博碩士論文 993204001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.15.197.123
姓名 施思羽(Szu-yu Shih)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板
(Nanostructured Silver Arrays for SERS Fabricated within Block copolymer Nanotemplates)
相關論文
★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌
★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構
★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用
★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構
★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為
★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 論文的第一部分,利用調配不同濃度的聚苯乙烯聚2乙烯吡啶(Polystyrene-block-poly(2-vinylpyridine), P(S-b-2VP))溶液以控制高分子模板之表面覆蓋率,進而含浸至硝酸銀的乙醇溶液,藉由紫外光還原而得到點狀的有序銀粒子陣列。隨著紫外光曝曬的時間增加,高分子模板的劣化使得聚集的銀粒子無法受模版侷限,因而造成聚集的銀粒子散佈於基材上。藉由控制粒子間距以及觀察粒子隨著紫外光照射的變化可得知當銀粒子間距較小時,吸附上Rhodamine 6G後能夠有較強的表面增強拉曼效應。
本研究除了利用模板來控制粒子間距,在論文的第二部分使用聚苯乙烯聚4乙烯吡啶(Polystyrene-block-poly(4-vinylpyridine), P(S-b-4VP))經由溶劑退火的方式,製造圓球狀的微胞模版以及圓柱狀的微胞模版。形成圓球狀及圓柱狀的微胞模版含浸至乙醇,分別形成了具有奈米級孔洞的薄膜與指紋狀的奈米溝槽薄膜。進一步利用四種不同形狀的模板:圓球狀、圓柱狀、奈米孔洞與指紋狀的奈米溝槽,以氬氣電漿的方式還原銀離子得到不同形狀的奈米銀陣列。當增加氬氣電漿處理的時間,由圓球狀與圓柱狀模版所製成的奈米銀陣列較能維持模版給予的有序性。此外,當氬氣電漿處理三百秒後,藉由指紋狀的奈米溝槽模版製備的奈米銀陣列,吸附上Rhodamine 6G則具有較強的表面拉曼增強訊號。
摘要(英) Tailor-made templates through self-assembly of block copolymers are capable of fabricating technologically nanostructured substrates. In this thesis, a sample but robust method is demonstrated to fabricate arrays of silver nanostructures with morphological diversity and a tunable adjacent gap for large area surface-enhanced Raman spectroscopy (SERS) substrates.
First, nanostructured silver arrays of adjustable particulate size and inter-particle distance were fabricated by block copolymer templates for SERS substrates. The templates were formed by polystyrene-block-poly(2-vinylpyridine), P(S-b-2VP), micelles. The silver arrays with various surface coverage were prepared by spin-coating from o-xylene solution of varied polymer concentration (0.3 and 0.8 wt%). Photochemical reduction was applied to reduce silver ions after the P(S-b-2VP) micellar films were immersed in ethanol containing AgNO3. The interplay between the reduction of Ag+ and the removal of the P(S-b-2VP) template during UV-exposure for various time intervals affect the growth and spatial order of Ag nanoparticles, which in turn influences their SERS properties.
Moreover, polystyrene-block-poly(4-vinylpyridine) was used to produce spherical micellar templates and cylindrical micellar templates through solvent annealing. Nanoporous and nanogrooves templates were made when spherical micellar templates and cylindrical micellar templates were immersed in ethanol. Spherical micelles, cylindrical micelles, nanoporous, and nanogrooves were utilized to fabricate silver arrays. Petal-like cluster, fingerprint clusters, network clusters and reverse fingerprint clusters were produced by reducing silver salts in BCP templates. Through long time of Ar plasma treatment, petal-like clusters and fingerprint clusters could maintain the order of spherical micellar templates and cylindrical micellar templates. Furthermore, reverse fingerprint clusters with R6G adsorption had the strongest SERS enhancement through Ar plasma treatment for 300 sec.
關鍵字(中) ★ 奈米銀
★ 拉曼
關鍵字(英) ★ silver nanostructured films
★ SERS
論文目次 摘要 i
Abstraction ii
Table of contents iv
List of figures vi
Chapter 1 Introduction 1
1.1 Micelle 5
1.1-1 Micellar thin films 6
1.1-2 Applications of micellar thin films 7
1.2 Surface chemical reductions 11
1.3 Surface Enhanced Raman Scattering 18
1.3-1 Fundamental theory 19
1.3-2 SERS substrate 22
1.4 Applications of SERS substrate 24
1.5 Motivation 29
Chapter 2 Experimental section 30
2.1 Materials 30
2.2 Instrument 30
2.3 Sample Preparation and Experimental 31
2.3.1 Substrate Cleaning 31
2.3-2 Surface modification 31
2.3-3 The preparation of di-block copolymer thin film 32
2.3-4 Production of metal nanoparticles 32
2.4 Instrumental Analysis 34
2.4-1 Atomic Force Microscope: 34
2.4-2 Field Emission Scanning Electron Microscope 35
2.4-3 Surface-enhanced Raman Spectroscopy 37
2.4-4 Grazing Incident Small Angle X-Ray Scattering 39
2.4-5 UV-vis spectrophotometer[70] 40
Chapter 3 Result and Discussion 42
3.1 Temporal evolution of growth of silver nanostructures by template-assisted photochemical reactions 42
3.1-1 Nanoparticles with a large gap distance 45
3.1-2 Nanoparticles with small gap distance 56
3.2 The evolution of growth of silver nanostructure within template-assisted through plasma treatment 64
3.2-1 The different between photochemical reaction and plasma treatment 65
3-2.2 The morphological evolution of silver nanostructured films with different templates 68
3-3 SERS of R6G absorbed on different silver nanostructures films fabricated through Ar plasma treatment 76
3-4 The growth of silver and the degradation of block copolymer through reduction process 80
Chapter 4 Conclusion 84
Chapter 5 Future Work 86
Reference 87
參考文獻 [1] Y. N. Xia, B. Gates, Y. D. Yin, Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications”, Adv. Mater., 2000, 12, 693
[2] M. Sommer, S. Huettner, M. Thelakkat, “Donor-acceptor Block Copolymer for Photovoltaic Applications”, J. Mater. Chem., 2010, 20, 10788-10797
[3] S. A. Maier, H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures”, J. Appl. Phys., 2005, 98
[4] A. Alizadeh, D. Hays, S. T. Taylor, C. Keimel, K. T. Conway, L. Denault, K. Krishnan, V. H. Watkins, R. Neander, J. S. Brown, A. Stintz, S. Krishna, M. Blumin, I. Saveliev, H. E. Ruda, E. Braunstein, C. Jones, “Epitaxial growth of 20 nm InAs and GaAs quantum dots on GaAs through block copolymer templated SiO2 masks”, J. Appl. Phys., 2009, 105
[5] D. O. Shin, J. R. Jeong, T. H. Han, C. M. Koo, H. J. Park, Y. T. Lim, “A Plasmonic Biosensor Array by Block Copolymer Lithography”, J. Mater. Chem., 2010, 20, 7241-7247
[6] S. Y. Yang, J. A. Yang, E. S. Kim, G. H. Jeon, E. J. Oh, K. Y. Choi, S. K. Hahn, and J. K. Kim, “Single-file diffusion of protein drugs through cylindrical nanochannels” ACS Nano, 2010, 4, 3817-3822
[7] R. Ruiz, E. Dobisz, T. R. Albrecht, “Rectangular Patterns Using Block Copolymer Directed Assembly for High Bit Aspect Ratio Patterned Media”, ACS Nano, 2011, 5, 79-84
[8] K. Galatsis, K. L. Wang, M. Ozkan, C. S. Ozkan, Y. Huang, J. P. Chang, H. G. Monbouquette, Y. Chen, P. Nealey, and Y. Botros, “Patterning and Template for Nanoelectronics”, Adv. Mater., 2010, 22, 769-778.
[9] K. H. Hsu, P. L. Schultz, P. M. Ferreira, and N. X. Fang, “Electrochemical Nanoimprinting with solid-state superionic stamps”, Nano Lett. 2007, 7, 446.
[10] J. Liu, Y. Mao, E. Lan, D. R. Banatao, G. J. Forse, J. Lu, H. O. Blom, T. O. Ywates, B. Dunn, J. P. Chang, “Generation of Oxide Nanopatterns by Combining Self-Assembly of S-Layer Proteins and Area-Selective Atomic Layer Deposition” J. AM. Chem. Soc. 2008, 130, 16908.
[11] R. A. Segalman, A. Hexemer, E. J. Kramer, ”Edge effect on the order and freezing of a 2D array of block copolymer sphere”, Phy. Rev. Lett., 2003, 91, 196101-196104
[12] J. Y. Cheng, C. T. Rettner, D. P. Sanders, H. C. Kim, W. D. Hinsberg, “Dense Self-Assembly on Sparse Chemical Patterns: Rectifying and Multiplying Lithographic Patterns Using Block Copolymers” Adv. Mater., 2008, 20, 3155-3158
[13] M. P. Stoykovich, P. F. Nealey, “Block copolymer and conventional lithography”, Mater. Today, 2006, 9. 20-29
[14] R. A. Segalman, A. Hexemer, R. C. Hayward, and E. J. Kramer, “Ordering and Melting of Block Copolymer Spherical Domains in 2 and 3 Dimensions” Macromolecules, 2003, 36, 3272-3288
[15] J. Vedrine, Y. R. Hond, A. P. Marencic, R. A. Register, D. H. Adamson, and P. M. Chaikin, “Large-area, ordered hexagonal arrays of nanoscale holes or dots from block copolymer templates” Appl. Phys. Lett., 2007, 91, 143110-143113
[16] J. Y. Cheng, F. Zhange, V. P. Chuang, A. M. Mayes, and C. A. Ross, “Self-assembled one-dimensional nanostructure arrays”, Nano Lett., 2006, 6, 2099-2103
[17] S. H. Yun, S. I. Yoo, J. C. Jung, W. C. Zin, and B. H. Sohn, “Highly Ordered Arrays of Nanoparticles in Large Areas from Diblock Copolymer Micelles in Hexagonal Self-Assembly”, Chem. Mater., 2006, 18, 5646-5648
[18] Z. Q. Chen, C. C. He, F. B Lin, L. Tong, X. Z. Liao, and Y. Wang, “Responsive micellar films of amphiphilic block copolymer micelles: control on micelle opening and closing”, Langmuir, 2010, 26, 8869-8874
[19] B. D. Terris, and T. Thomson, “Nanofabricated and self-assembled magnetic structures as data storage media”, J. Phys. D: Appl. Phys., 2005, 38, R199-R222
[20] I. W. Hamley, “Nanostructure fabrication using block copolymers”, Nanotechnology, 2003, 14, R39-54
[21] C. Harrison, M. Park, P. M. Chaikin, R. A. Register, and D. H. Adamson, “Lithography with a mask of block copolymer microstructures”, J. Vac. Sci. Technol. B, 1998, 16, 544-552
[22] M. Haupt, A. Ladenburger, R. Sauer, K. Thonke, R. Glass, W. Ross, J. P. Spatz, H. Rauscher, S. Riethmüller, and M. J. Möller, “Ultraviolet-emitting ZnO nanowhiskers prepared by a vapor transport process on prestructured surfaces with self-assembled polymers”, J. Appl. Phys., 2003, 93, 6252-6552
[23] Q. Fu, S. M. Huang, and J. Liu, “Chemical vapor depositions of single-walled carbon nanotubes catalyzed by uniform Fe2O3 nanoclusters synthesized using diblock copolymer micelles”, J. Phys. Chem. B, 2004, 108, 6124-6129
[24] S. H. Yun, B. H. Sohn, J. C. Jung, W. C. Zin, J. K. Lee, and O. S. Song, “Tunable magnetic arrangement of iron oxide nanoparticles in situ synthesized on the solid substrate from diblock copolymer micelles”, Langmuir, 2005, 21, 6548-6552
[25] S. I. Yoo, B. H. Sohn, W. C. Zin, S. J. An, and G. C. Yi, “Self-assembled arrays of zinc oxide nanoparticles from monolayer films of diblock copolymer micelles”, Chem. Commun., 2004, 2850-2851
[26] M. Aizawa and J. M. Buriak, ”Block Copolymer-Template Chemistry on Si, Ge, InP, and GaAa surfaces” J. Am. Chem. Soc., 2005, 127, 8932-8933
[27] G. Kästle, H-G Boyen, F. Weigl, G. Lengl, T. Herzog, P. Zie ann, S. Riethmüller, O. Mayer, C. Hartmann, J. P. Spatz, M. Möller, M. Ozawa, F. Banhart, M. G. Garnier, and P. Oelhafen, “Micellar Nanoreactors-Preparation and characterization of Hexagonally Ordered Arrays of Metallic Nnaodots” Adv. Funct. Mater., 2003, 11, 853-861
[28] M. Aizawa, and J. M. Buriak, “Block copolymer template chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces” Chem. Mater., 2007, 19, 5090-5101
[29] J. Y. Lee, J. Lee, Y. J. Jang, J. Y. Lee, Y. H. Jang, S. T. Kochuveedu, S. S. Lee, and D. H. Kim, “Plasmonic nano-necklace arrays via reconstruction of diblock copolymer inverse micelle nanotemplates”, Soft Matter, 2011, 7, 57-60
[30] H. S. Cho, H. M. Park, T. P. Russell, and S. J. Park, “Precise placements of metal nanoparticles from reversible block copolymer nanostructures” J. Mater. Chem., 2010, 20, 5047-5051
[31] J. Z. Li, K. Kamata, S. Watanabe, and T. Iyoda, “Template- and vacuum-ultraviolet-assisted fabrication of a Ag-nanoparticle array on flexible and rigid substrates” Adv. Mater., 2007, 19, 1267-1271
[32] Y. J. Liu, L. B. He, C. H Xu, and M. Han, “Photochemical fabrication of hierarchical Ag nanoparticle arrays from domain-selective Ag+-loading on block copolymer templates” Chem. Commu., 2009, 6566-6568
[33] Y. Wang, M. Becker, L. Wang, J. Q. Liu, R. Scholz, J. Peng, U. Gösele, S. Christiansen, D. H. Kim, and M. Steinhart, “Nanostructured gold films for SERS by block copolymer-templated galvanic displacement reaction”, Nano. Lett., 2009, 9, 2384-2389
[34] L. A. D’Asaro, S. Nakahara, and Y. Okinaka, “Electroless gold plating on III-V compound crystals”, J. Electrochem. Soc., 1980, 127, 1935-1940
[35] G. Oskam, J. G. Long, A. Natarajan, and P. C. Searson, “Electrochemical deposition of metals on silicon”, J. Phys. D: App. Phys., 1998, 31, 1927-1949
[36] K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics”, J. Phys.: Condens. Matter, 2002, 14, R597-R624
[37] K. Kneipp, “Surface-enhanced Raman scattering” Physic Today, 2007, 60, 40-46
[38] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode”, Chem. Phys. Lett., 1974, 26, 163-166
[39] D. L. Jeanmaire, and R. P. Van Duyne, “Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode” J. Electroanal. Chem., 1977, 84, 1-20
[40] C. L. Haynes, A. D. McFarland, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy” Anal. Chem., 2005, 77, 339A-346A
[41] J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Y. Zhang, and R. P. Van Duyne, “Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications” Faraday Discuss., 2005, 1-18
[42] M. Moskovits, “Surface-enhanced spectroscopy” Rev. Mod. Phys., 1985, 57, 783-823
[43] E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers”, J. Chem. Phys., 2004, 120, 357-366
[44] H. X. Xu, J. Aizpurua, M. Karr, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering”, Phys. Rev. E, 2000, 61, 4318-4324
[45] M. Inoue, and K. Ohtaka, “Surface enhanced Raman scattering by metal spheres . I. Cluster effect”, J. Phys. Soc. Japan, 1983, 52, 3853-3864
[46] S. Nie, and S. T. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering”, science, 1997, 275, 1102-1106
[47] A. M. Polubotko, “SERS phenomenon as a manifestation of quadrupole interaction of light with molecules”, Phys. Lett. A, 1990, 146, 81-84
[48] A. M. Polubotko, “The phenomenon of single-molecule detection by the SERS method and the SERS quadrupole theory”, J. Opt. A, Pure Appl. Opt., 1999, 1, L18-L20
[49] E. J. Ayars, H. D. Hallen, and C. L. Jahncke, “Eletric field gradient effects in Raman spectroscopy”, Phys. Rev. Lett., 2000, 85, 4180-4182
[50] C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size dependent nanoparticle optics”, J. Phys. Chem. B, 2001, 105, 5599-5611
[51] L. A. Dick, A. D. McFarland, C. L. Haynes, and R. P. Van Duyne, “Metal films over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss”, J. Phys. Chem. B, 2002, 106, 853-860
[52] C. J. L. Constantino, T. Lemma, P. A. Antunes, and R. Aroca, “Single-molecule detection using surface-enhanced resonance Raman scattering and Langmuir-Blodgett monolayers”, Anal. Chem., 2001, 73, 3674-3678
[53] P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamin 6G adsorbed on colloidal silver”, J. Phys. Chem., 1984, 88, 5935-5944
[54] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS)”, Phys. Rev. Lett, 1997, 78, 1667-1670
[55] L. Gunnarsson, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Käll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering”, Appl. Phys. Lett., 2001, 78, 802-804
[56] N. Félidj, S. L. Truong, J. Aubard, and G. Lévi, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering”, J. Chem. Phys., 2004, 120, 7141-7146
[57] L. Gunnarssion, E. J. Bjerneld, H. Xu, S. Petronis, B. Kasemo, and M. Kӓll, “Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering”, Appl. Phys. Lett., 2001, 78, 802-804
[58] N. Félidj, S. Lau Truong, J. Aubard, and G. Lévi, “Gold particle interaction in regular arrays probed by surface enhanced Raman scattering”, J. Chem. Phy., 2004, 120, 7141-7146
[59] J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces”, J. Vac. Sci. Technol. A, 1995, 13, 1553-1558
[60] P. Kambhampati, A. Campion, “Surface enhanced Raman scattering as a probe of adsorbate–substrate charge-transfer excitations” Surf. Sci., 1999, 427-428, 115-125
[61] W. B. Caldwell, K. Chen, B. R. Herr, C. A. Mirkin, J. C. Hulteen, and R. P. Van Duyne, “Self-assembled monolayers of ferroscnylazobenzenes on Au(111)IRlica films: Surface-enhanced Raman scattering response vs. Surface morphology”, Langmuir, 1994, 10, 4109-4115
[62] S. Zou and M. J. Weaver, “Surface-enhanced Raman scattering on uniform transition-metal films: toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces?”, Anal. Chem., 1998, 70, 2387-2395
[63] K. E. Shafer-Peltier, C. L. Haynes, M. R. Glucksberg, and R. P. Van Duyne, “Toward a glucose biosensor based on surface-enhanced Raman scattering”, J. Am. Chem. Soc., 2003, 125, 588-593
[64] C. R. Yonzon, C. L. Haynes, X. Y. Zhang, J. T. Walsh Jr., and R. P. Van Duyne, “A glucose biosensor based on surface-enhanced Raman scattering: Improved partition layers, temporal stability, reversibility, and resistance to serum protein interference”, Anal Chem., 2004, 76, 78-75
[65] A. Tao, F. Kim, C. Hess, J. Goldberger, R. R. He, Y. G. Sun, Y. N. Xia, P. D. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy”, Nano Lett., 2003, 3, 1229-1233
[66] T. Y. Liu, K. Y. Tsai, H. H. Wang, Y. Chen, Y. H. Chen, Y. C. Chao, H. H. Chang, C. H. Lin, J. K. Wang, and Y. L. Wang, “Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood”, Nature Comms., 2011, 2, 538-1~538-8
[67] D. A. Skoog, F. J. Holler, S. R. Crouch, “Principles of Instrumental Analysis sixth edition”. 2007, and F. J. Giessibl, “Advances in Atomic Force Microscopy”, Rev. Mod. Phys., 2003, 75, 949
[68] J. Pawley, “The development of field-emission scanning electron microscopy for imaging biological Surface”, 1997, 324-336
[69] M. J. Weaver, S. Zou, and H. Y. Chan, “Overlayer deposition strategies enable SERS to be harnessed for ultrasensitive in situ vibrational characterization of diverse chemical interfaces and thin-film material”, Anal. Chem., 2000, 72, 38A-47A
[70] D. A. Skoog, D. M. West, F. J. Holler, S. R. Crouch, “Fundamentals of analytical chemistry, eighth edition”, 2004
[71] J. Y. Liou, and Y. S. Sun, “Monolayers of diblock copolymer micelles by spin-coating from o-xylene on SiOX/Si studied in real and reciprocal space”, Macromolecules, 2012, 45, 1963-1971
[72] G. Renaud, R. Lazzari, and F. Leory, “Probing surface and interface morphology with Grazing Incidence Small AngleX-Ray Scattering”, Surface Science Report, 2009, 64, 255-380
[73] H. H. Huang, X. P. Ni, G. L. Loy, G. H. Chew, K. L. Tan, F. C. Loh, J. F. Deng, and G. Q. Xu, “Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone)”, Langmuir, 1996, 12, 909-912
[74] M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance”, J. Phys. Chem. C., 2010, 114, 7496-7501
[75] P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver”, J. Phys. Chem., 1984, 88, 5835-5944
[76] R. Alvarez-Puebla, B. Cui, J. P. Bravo-Vasquez, T. Veres, and H. Fenniri, “Nanoimprinted SERS-active substrates with tunable surface Plasmon resonances”, J. Phys. Chem. C, 2007, 111, 6720-6723
[77] C. Y. Chang, P. J. Wu and Y. S. Sun, “Kinetically controlled self-assembly of monolayered micelle films of P(S-b-4VP) on bare and PS-grafted substrates”, Soft Matter, 2011, 7, 9140-9147
[78] K. Kneipp, H. Kneipp, I. Itzkan, and R. R. Dasari, “Surface-enhanced Raman scattering and biophysics”, J. Phys.:Condens. Matter, 2003, 14, R597
[79] A. Sabur, M. Havel and Y. Gogotsi, “SERS intensity optimization by controlling the size and shape of faceted gold nanoparticles”, J. Raman Spectrosc., 2008, 59, 61-67
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2012-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明