enables solid oxide fuel cells (SOFCs) to obtain a high efficiency of energy conversion while accompanying concerns such as degradation of materials resulting from undesirable reactions between components. Structural durability of an SOFC is affected by the thermal stress caused by considerable CTE mismatch between components and thermal gradient. Excessive thermal stresses may lead to fracture of components endangering the mechanical integrity of an SOFC stack. The main objective of this study is to calculate the stress intensity factor of positive electrode-electrolyte-negative electrode (PEN) at various stages. The effects of crack size, crack type, and thermal cycles are considered in calculating the stress intensity factors at the highly stressed regions in PENs.
A commercial finite element analysis (FEA) code, ABAQUS, was used to find the highly stressed regions in PENs and calculate the stress intensity factors. The stress distributions are calculated at uniform room temperature and at steady stage with a non-uniform temperature profile. The stress intensity factors for various combinations of surface crack type (semicircular and semi-elliptical) and size (1 µm, 10 µm, and 100 µm) are calculated at room temperature and steady stage. For thermal cycling, the stress intensity factor is repeatedly calculated for twenty cycles at the location having the greatest maximum principal stress and for five cycles at the location having the greatest maximum normal stresses in the x and y directions, σxx and σyy, respectively.
Three critical stress regions are identified based on the maximum principal stress, maximum σxx, and maximum σyy. The maximum principal stress is of 53.16 MPa in principal direction of -44.04o at room temperature. The maximum σxx is of 28.88 MPa and σyy is of 16.76 MPa both at steady stage. The CTE mismatch between components and the temperature difference between room temperature and steady stage are the two major factors in generation of thermal stresses in the planar SOFC stack. Thermal stress fields induced by these two factors play a major role in determining the stress intensity factors for various surface cracks placed at selected locations. The principal direction also has an effect on the stress intensity factor for the critical region with the greatest maximum principal stress. For a sharp, semi-elliptical surface crack, it tends to grow wider rather than deeper. On the contrary, for a shallow one, the crack tends to grow deeper rather than wider. Variations of stress field during thermal cycling dominantly determine the variations of KI. The stress intensity factor for the critical region of maximum principal stress is significantly decreased at room temperature and is slightly increased at steady stage with increasing number of thermal cycle. All the calculated stress intensity factors in the present study are less than the corresponding fracture toughness given in the literature, ensuring the structural integrity for the given planar SOFC stack.
關鍵字(中) ★ 固態氧化物燃料電池
★ ABAQUS
★ 熱應力
★ 破裂
★ 應力強度因子
關鍵字(英) ★ Solid oxide fuel cell
★ ABAQUS
★ Thermal stress
★ Crack
★ Stress intensity factor
論文目次 LIST OF TABLES VII
LIST OF FIGURES IX
NOMENCLATURE XIII
1. INTRODUCTION 1
1.1 Solid Oxide Fuel Cell 1
1.2 Components of Planar SOFC 2
1.2.1 Anode 3
1.2.2 Cathode 4
1.2.3 Electrolyte 4
1.2.4 Interconnect 5
1.2.5 Sealant 6
1.3 Thermal Stresses in Planar SOFC 8
1.3.1 CTE mismatch 9
1.3.2 Thermal gradient 9
1.4 Failure in PEN Layer 10
1.4.1 Failure modes 10
1.4.2 Failure criteria 11
1.4.3 Stress intensity factor and fracture toughness 11
1.5 Purposes and Scope 15
2. MODELING 16
2.1 Finite Element Model 16
2.2 Material Properties 17
2.3 Boundary Conditions 18
2.4 Temperature Profile 18
2.5 Contour Integral Evaluation for Cracks 19
3. SIMULATION PROCEDURES 21
3.1 Thermal Stress Analysis 21
3.2 Mesh Validation 22
3.3 Calculation of Stress Intensity Factor 22
4. RESULTS AND DISCUSSION 27
4.1 Thermal Stress Distribution 27
4.1.1 Room temperature 27
4.1.2 Steady stage 29
4.2 Mesh Validation 31
4.3 Stress Intensity Factor 31
4.3.1 Stress intensity factor at various stages 32
4.3.2 Effect of crack size 36
4.3.3 Effect of crack type 38
4.3.4 Effect of thermal cycling 40
5. CONCLUSIONS 42
REFERENCES 44
TABLES 48
FIGURES 57
參考文獻 1. W. Z. Zhu and S. C. Deevi, “A Review on the Status of Anode Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A362, pp. 228-239, 2003.
2. H. U. Anderson and F. Tietz, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, edited by S. C. Singhal and K. Kendall, Elsevier, Kidlington, UK, 2003.
3. T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, and W. Huang, “Material Research for Planar SOFC Stack,” Solid State Ionics, Vol. 148, pp. 513-519, 2002.
4. A. Selcuk, G. Merere, and A. Atkinson, “The Influence of Electrodes on the Strength of Planar Zirconia Solid Oxide Fuel Cells,” Journal of Materials Science, Vol. 36, pp. 1173-1182, 2007.
5. H. Yokokawa, N. Sakai, T. Horita, and K. Yamaji, “Recent Developments in Solid Oxide Fuel Cell Materials,” Fuel Cells, Vol. 1, pp. 117-131, 2001.
6. H. C. Yu and K. Z. Fung, “Electrode Properties of La1-xSrxCuO2.5-δ as New Cathode Materials for Intermediate-Temperature SOFCs,” Journal of Power Sources, Vol. 133, pp. 162-168, 2004.
7. W. Z. Zhu and S. C. Deevi, “Development of Interconnect Materials for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. A348, pp. 227-243, 2003.
8. M. Stanislowski, E. Wessel, T. Markus, L. Singheiser, and W. J. Quadakkers “Chromium Vaporization from Alumina-Forming and Aluminized Alloys,” Solid State Ionics, Vol. 179, pp. 2406-2415, 2008.
9. S. Fontana, S. Chevalier, and G. Caboche, “Metallic Interconnects for Solid Oxide Fuel Cell: Effect of Water Vapour on Oxidation Resistance of Differently Coated Alloys,” Journal of Power Sources, Vol. 193, pp. 136-145, 2009.
10. J. W. Fergus, “Effect of Cathode and Electrolyte Transport Properties on Chromium Poisoning in Solid Oxide Fuel Cells,” International Journal of Hydrogen Energy, Vol. 32, pp. 3664-3671, 2007.
11. J. W. Fergus, “Metallic Interconnects for Solid Oxide Fuel Cells,” Materials Science and Engineering, Vol. 397, pp. 271-283, 2005.
12. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
13. P. A. Lessing, “A Review of Sealing Technologies Applicable to Solid Oxide Electrolysis Cells,” Journal of Materials Science, Vol. 42, pp. 3465-3476, 2007.
14. H.-T. Chang, C.-K. Lin, and C.-K. Liu, “High-Temperature Mechanical Properties of a Glass Sealant for Solid Oxide Fuel Cell,” Journal of Power Sources, Vol. 189, pp. 1093-1099, 2009.
15. S. Ghosh, A. D. Sharma, P. Kundu, and R. N. Basuz, “Glass-Ceramic Sealants for Planar IT-SOFC: A Bilayered Approach for Joining Electrolyte and Metallic Interconnect,” Journal of the Electrochemical Society, Vol. 155, pp. 473-478, 2008.
16. P. Batfalsky, V. A. C. Haanappel, J. Malzbender, N. H. Menzler, V. Shemet, I. C. Vinke, and R. W. Steinbrech, “Chemical Interaction Between Glass-Ceramic Sealants and Interconnect Steels in SOFC Stacks,” Journal of Power Sources, Vol. 155, pp. 128-137, 2006.
17. W. Fischer, J. Malzbender, G. Blass, and R. W. Steinbrech, “Residual Stresses in Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 150, pp. 73-77, 2005.
18. J. Malzbender, W. Fischer, and R. W. Steinbrech, “Studies of Residual Stresses in Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 182, pp. 594-598, 2008.
19. C. S. Montross, H. Yokokawa, and M. Dokiya, “Thermal Stresses in Planar Solid Oxide Fuel Cells due to Thermal Expansion Differences,” British Ceramic Transactions, Vol. 101, pp. 85-93, 2002.
20. A. Nakajo, Z. Wuillemin, J. Van herle, and D. Favrat, “Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part II: Loss of Gas-Tightness, Electrical Contact and Thermal Buckling,” Journal of Power Sources, Vol. 193, pp. 216-226, 2009.
21. K. P. Recknagle, R. E. Williford, L. A. Chick, D. R. Rector, and M. A. Khaleel, “Three-Dimensional Thermo-Fluid Electochemical Modeling of Planar SOFC Stacks,” Journal of Power Sources, Vol. 113, pp. 109-114, 2003.
22. F. L. Lowrie and R. D. Rawlings, “Room and High Temperature Failure Mechanisms in Solid Oxide Fuel Cell Electrolytes,” Journal of the European Ceramic Society, Vol. 20, pp. 751-760, 2000.
23. J. W. Hutchinson, “Stresses and Failure Modes in Thin Films and Multilayers,” Note for Danish Center for Applied Mathematics and Mechanics (DCAMM) Course, Harvard University, Cambridge, MA 02138, USA, 1996.
24. E. P. Bussoy, Y. T. Kache, and R. P. Travis, "Thermally Induced Failure of Multilayer Ceramic Structures," Philosophical Magazine A, Vol 81, No 8, pp. 1979-1995, 2001.
25. P. Z. Cai, D. J. Green, and G. L. Messing, “Constrained Densification of Alumina/Zirconia Hybrid Laminates, I: Experimental Observations of Processing Defects,” Journal of the American Ceramic Society, Vol. 80, pp. 1929-1939, 1997.
26. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Material Engineering and Performance, Vol. 13, pp. 316-326, 2004.
27. J. Malzbender, R. W. Steinbrench, and L. Singhesier, “Failure Probability of Solid Oxide Fuel Cells,” pp. 293-298 in Proceedings of the 29th International Conference on Advanced Ceramics and Composites, Cocoa Beach, Florida, January 23-28, 2005.
28. T. Zhang, Q. Zhu, W. L. Huang, Z. Xie, and X. Xin, “Stress Field and Failure Probability Analysis for the Single Cell of Planar Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 182, pp. 540-545, 2008.
29. T. L. Anderson, Fracture Mechanics: Fundamentals and Applications, 2nd Ed., CRC Press, Inc., Florida, USA, 1995.
30. J. Johnson and J. Qu, “Three-Dimensional Numerical Simulation Tools for Fracture Analysis in Planar Solid Oxide Fuel Cells (SOFCs),” pp. 393-405 in Proceedings of the 30th International Conference on Advanced Ceramics and Composites, Cocoa Beach, Florida, January 22-27, 2006.
31. B. N. Nguyen, B. J. Koeppel, S. Ahzi, M. A. Khaleel, and P. Singh, “Crack Growth in Solid Oxide Fuel Cell Materialas: From Discrete to Continuum Modeling,” Journal of the American Ceramic Society, Vol. 89, pp. 1358-1368, 2006.
32. A. V. Kumar and B. F. Sørensen, “Fracture Energy and Crack Growth in Surface Treated Yttria Stabilized Zirconia for SOFC Applications,” Materials Science and Engineering, Vol. A333, pp. 380-389, 2002.
33. A. Nakajo, J. Kuebler, A. Faes, U. F. Vogt, H. J. Schindler, L.-K Chiang, S. Modena, J. F. Herle, and T. Hocker, “Compilation of Mechanical Properties for the Structural Analisys of Solid Oxide Fuel Cell Stacks. Constitutive Materials of Anode-Supported Cells,” Ceramics International, Vol. 38, pp. 3907-3927, 2012.
34. M. Radovic, E. Lara-Curzio, and G. Nelson, “Fracture Toughness and Slow Crack Growth Behavior of Ni-YSZ and YSZ as a Function of Porosity and Temperature,” pp. 373-381 in Proceedings of the 30th International Conference on Advanced Ceramics and Composites, Cocoa Beach, Florida, January 22-27, 2006.
35. A. Selçuk and A. Atkinson, “Strength and Toughness of Tape-Cast Yttria-Stabilized Zirconia,” Journal of the American Ceramic Society, Vol. 83, pp. 2029-2035, 2000.
36. “Continuum Elements,” Chapter 27 in ABAQUS 6.11-1 Analysis User’s Manual Vol. IV, ABAQUS, Inc., Providence, RI, USA, 2011.
37. Y. S. Chou and J. W. Stevenson, “Phlogopite Mica-Based Compressive Seals for Solid Oxide Fuel Cells: Effect of Mica Thickness,” Journal of Power Sources, Vol. 124, pp. 473-478, 2003.
38. Metals Handbook, Vol. 2, 10th Ed., ASM International, Materials Park, OH, USA, pp. 437-441, 1990.
39. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
40. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of a Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,” Journal of Power Sources, Vol. 192, pp. 515-524, 2009.
41. “Special-Purpose Techniques,” Chapter 11 in ABAQUS 6.11-1 Analysis User’s Manual Vol. IV, ABAQUS, Inc., Providence, RI, USA, 2011.
42. “Fracture Mechanics,” Chapter 31 in ABAQUS 6.11-1 User’s Manual Vol. IV, ABAQUS, Inc., Providence, RI, USA, 2011.
43. E. Lara-Curzio, M. Radovic, R. M. Trejo, C. Cofer, T. R. Watkins and K. L. More, “Effect of Thermal Cycling and Thermal Aging on the Mechanical Properties of, and Residual Stresses in, Ni-YSZ/YSZ Bi-Layers,” pp. 383-391 in Proceedings of the 30th International Conference on Advanced Ceramics and Composites, Cocoa Beach, Florida, January 22-27, 2006.
指導教授 林志光(Dr. Eng. Anindito Purnowidodo) 審核日期 2013-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明