博碩士論文 993204006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.141.100.120
姓名 李昱賢(Yu-hsien Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 苯於Ag/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究
(Catalytic oxidation of benzene over Ag/Ce0.9-xZr0.1MnxO2 catalysts)
相關論文
★ Ag/Mg2AlO-hydrotalcite觸媒於α,β-不飽和醛選擇性氫化反應之研究★ 貴金屬對CuO/ZnO/Al2O3觸媒於甲醇部分氧化/蒸汽重組複合式反應的影響
★ Au觸媒於硝基苯氫化反應及硝基苯乙烯選擇性氫化反應之研究★ 苯於CuO/Ce0.9-xZr0.1MnxO2觸媒 之全氧化反應研究
★ 化學還原法製備Ag/Mg2AlO觸媒之研究-α,β-不飽和醛選擇性氫化反應★ 甲醇蒸汽重組產氫觸媒之設計
★ CH4+CO2於ZrO2/SiO2與La2O3/Al2O3負載式鉑觸媒之重組反應研究★ 以化學還原/共沉澱法製備Cu/ZrO2/metal oxide觸煤應用於CO2+H2合成甲醇反應之研究
★ CuB超細合金觸媒之製備與催化性質探討★ 負載式CoB非晶態合金觸媒製備與催化性質探討
★ CuB系列觸媒於甲酸甲酯氫解及一段式甲醇合成法之研究★ Ni/Mg-Al-O觸媒於CH4/CO2重組反應之研究
★ 負載式CuB合金觸媒製備與催化性質探討★ CH4/CO2於CeO2氧化物與CexZr1-xO2共氧化物負載式Pt觸媒之重組反應研究
★ 奈米NiB、CoB非晶態合金觸媒於檸檬醛選擇氫化反應之研究★ 高分子穩定化奈米NiB觸媒之製備與催化性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以共沉澱法將不等量MnOx引入CeO2製備具良好redox特性的共溶性氧化物Ce1-xMnxO2作為擔體,並以含浸法製備Ag/Ce1-xMnxO2觸媒,進行揮發性有機物苯的全氧化反應,探討煅燒溫度、Ce/Mn比例、Zr的引入及Ag負載量對反應的影響。反應測試是利用空氣進入飽和蒸氣瓶內帶出定量(500~1500 ppm)的苯蒸氣於F/W = 6000~24000 ml gcat-1 h-1條件下進行苯的全氧化反應,並採BET、XRD、Raman、H2-TPR及XPS等分析方法探討觸媒之物理特性與表面性質。
CeO2中引入Mn能增加其表面積,一部分Mnx+進入CeO2晶格形成良好固溶的Ce1-xMnxO2共氧化物,使晶格氧容易釋出提升redox特性,一部分MnOx則均勻分散於擔體表面,增加表面的Mn3+及缺陷氧比例;當Mn引入量x > 0.5,擔體表面的MnOx明顯聚集。以共沉澱法引入0.1的Zr製得Ce0.9-xZr0.1MnxO2擔體能使表面積再略增加,並提升redox能力。
7%Ag/Ce1-xMnxO2觸媒的苯全氧化活性優於單獨的7%Ag/CeO2及7%Ag/MnOx觸媒,活性隨Mn引入增加遞增,以7%Ag/Ce0.6Mn0.4O2有最佳活性表現(T100為185 °C)。Zr的引入對Ag/Ce0.9-xZr0.1MnxO2觸媒活性無促進效果。
Ag負載於不具redox特性的SiO2與γ-Al2O3即有相當好的苯全氧化活性,觸媒表面銀價態主要為Ag0,Ag2O次之,Ag2O活性略優於Ag0。Ag/CeO2觸媒活性較Ag/SiO2觸媒佳,擔體redox特性是銀觸媒好活性的必要條件。Ce0.9-xZr0.1MnxO2比Ce1-xMnxO2更具redox特性,兩擔體本身對苯即有不錯的反應活性,前者優於後者,負載Ag後反應活性大幅提升,且活性相當。Ag為苯全氧化反應重要的活性中心,擔體redox強弱並非影響觸媒活性的主要關鍵,均勻分散於觸媒表面的MnOx亦扮演重要的角色。
Ag/Ce1-xMnxO2觸媒於苯的全氧化反應經由四路徑進行:Ce1-xMnxO2擔體表面能提供活性點(均勻分散的MnOx與缺陷氧)吸附苯進行氧化反應,將苯氧化成CO2及H2O。Ag本身會吸附苯,Ce1-xMnxO2擔體可直接提供晶格氧進行氧化反應。Ag2O會吸附苯,並釋出氧進行氧化反應,Ce1-xMnxO2擔體提供晶格氧使Ag2O復原。此外,Ag會吸附氧,與苯直接進行氧化反應。
Ag/Ce1-xMnxO2觸媒進行苯的全氧化反應有相當好的活性表現,優於Ce1-xMnxO2擔體負載的一般金屬CuO與貴金屬Pd觸媒,能處理的苯濃度範圍相當廣,於適當的反應條件下有相當高的反應穩定性,應用於揮發性有機物苯的去除是一相當不錯的觸媒選擇。
摘要(英) In this research, a series of Ce1-xMnxO2 mixed oxide supports with different compositions were prepared by co-precipitation method for enhancing the redox properties of the CeO2. Ag/Ce1-xMnxO2 catalysts were prepared by impregnation method and their performance in the oxidation of volatile organic compound benzene was evaluated. In addition to the effect of calcination temperature, the ratio of Ce/Mn, the incorporation of Zr and Ag loading were investigated, the roles of Ce1-xMnxO2 mixed oxides and Ag were also discussed. The benzene vapor feed was diluted with air into the reactor at the flow rate of 100 ml/min (F/W = 6000~24000 ml h-1gcat-1). The physical and surface properties of the prepared catalysts were characterized by BET, XRD, Raman, H2-TPR and XPS.
Incorporating maganese into CeO2 increased the specific surface area of supports. Part of manganese species which entered into the ceria lattice to form Ce1-xMnxO2 solid solutions improved the redox properties, and the increase of Mn3+ and defect oxygen were caused by the part of MnOx dispersed on the surface of Ce1-xMnxO2. The aggregation of MnOx on surface occurred when the fraction of Mn in Ce1-xMnxO2 exceeded 0.5. The specific surface area and redox properties of supports could be enhanced through the incorporation of Zr into Ce1-xMnxO2 to form Ce0.9-xZr0.1MnxO2.
The reactivities of the Ag catalysts supported on Ce1-xMnxO2 were higher than those supported on CeO2 and MnOx catalysts. The best performance in total oxidation of bezene was 7%Ag/Ce0.6Mn0.4O2 catalyst (T100 = 185 °C). It had no promoting effect on Ag/Ce0.9-xZr0.1MnxO2 catalysts with the introduction of Zr.
The Ag catalysts supported on SiO2 and γ-Al2O3 supports without redox properties showed good activity for benzene oxidation. There were two oxidation states of silver, Ag0 and Ag+, on the surface of catalyst. The dominant species of silver was Ag0, but Ag+ was the more active of the two. The activity of Ag/CeO2 catalyst was higher than Ag/SiO2, therefore, the redox properties of supports that enhanced the catalytic activity were necessary. The redox properties of Ce0.9-xZr0.1MnxO2 were more than that of Ce1-xMnxO2, and the catalytic activity of former was also better than that of latter over benzene oxidation. However, the reactivity of Ag/Ce0.9-xZr0.1MnxO2 was equivalent to that of Ag/Ce1-xMnxO2. Ag was an important active species for total oxidation of benzene, and the part of the maganese that was in the form of well dispersed phase of MnOx also played a key role of catalytic oxidation of benzene. Nevertheless, the degree of redox behavior of supports was not a key to the reactivities.
Oxidation of benzene over Ag/Ce1-xMnxO2 was along four paths. Benzene that had been adsorbed on Ce1-xMnxO2 was oxidized by the release of oxygen from Ce1-xMnxO2. The benzene could be adsorbed on Ag and oxidized by oxygen that was released from Ce1-xMnxO2. The benzene could be adsorbed on Ag2O as well, and oxidized by oxygen that was released from Ag2O. Moreover, oxygen was also adsorbed on Ag and then reacted with adsorbed benzene.
Ag/Ce1-xMnxO2 catalysts whose catalytic performance in the oxidation of benzene were better than based metal CuO and noble metal Pd catalysts exhibited high reaction stability in the suitable condition, and that could eliminate a wide range of concentration of benzene. It is a very ideal and practical catalyst for complete oxidation of benzene.
關鍵字(中) ★ 鈰鋯錳共氧化物
★ 氧化
★ 銀觸媒
★ 苯
★ 揮發性有機物
關鍵字(英) ★ oxidation
★ Ce-Zr-Mn-O mixed oxides
★ Ag catalyst
★ VOCs
★ benzene
論文目次 摘要 i
Abstract iii
目 錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
第二章 文獻回顧 3
2-1 揮發性有機物(VOCs)之危害與處理 3
2-1-1 VOCs的簡介 3
2-1-2 VOCs的去除 4
2-1-3 苯的來源及危害 7
2-2 苯全氧化反應之觸媒催化性質 11
2-2-1 Pt及Pd觸媒 11
2-2-2 Au觸媒 16
2-2-3 一般金屬氧化物觸媒 19
2-3 螢石型氧化物及其催化性質 24
2-3-1 CeO2與Metal/CeO2觸媒特性 24
2-3-2 Metal/Ce1-xMexO2觸媒特性 27
2-4 銀觸媒的發展 35
2-4-1 銀觸媒發展 35
2-4-2 銀觸媒於氧化反應之應用 36
第三章 實驗方法與設備 39
3-1 觸媒製備 39
3-1-1 Ce1-xMnxO2擔體與Ag/Ce1-xMnxO2觸媒之製備 39
3-1-2 Ce0.9-xZr0.1MnxO2擔體與Ag/Ce0.9-xZr0.1MnxO2觸媒之製備 40
3-2 觸媒性質鑑定 41
3-2-1 氮氣吸脫附測定(BET) 41
3-2-2 X-射線繞射分析(XRD) 42
3-2-3 X-射線光電子光譜(XPS) 43
3-2-4 氫-程溫還原(H2-TPR) 44
3-2-5 顯微拉曼光譜儀(Microscopic Raman Spectroscopy) 44
3-3 苯的全氧化反應研究 45
3-4 轉化率之計算 46
3-5 檢量線之量測 49
3-6 實驗藥品與氣體 51
第四章 結果與討論 52
4-1擔體與觸媒鑑定分析 52
4-1-1 BET氮氣吸脫附測定 52
4-1-2 XRD結構分析 57
4-1-3擔體結構之拉曼(Raman)分析 62
4-1-4氫程溫還原(H2-TPR) 65
4-1-5 XPS表面分析 72
4-2 苯全氧化反應之活性測試 87
4-2-1 煅燒溫度的影響 87
4-2-2 不同擔體的影響 89
4-2-3 不同Ce/Mn比例的影響 91
4-2-4 Zr引入的影響 93
4-2-5 Ag與擔體的角色 96
4-2-6 觸媒反應機制 97
4-2-7 Ag負載量的影響 103
4-3 觸媒性能研究 105
4-3-1 苯進料濃度的影響 105
4-3-2 不同F/W值的影響 105
4-3-3 200小時反應穩定性測試 108
4-3-4 與一般金屬及貴金屬比較 111
第五章 結論 113
總 結 115
參考文獻 116
參考文獻 [1]洪文雅,「揮發性有機廢氣處理技術簡介」,台灣環保產業雙週刊,2003年10月。資訊報告,No.61,pp.2–6,1994。
[2]李定粵,「觸媒的原理與應用」,正中書局,1990年10月。
[3]朱小容,陳郁文,「工業廢氣特殊處理技術」,化工資訊,pp.68-78,1992年2月。
[4]劉國棟,「VOC 管制趨勢展望」,工業汙染防治,第10卷,第48期,pp.15–31,1993。
[5]「臭氣處理程序設計評估技術」,工研院化工所,1991。
[6]T. F. Garetto, C. R. Apestegu´ıa, “Structure sensitivity and in situ activation of benzene combustion on Pt/Al2O3 catalysts”, Appl. Catal. B: Environ. 32 (2001) 83–94.
[7]A. A. Barresia, G. Baldi, “Deep catalytic oxidation kinetics of benzene-ethenylbenzene mixtures”, Chem. Eng. Sci. 47 (1992) 1943–1953.
[8]T. F. Garetto, M. S. Avila, “Deep oxidation of benzene on Pt/V2O5–TiO2 catalysts”, Catal. Lett. 130 (2009) 476-480.
[9]K. T. Chuang, M. Zhang, B. Zhou, “Catalytic deep oxidation of volatile organic compounds over fluorinated carbon supported platinum catalysts at low temperatures”, Appl. Catal. B: Environ. 13 (1997) 123–130.
[10]K. T. Chuang, A. A. Davydov, A. R. Sanger, Mingqian Zhang, “Effect of fluorination of alumina support on activity of platinum catalysts for complete oxidation of benzene”, Catal. Lett. 49 (1997) 155–161.
[11]C. A. Lin, J. C. Wu, J. W. Pan, C. T. Yeh, “Characterization of boron - nitride - supported Pt catalysts for the deep oxidation of benzene”, J. Catal. 210 (2002) 39–45.
[12]S. C. Kim, W. G. Shim, “Properties and performance of Pd based catalysts for catalytic oxidation of volatile organic compounds”, Appl. Catal. B: Environ. 92 (2009) 429–436.
[13]R. S. G. Ferreira, P. G. P. de Oliveira, F. B. Noronha, “The effect of the nature of vanadium species on benzene total oxidation”, Appl. Catal. B: Environ. 29 (2001) 275–283.
[14]R. S. G. Ferreira, P. G. P. de Oliveira, F. B. Noronha, “Characteriza-tion and catalytic activity of Pd/V2O5/Al2O3 catalysts on benzene total oxidation”, Appl. Catal. B: Environ. 50 (2004) 243–249.
[15]T. Garcia, B. Solsona, D. Cazorla-Amoro´s, A. Linares-Solano, S. H. Taylor, “Total oxidation of volatile organic compounds by vanadium promoted palladium-titania catalysts: Comparison of aromatic and polyaromatic compounds”, Appl. Catal. B: Environ. 62 (2006) 66-76.
[16]C. He, J. Li, P. Li, J. Cheng, Z. Hao, “Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation”, Appl. Catal. B: Environ. 96 (2010) 466–475.
[17]J. M. Padilla, G. Del Angel, J. Navarrete, “Improved Pd/γ-Al2O3 -Ce catalysts for benzene combution”, Catal. Today 133–135 (2008) 541-547.
[18]H. S. Kim, T. W. Kim, H. L. Koh, S. H. Lee, “Complete benzene oxidation over Pt-Pd bimetal catalyst supported on γ-alumina: influence of Pt-Pd ratio on the catalytic activity”, Appl. Catal. A: Gen. 280 (2005) 125–131.
[19]F. Diehl, J. B. Jr., D. Duprez, I. Guibarda, G. Mabilon, “Catalytic oxidation of heavy hydrocarbons over Pt/Al2O3. Influence of the structure of the molecule on its reactivity”, Appl. Catal. B: Environ. 95 (2010) 217–227.
[20]P. Papaefthimiou, T. Ioannides, X. E. Verykios, “Performance of doped Pt/TiO2, (W6+) catalysts for combustion of volatile organic compounds (VOCs)”, Appl. Catal. B: Environ. 15 (1998) 75–92.
[21]J. C. S. Wu, Z. A. Lin, F. M. Tsai, J. W. Pan, “Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts”, Catal. Today 63 (2000) 419–426.
[22]周珮萱,「Pd/Ce1-xYxO2-δ觸媒進行苯全氧化反應之研究」,國立中央大學,碩士論文,民國99年。
[23]J. J. Li, X. Yanxu, Z. Jiang, Z. P. Hao, C. Hu, “Nanoporous silica-supported nanometric palladium: synthesis, characterization, and catalytic deep oxidation of benzene for complete benzene oxidation”, Environ. Sci. Tech. 39 (2005) 1319–1323.
[24]S. Y. Lai, Y. Qiu, W. Shen, “Effects of the structure of ceria on the activity of gold/ceria catalysts for the oxidation of carbon monoxide and benzene”, J. Catal. 237 (2006) 303–313.
[25]M. A. Centeno, M. Paulis, M. Montes, J. A. Odriozola, “Catalytic combution of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts”, Appl. Catal. A: Gen. 234 (2002) 65–78.
[26]D. Andreeva, T. Tabakova, L. Ilieva, A. Naydenov, D. Mehanjiev, M. V. Abrashev, “Nanosize gold catalysts promoted by vanadium oxide supported on titania and zirconia for complete benzene oxidation”, Appl. Catal. A: Gen. 209 (2001) 291–300.
[27]L. Ilieva, J. W. Sobczak, M. Manzoli, B. L. Su, D. Andreeva, “Reduction behavior of nanostructured gold catalysts supported on mesoporous titania and zirconia”, Appl. Catal. A: Gen. 291 (2005) 85–92.
[28]V. Idakiev, L. Ilieva, D. Andreeva, J. L. Blin, L. Gigot, B. L. Su, “Complete benzene oxidation over gold-vanadia catalysts supported on nanostructured mesoporous titania and zirconia”, Appl. Catal. A: Gen. 243 (2003) 25–39.
[29]劉世尹,「半導體廠PFCs及VOCs廢氣排放處理之研究」,國立中央大學,博士論文,民國97年 。
[30]D. Andreeva, R. Nedyalkova, L. Ilieva, M. V. Abrashev, “Gold–vanadia catalysts supported on ceria–alumina for complete benzene oxidation”, Appl. Catal. B: Environ. 52 (2004) 157–165.
[31]D. Andreeva, P. Petrova, L. Ilieva, J. W. Sobczak, M. V. Abrashev, “Gold supported on ceria and ceria–alumina promoted by molybdena for complete benzene oxidation”, Appl. Catal. B: Environ. 67 (2006) 237–245.
[32]D. Andreeva, P. Petrova, L. Ilieva, J. W. Sobczak, M. V. Abrashev, “Design of new gold catalysts supported on mechanochemically activated ceria-alumina, promoted by molybdena for complete benzene oxidation”, Appl. Catal. B: Environ. 77 (2008) 364–372.
[33]R. Nedyalkova, L. Ilieva, M. C. Bernard, A. H. Goff , D. Andreeva, “Gold supported catalysts on titania and ceria, promoted by vanadia or molybdena for complete benzene oxidation”, Mater. Chem. Phys. 116 (2009) 214–218.
[34]C. D. Pina, N. Dimitratos, E. Falletta, M. Rossi, A. Siani, “Catalytic performance of gold catalysts in the total oxidation of VOCs”, Gold Bull. 40 (2007) 67–72.
[35]D. Andreeva, R. Nedyalkova, L. Ilieva, M. V. Abrashev, Y. Zhang, Y. Wang, “Nanosize gold-ceria catalysts promoted by vanadia for complete benzene oxidation”, Appl. Catal. A: Gen. 246 (2003) 29–38.
[36]H. Chen, A. Sayari, A. Adnot, F. Larachi, “Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation”, Appl. Catal. B: Environ. 32 (2001) 195–204.
[37]X. Tang, Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, W. Shen, “MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature”, Appl. Catal. B: Environ. 62 (2006) 265–273.
[38]D. Delimaris, T. Ioannides, “VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method”, Appl. Catal. B: Environ. 84 (2008) 303–312.
[39]S. Zuo, Q. Huang, J. Li, R. Zhou, “Promoting effect of Ce added to metal oxide supported on Al pillared clays for deep benzene oxidation”, Appl. Catal. B: Environ. 91 (2009) 204–209.
[40]X. Tang, Y. Xu, W. Shen, “Promoting effect of copper on the catalytic activity of MnOx–CeO2 mixed oxide for complete oxidation of benzene”, Chem. Eng. J. 144 (2008) 175–180.
[41]李亭儀,「苯於CuO/Ce1-xMnxO2觸媒之全氧化反應研究」,國立中央大學,碩士論文,民國99年。
[42]R. A. van Santen, H. P. C. E. Kuipers, “The mechanism of ethylene epoxidation advances in catalysis”, Adv. Catal. 35 (1987) 265–321.
[43]J. H. Lee, S. J. Schmieg, S. H. Oh, “Improved NOx reduction over the staged Ag/Al2O3 catalyst system”, Appl. Catal. A: Gen. 342 (2008) 78–86.
[44]L. Zhang, C. B. Zhang, H. He, “The role of silver species in Ag/Al2O3 catalysts for the selective catalytic oxidation of ammonia to nitrogen”, J. Catal. 261 (2009) 101–109.
[45]R. Yamamoto, Y. Sawayama, H. Shibahara, Y. Ichihashi, S. Nishiyama, S. Tsuruya, “Promoted patial oxidation activity of supported Ag catalysts in the gas-phase catalytic oxidation of benzyl alcohol”, J. Catal. 234 (2005) 308–317.
[46]V. Purcar, D. Donescu, C. Petcu, R. Luque, D. J. Macquarrie, “Efficient preparation of silver nanoparticles supported on hybrid films and their activity in the oxidation of styrene under microwave irradiation”, Appl. Catal. A: Gen. 363 (2009) 122–128.
[47]K. S. Song, S. Kang, S. D. Kim, “Preparation and Characterization of Ag/MnOx/perovskite catalysts for CO oxidation”, Catal. Lett. 49 (1997) 65–68.
[48]R. Xu, X. Wang, D. S. Wang, K. B. Zhou, Y. D. Li, “Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO”, J. Catal. 237 (2006) 426–430.
[49]K. Frey, V. Iablokov, G. Melaet, L. Guczi, N. Kruse, “CO oxidation activity of Ag/TiO2 catalysts prepared via oxalate co-precipitation”, Catal. Lett. 124 (2008) 74–79.
[50]X. Zhang, Z. Qu, X. Li, M. Wen, X. Quan, D. Ma, J. Wu, “Studies of silver species for low-temperature CO oxidation on Ag/SiO2 catalysts.”, Sep. Puri. Technol. 72 (2010) 395–400.
[51]S. Imamura, H. Sawada, K. Uemura, S. Ishida, “Oxidation of carbon monoxide catalyzed by manganese-silver composite oxides”, J. Catal. 109 (1988) 198–205.
[52]R. Lin, W. P. Liu, Y. J. Zhong, M. F. Luo, “Catalyst characterization and activity of Ag-Mn complex oxides”, Appl. Catal. A: Gen. 220 (2001) 165–171.
[53]Q. Ye, J. Zhao, F. Huo, J. Wang, S. Cheng, T. Kang, H. Dai, “Nanosized Ag/α-MnO2 catalysts highly active for the low-temperature oxidation of carbon monoxide and benzene”, Catal. Today 175 (2011) 603–609.
[54]M. F. Luo, X. X. Yuan, X. M. Zheng, “Catalyst characterization and activity of Ag-Mn, Ag-Co and Ag-Ce composite oxides for oxidation of volatile organic compounds”, Appl. Catal. A: Gen. 175 (1998) 121–129.
[55]S. Imamura, H. Yamada, K. Utani, “Combusion activity of Ag/CeO2 composite catalyst”, Appl. Catal. A: Gen. 192 (2000) 221–226.
[56]X. Tang, J. Chen, Y. Li, Y. Li, Y. Xu, W. Shen, “Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts”, Chem. Eng. J. 118 (2006) 119–125.
[57]行政院環保署空氣汙染防制,揮發性有機物空氣汙染防制標準。
[58]資訊報告,No.61,pp.2–6,1994。
[59]許朝翔,「以粒狀觸媒氧化甲苯之研究」,國立中山大學,碩士論文,民國96年。
[60]工業技術研究院環境與安全衛生技術發展中心 MSDS,2007。
[61]行政院環保署毒性化學物質,毒理資料庫列管物質,苯。
[62]P. Papaefthimiou, T. Ioannides, X. E. Verykios, “Combustion of non-halogenated volatile organic compounds over group VIII metal catalysts”, Appl. Catal. B: Environ. 13 (1997) 175–184.
[63]J. Lichtenberger, M. D. Amiridis, “Catalytic oxidation of chlorinated benzenes over V2O5/TiO2 catalysts”, J. Catal. 223 (2004) 296–308.
[64]蘇崇毅,「蜂巢狀波洛斯凱特觸媒用於合成氣燃燒反應之研究」,國立成功大學,碩士論文,民國96年。
[65]R. Spinicci, M. Faticanti, P. Marini, S. De Rossi, P. Porta, “Catalytic activity of LaMnO3 and LaCoO3 perovskites towards VOCs combustion”, J. Mol. Catal. A: Chem. 197 (2003) 147–155.
[66]V. Blasin-Aubé, J. Belkouch, L. Monceaux, “General study of catalytic oxidation of various VOCs over La0.8Sr0.2MnO3+x perovskite catalyst -influence of mixture”, Appl. Catal. B: Environ. 43 (2003) 175–186.
[67]V. D. Sokolovskii, “Principles of oxidative catalysis on solid oxides”, Catal. Rev. Sci. Eng. 32 (1990) 1–49.
[68]Y. M. Alifanti, M. Florea, V. I. Parvulescu, “Ceria-based oxides as supports for LaCoO3 perovskite catalysts for total oxidation of VOC”, Appl. Catal B: Environ. 70 (2007) 400–405.
[69]S. C. Kim, “The catalytic oxidation of aromatic hydrocarbons over supported metal oxide”, J. Hazard. Mater. 91 (2002) 285–299.
[70]M. I. Vass, V. Georgescu, “Complete oxidation of benzene on Cu-Cr and Co-Cr oxide catalysts”, Catal. Today 29 (1996) 463–470.
[71]C. H. Wang, S. S. Lin, C. L. Chen, H. S. Weng, “Performance of the supported copper oxide catalysts for the catalytic incineration of aromatic hydrocarbons”, Chemosphere 64 (2006) 503–509.
[72]C. Hu, Q. Zhu, Z. Jiang, Y. Zhang, Y. Wang, “Preparation and formation mechanism of mesoporous CuO-CeO2 mixed oxides with excellent catalytic performance for removal of VOCs”, Micropor. Mesopor. Mater. 113 (2008) 427–434.
[73]R. Craciun, B. Nentwick, K. Hadjiivanov, H. Knözinger, “Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation”, Appl. Catal. A: Gen. 243 (2003) 67–79.
[74]G. G. Xia, Y. G. Yin, W. S. Willis, J. Y. Wang, S. L. Suib, “Efficient stable catalysts for low temperature carbon monoxide oxidation”, J. Catal. 185 (1999) 91–105.
[75]K. Ramesh, L. Chen, F. Chen, Z. Zhong, J. Chin, H. Mook, Y. F. Han, “Preparation and characterization of coral-like nanostructured α-Mn2O3 catalyst for catalytic combustion of methane”, Catal. Commun. 8 (2007) 1421–1426.
[76]Y. F. Han, L. Chen, K. Ramesh, E. Widjaja, S. Chilukoti, I. K. Surjami, “Kinetic and spectroscopic study of methane combustion over α-Mn2O3 nanocrystal catalysts”, J. Catal. 253 (2008) 261–268.
[77]A. Nadenovy, D. Mehandjiev, “Complete oxidation of benzene on manganese dioxide by ozone”, Appl. Catal. A: Gen. 9 (1993) 17–22.
[78]H. Einaga, S. Futaruma, “Catalytic oxidation of benzene with ozone over alumina-supported manganese oxides”, J. Catal. 227 (2004) 304–312.
[79]H. Einaga, A. Ogata, “Benzene oxidation with ozone over supported manganese oxide catalysts: Effect of catalyst support and reaction conditions”, J. Hazard. Mater. 164 (2009) 1236–1241.
[80]C. Lahousse, A. Bernier, P. Grange, B. Delmon, P. Papaefthimiou, T. Ioannides, X. Verykiosy, “Evaluation of γ-MnO2 as a VOC removal catalyst: comparison with a noble metal catalyst”, J. Catal. 178 (1998) 214–225.
[81]H. C. Yao, Y. F. Yu Yao, “Ceria in automotive exhaust catalysts: I. Oxygen storage”, J. Catal. 86 (1984) 254–265.
[82]S. J. Scgmieg, D. N. Belton, “Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst”, Appl. Catal. B: Environ. 6 (1995) 127–144..
[83]K. C. Taylor, “Nitric oxide catalysis in automative exhaust systems”, Rev.-Sci. Eng. 35 (1993) 457–481.
[84]C. H. Wang, S. S. Lin, “Preparing an active cerium oxide catalyst for the catalytic incineration of aromatic hydrocarbons”, Appl. Catal. A: Gen. 268 (2004) 227–233.
[85]W. Liu, M. F. Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity”, J. Catal. 153 (1995) 304–316.
[86]W. Liu, M. F. Stephanopoulos, “Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: II. Catalyst characterization and reaction”, J. Catal. 153 (1995) 317–332.
[87]W. P. Dow, T. J. Huang, “Effects of oxygen vacancy of yttria-stabilized zirconia support on carbon monoxide oxidation over copper catalyst”, J. Catal. 147 (1994) 322–332.
[88]D. Delimaris, T. Ioannides, “VOC oxidation over CuO–CeO2 catalysts prepared by a combustion method”, Appl Catal B: Environ. 89 (2009) 295–302.
[89]A. Martinez-Arias, M. Fernandez-Garcia, O. Gaivez, J. M. Coronado, J. A. Anderson, “Comparative study on redox properties and catalytic behavior for CO oxidation of CuO/CeO2 and CuO/ZrCeO4 catalysts”, J. Catal. 195 (2000) 207–216.
[90]R. D. Monte, G. R. Rao, J. Kašpar, S. Meriani, A. Trovarelli, M. Graziani, “Rh-Loaded CeO2-ZrO2 solid-solutions as highly efficient oxygen exchangers: dependence of the reduction behavior and the oxygen storage capacity on the structural-properties”, J. Catal. 151 (1995) 168–177.
[91]M. Ozawa, C. K. Loong, “In situ X-ray and neutron powder diffraction studies of redox behavior in CeO2-containing oxide catalysts”, Catal. Today 50 (1999) 329–342.
[92]M. Daturi, E. Finocchio, C. Binet, J. C. Lavalley, F. Fally, V. Perrichon, “Study of bulk and surface reduction by hydrogen of CexZr1-xO2 mixed oxides followed by FTIR spectroscopy and magnetic balance”, J. Phys. Chem. B 103 (1999) 4884–4891.
[93]G. Balducci, P. Fornasiero, “An unusual promotion of the redox behaviour of CeO2-ZrO2 solid solutions upon sintering at high temperatures”, Catal. Lett. 22 (1995) 193.
[94]P. Fornasiero, E. Fonda, R. D. Monte, G. Valic, J. Kaspar, M. Graziani, “Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides”, J. Catal. 187 (1999) 177–185.
[95]A. Martinez-Arias, M. Fernandez-Garcia, “Spectroscopic study of a Cu/CeO2 catalyst subjected to redox treatments in carbon monoxide and oxygen”, J. Catal. 182 (1999) 367–377.
[96]G. Vlaic, P. Fornasiero, S. Geremia, J. Kaspar, M. Graziani, “Relationship between the zirconia-promoted reduction in the Rh-loaded Ce0.5Zr0.5O2 mixed oxide and the Zr-O local structure”, J. Catal. 168 (1997) 386-392.
[97]C. Descorme, Y. Madier, D. Duprez, “Infrared study of oxygen adsorption and activation on cerium-zirconium mixed oxides”, J. Catal. 196 (2000) 167–173.
[98]F. B. Passos, E. R. de Oliveira, L. V. Mattos, F. B. Noronha, “Partial oxidation of methane to synthesis gas on Pt/Ce1-xZr1-xO2 catalysts: the effect of the support reducibility and of the metal dispersion on the stability of the catalysts”, Catal. Today 101 (2005) 23–30.
[99]陳翰全,「CuO/Ce1-xZrxO2觸媒於富氫中CO的選擇性氧化反應研究」,國立中央大學,碩士論文,民國93年。
[100]C. Hu, Q. Zhu, Z. Jiang, “Nanosized CuO-ZrxCe1-xOy aerogel catalysts prepared by ethanol supercritical drying for catalytic deep oxidation of benzene”, Powder Tech. 194 (2009) 109–114.
[101]C. Hu, “Highly efficient complete oxidation of dilute benzene over ultrafine Cu0.1Ce0.5Zr0.4O2-δ catalyst in a fluidized bed reactor”, Catal. Commun. 10 (2009) 2008–2012.
[102]S. Imamura, M. Shono, N. Okamoto, A. Hamada, S. Ishida, “Effect of cerium on the mobility of oxygen on manganese oxides”, Appl. Catal. A: Gen. 142 (1996) 279–288.
[103]G. Blanco, M. A. Cauqui, J. J. Delgado, A. Galtayries, J. A. Pe´ rez-Omil, J. M. Rodr´guez-Izquierdo, “Preparation and charac -terization of Ce-Mn-O composites with applications in catalytic wet oxidation processes”, Surf. Interface Anal. 36 (2004) 752–755.
[104]F. Arena, G. Trunfio, J. Negro, B. Fazio, L. Spadaro, “Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel “redox-precipitation” route”, Chem. Mater. 19 (2007) 2269–2276.
[105]F. Arena, G. Trunfio, J. Negro, L. Spadaro, “Synthesis of highly dispersed MnCeOx catalysts via a novel redox-precipitation route”, Mater. Res. Bull. 43 (2008) 539–545.
[106]W. Xiaodong, L. Qing, W. Duan, “Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst”, J. Rare Earths 24 (2006) 549–553.
[107]T. Rao, M. Shen, L. Jia, J. Hao, J. Wang, “Oxidation of ethanol over Mn–Ce–O and Mn–Ce–Zr–O complex compounds synthesized by sol–gel method”, Catal. Commun. 8 (2007) 1743–1747.
[108]S. Azalim, M. Franco, R. Brahmi, J. M. Giraudon, J. F. Lamonier, “Removal of oxygenated volatile organic compounds by catalytic oxidation over Zr–Ce–Mn catalysts”, J. Hazard. Mater. 188 (2011) 422–427.
[109]黃正吉,「苯於CuO/Ce0.9-xZr0.1MnxO2觸媒之全氧化反應研究」,國立中央大學碩士論文,民國100年。
[110]M. E. Eberhart, M. J. Donovan, R. A. Outlaw, “Ab initio calculations of oxygen diffusivity in Group IB transition metals”, Phys. Rev. B: Condens. Matter Mater. Phys. 46 (1992) 12744–12747.
[111]L. Gang, B. G. Anderson, J. V. Grandelle, R. A. Santen, “Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts”, Appl. Catal. B 40 (2003) 101–110.
[112]T. E. Lefort, United States Patent (1935) US1998878.
[113]R. E. Kenson, M. Lapkin, “Kinetics and mechanism of ethylene oxidation. Reactions of ethylene and ethylene oxide on a silver catalyst”, J. Phys. Chem. 74 (1970) 1493–1502.
[114]S. R. Seyedmonir, J. K. Plischke, M. A. Vannice, et al. “Ethylene oxidation over small silver crystallines”, J. Catal. 123 (1990) 534–549.
[115]V. I. Bukhtiyarov, I. P. Prosvirin, R. I. Kvon, “Study of reactivity of oxygen states adsorbed at a silver surface towards C2H4 by XPS, TPD and TPR”, Surf. Sci. 320 (1994) 47–50.
[116]P. Claus, “Selective hydrogenation of α,β-unsaturated aldehydes and other C=O and C=C bonds containing compounds”, Top. Catal. 5 (1998) 51–62.
[117]S. Imamura, “Catalytic and noncatalytic wet oxidation”, Ind. Eng. Chem. Res. 38 (1999) 1743–1753.
[118]N. Watanabe, H. Yamashita, H. Miyadera, S. Tominaga, “Removal of unpleasant odor gases using an Ag-Mn catalyst”, Appl. Catal. B: Environ. 8 (1996) 405–415.
[119]M. Machida, M. Uto, D. Kurogi, T. Kijima, “MnOx-CeO2 binary oxides for catalytic NOx sorption at low temperatures. Sorptive removal of NOx”, Chem. Mater. 12 (2000) 3158–3164.
[120]P. Fornasiero, E. Fonda, R. D. Monte, G. Valic, J. Kaspar, M. Graziani, “Relationships between structural/textural properties and redox behavior in Ce0.6Zr0.4O2 mixed oxides”, J. Catal. 187 (1999) 177–185.
[121]F. Arena, G. Trunfio, J. Negro, B. Fazio, and L. Spadaro, “Basic evidence of the molecular dispersion of MnCeOx catalysts synthesized via a novel redox-precipitation route”, Chem. Mater. 19 (2007) 2269–2276.
[122]W. J. Hong, M. Ueda, S. Iwamoto, S. Hosokawa, K. Wada, M. Inoue, “Synthesis of highly effective CeOx–MnOy–BaO catalysts for direct NO decomposition”, Catal. Lett 142 (2012) 32–41.
[123]M.F. Luo, Y.J. Zhong, X.X. Yuan, X.M. Zheng, “TPR and TPD studies of CuO/CeO2 catalysts for low temperature CO oxidation”, Appl. Catal. 162 (1997) 121–131.
[124]葉君棣,陳志堅,「X射線光電子分光儀應用手冊」,黎明書局,1984年8月。
[125]Faı¨c¸al Larachi, Je´roˆme Pierre, Alain Adnot, Alain Bernis, “Ce 3d XPS study of composite CexMn1-xO2-ywet oxidation catalysts”, Appl. Surf. Sci. 195 (2002) 236–250.
[126]F. Weaver, B. Hoflund, “Surface characterization study of the thermal decomposition of AgO”, J. Phys. Chem. 98 (1994) 8519–8524.
[127]N. Waterhouse, A. Bowmaker, B. Metson, “The thermal decomposition of silver (I, III) oxide: A combined XRD, FT-IR and Raman spectroscopic study”, Phys. Chem. Chem. Phys. 3 (2001) 3838–3845.
[128]H. Einaga, A. Ogata, “Catalytic oxidation of benzene in the gas phase over alumina-supported silver catalysts”, Environ. Sci. Tech. 44 (2010) 2612–2617.
指導教授 陳吟足、廖炳傑
(Yin-zu Chen、Biing-jye Liaw)
審核日期 2012-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明