博碩士論文 993204016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.235.182.206
姓名 林則緯(Tse-wei Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用穿膜胜肽改善帶正電高分子之轉染效率
(The Use of Cell Penetrating Peptides and for Improving the Transfection Efficiency of Polyethylenimine)
相關論文
★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討
★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究
★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染★ 電場對於複合奈米絲進行原位基因傳送之影響
★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維
★ 利用寡聚精胺酸促進去氧寡核苷酸輸送★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞
★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送★ Indolicidin之色胺酸殘基對於轉染效率的影響
★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響★ 搭建可提供電刺激與機械刺激之生物反應器
★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體★ 開發促進傷口癒合之複合敷料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用PEI(750 kDa & 25 kDa)結合穿膜胜肽作為基因載體,並以正負電荷吸引之方式,將之與質體DNA以不同胺基/磷酸根莫耳比(N/P ratio)組裝成奈米粒子。首先,由BCA assay測定細胞總蛋白量,我們發現R9與SAP10具有良好的生物適合性,然而IL在高濃度時具有明顯的細胞毒性。將PEI結合穿膜胜肽(Cell-penetrating peptides, CPP)作為基因載體能有效改善純PEI的轉染效率,以PEI/R9效率最佳。其中我們還發現在CPPs輔助下可更有效提升高分子量PEI(750 kDa)的轉染效率。我們將幾組轉染較佳的PEI與CPP結合的載體進行物理性質量測,由動態雷射散射粒徑分析儀與掃描式電子顯微鏡測得粒子之粒徑大小分佈於200 nm-400 nm之間;而表面電位介於10~20 mV,均為適合基因傳送之條件。以電泳方式簡單測試其包覆率,可發現粒子表層的PEI能將質體DNA完整包覆形成穩定的粒子。藉由改變合成粒子的順序,我們證實轉染的增進主要是基於複合於粒子上的CPPs的效果。最後,我們探討CPP輔佐轉染的機制,發現此系統CPPs不但可以促進複合體進入細胞的效率(尤其是R9);還能夠輔助複合體以質子海綿效應以外的路徑脫離內胞(endosome);另外藉由競爭實驗,我們證實IL及SAP10可以增加質體DNA與載體分離的機會。因此,透過本研究我們了解CPP可以幫助陽離子高分子進行基因傳送,這些結果將有助於發展安全且高效率的非病毒載體以應用於基因治療。
關鍵字:聚乙烯亞胺、穿膜胜肽、基因傳送
摘要(英) In this study, we would like to investigate if the combination cell penetrating peptides (CPPs) and polyethylenimine (PEI) may facilitate gene delivery. Polyethylenimine (PEI, 750 kDa & 25 kDa) were combined with cell-penet rating peptides(CPPs) as gene vectors. By electrostatic interaction, self- assemble nanoparticles using PEI, CPPs, and plasmid DNA were prepared in different amine/phosphate (N/P) ratios. The BCA assay was applied to evaluate the cytotoxicity of CPPs. Both R9 and SAP-10 were biocompatible compared to IL which may induced serious toxicity at high concentration. By combing PEI and CPPs as gene vehicles, transfection efficiencies can be highly improved over the pure PEI delivery, which was especially efficient to promote gene transfer of PEI with molecular weight of 750 kDa, a poor vector when it was solely administrated. Dynamics light scattering (DLS) assay and scanning electron microscopy (SEM) were performed to characterize PEI/CPPs/DNA complex. Complexed particle demonstrated sizes between the 200 nm to 400 nm and zeta potentials between +10 to +20 mV, suggesting that these nanoparticles should be suitable for gene delivery. The electrophoresis data indicated that the PEI and CPPs could complex DNA completely to form a stable particle. The experiment of changing complexation order revealed that only complexed CPPs may help DNA delivery. Finally, the delivery mechanism of CPPs was studied. It suggested that CPPs should not only increase cellular uptake, but also promote complexes escaping from endosome by route other than proton sponge effect. In addition, the competition experiment demonstrated that IL and SAP10 should interfere the interaction between PEI and DNA to increase the chance of dissociation when they were internalized. Through this study, the adjuvant effects of CPPs on facilitating gene delivery using cationic polymer were studied, which should be beneficial to development a safe and highly efficiency nonviral vector for gene therapy.
Key words:polyethylenimine, cell-penetrating peptides, gene delivery
關鍵字(中) ★ 基因傳送
★ 穿膜胜肽
★ 聚乙烯亞胺
關鍵字(英) ★ gene transfer
★ cell penetrating peptides
★ polyethylenimine
論文目次 目錄
摘要 I
Abstract III
目錄 V
圖目錄 IX
第壹章 序論 1
1-1 背景 1
1-2 實驗動機 2
1-3 實驗目的 5
1-4 實驗假設 5
第貳章 文獻回顧 8
2-1基因傳送療法 8
2-2基因載體 12
2-2-1脂質體 13
2-2-2正電高分子 14
2-2-3以胜肽進行基因輸送 17
2-2-4結合PEI與胜肽 21
2-3本研究方向 22
第參章 實驗材料與方法 23
3-1試藥與原料 23
3-1-1質體DNA 23
3-1-2細胞 25
3-1-3穿膜胜肽(Cell-penetrating peptides) 25
3-1-4藥品 26
3-2儀器 27
3-3試藥配製 28
3-4質體DNA純化 29
3-5 HEK293T和NIH-3T3細胞培養 32
3-6 PEI結合不同種類CPP對轉染效率影響 35
3-6-1細胞轉染 35
3-6-2 ONPG分析 36
3-7 轉染機制探討 39
3-7-1細胞吸收(uptake)效率(以Fluorescein標記DNA) 39
3-7-2外加CPPs的效應 41
3-7-3 Bafilomycin A1作用 42
3-7-4 外加alginate競爭效應 42
3-8奈米粒子製備及物理化學性質鑑定 44
3-8-1 奈米粒子製備 44
3-8-2雷射粒徑分佈儀(dynamic light scattering, DLS)分析 44
3-8-3 掃描式電子顯微鏡(scanning electron microscope, SEM) 45
3-8-4包覆率分析(膠體電泳分析法) 46
3-9 實驗架構 47
第肆章 結果與討論 48
4-1 PEI結合穿膜胜肽對細胞毒性影響 48
4-2 PEI結合穿膜胜肽對轉染效率影響 54
4-3 奈米粒子物理性質鑑定 61
4-3-1粒徑大小(DLS測量和SEM觀測) 61
4-3-2表面電位(DLS測定) 65
4-3-2包覆率(電泳) 68
4-4 CPPs形式對於轉染的影響 70
4-4-2外加CPPs實驗 72
4-5 轉染機制探討 74
4-5-1細胞吸收效率 74
4-5-2內胞脫離作用(endosomal escape)之抑制劑影響 77
4-5-3 載體與質體DNA 解離(dissociation)行為 80
第伍章 結論 83
第陸章 參考文獻 85
圖目錄
圖1-1 PEI(25 kDa)轉染HEK293T細胞結果 3
圖 1-2 PEI與其合成物對於HEK293T細胞的毒性測試 3
圖1-3 實驗假設1 5
圖 1-4 實驗假設2 6
圖1-5 實驗假設3 7
圖 3 - 1 pCMV-β結構圖 23
圖 3 - 2 pEGFP-C3結構圖 24
圖4-1 BCA assay原理 49
圖4-2 BCA assay:CPPs-DNA結合PEI(750 kDa)後對NIH-3T3細胞之存活率影響(a)R9 (b)IL (c)SAP10 52
圖4-3 BCA assay:CPPs-DNA結合PEI(25 kDa)後對NIH-3T3細胞之存活率影響(a)R9 (b)IL (c)SAP10 53
圖4-4 β-galactosidase assay反應圖 54
圖4-5 beta-galactosidase assay:純CPPs與CPPs-DNA結合PEI(750 kDa)後對NIH-3T3細胞之轉染效率(a) pure CPPs (b) PEI/R9 (c)PEI/ IL (d)PEI/SAP10 57
圖4-6 beta-galactosidase assay:CPPs-DNA結合PEI(25 kDa)後對NIH-3T3細胞之轉染效率(a)PEI/R9 (b)PEI/IL (c)PEI/SAP10 58
圖4-7 比較兩種不同分子量PEI結合CPPs作載體,分別轉染HEK-293T與NIH-3T3細胞之轉染效率 60
圖4-8 各種類CPPs結合DNA與PEI後粒子之粒徑變化 63
圖4-9 SEM觀測結果 63
圖4-10 CPPs-PEI(750 kDa & 25 kDa)-DNA粒子之表面電位(a)R9 (b)IL (c)SAP10 67
圖4-11 不同CPPs與DNA結合之粒子和結合PEI(750 kDa & 25 kDa)後粒子之電泳圖(a)R9 (b)IL (c)SAP10 69
圖4-12 不同順序合成的粒子對於NIH-3T3細胞的轉染結果比較 71
圖4-13 不同合成粒子順序對粒子表面電位影響 71
圖4-14 外加自由的穿膜胜肽對於轉染結果影響(a)R9 (b)IL (c)SAP10 73
圖4-15 細胞吸收效率結果(40X) 76
圖4-16 Bafilomycin A1對轉染效率的影響 79
圖4-17 測試結合CPPs之載體和純PEI與DNA的結合強度(alginate競爭效應) 82
參考文獻 1. Modlich, U., J. Bohne, M. Schmidt, C. von Kalle, S. Knoss, A. Schambach, and C. Baum, Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood, 2006. 108(8): p. 2545-2553.
2. Sandmair, A.M., M. Vapalahti, and S. Yla-Herttuala, Adenoviruses as gene delivery vectors. Cancer Gene Therapy, 2002. 465: p. 423-429.
3. Gardlik, R., R. Palffy, J. Hodosy, J. Lukacs, J. Turna, and P. Celec, Vectors and delivery systems in gene therapy. Med Sci Monit, 2005. 11(4): p. RA110-121.
4. Feng Liu, L.H., Development of non-viralvectors for systemic gene delivery. Journal of Controlled Release, 2002. 78(1-3): p. 259-266.
5. Boussif, O., F. Lezoualch, M.A. Zanta, M.D. Mergny, D. Scherman, B. Demeneix, and J.P. Behr, A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences of the United States of America, 1995. 92(16): p. 7297-7301.
6. Abdallah, B., L. Sachs, and B.A. Demeneix, Non-viral gene transfer: Applications in developmental biology and gene therapy. Biology of the Cell, 1995. 85(1): p. 1-7.
7. Zhao, Q.Q., J.L. Chen, T.F. Lv, C.X. He, G.P. Tang, W.Q. Liang, Y. Tabata, and J.Q. Gao, N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biol. Pharm. Bull, 2009. 32(4): p. 706-710.
8. Chugh, A., F. Eudes, and Y.S. Shim, Cell‐penetrating peptides: Nanocarrier for macromolecule delivery in living cells. IUBMB Life, 2010. 62(3): p. 183-193.
9. Veldhoen, S., S.D. Laufer, A. Trampe, and T. Restle, Cellular delivery of small interfering RNA by a non-covalently attached cell-penetrating peptide:quantitative analysis of uptake and biological effect. Nucleic Acids Research, 2006. 34(22): p. 6561–6573.
10. Bolhassani, A., Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochimica et Biophysica Acta, 2011. 1816: p. 232–246.
11. Mae, M. and Langel, U., Cell-penetrating peptides as vectors for
peptide, protein and oligonucleotide delivery. Current Opinion in
Pharmacology, 2006. 6: p. 509–514.
12. Baoum, A.A. and C. Berkland, Calcium condensation of DNA complexed with cell‐penetrating peptides offers efficient, noncytotoxic gene delivery. Journal of Pharmaceutical Sciences, 2011. 100(5): p. 1637–1642.
13. Baoum, A., S.X. Xie, A. Fakhari, and C. Berkland, “Soft” calcium crosslinks enable highly efficient gene transfection using tat peptide. Pharmaceutical Research, 2009. 26(12): p. 2619-2629.
14. Wang, H., C.Y. Zhong, J.F. Wu, Y.B. Huang, and C.B. Liu, Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide. Journal of Controlled Release, 2010. 143: p. 64-70.
15. Choosakoonkriang, S., B.A. Lobo, G.S. Koe, J.G. Koe, and C.R. Middaugh, Biophysical characterization of PEI/DNA complexes. Journal of Pharmaceutical Sciences, 2003. 92(8): p. 1710-1722.
16. Deng, R., Y. Yue, F. Jin, Y.C. Chen, H.F. Kung, M.C.M. Lin, and C. Wu, Revisit the complexation of PEI and DNA - How to make low cytotoxic and highly efficient PEI gene transfection non-viral vectors with a controllable chain length and structure? Journal of Controlled Release, 2009. 140(1): p. 40-46.
17. Zeng, X., Y.X. Sun, X.Z. Zhang, S.X. Cheng, and R.X. Zhuo, A Potential Targeting Gene Vector Based on Biotinylated Polyethyleneimine/Avidin Bioconjugates. Pharmaceutical Research, 2009. 26(8): p. 1931-1941.
18. Moghimi, S.M., P. Symonds, J.C. Murray, A.C. Hunter, G. Debska, and A. Szewczyk, A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Molecular Therapy, 2005. 11(6): p. 990-995.
19. Varkouhi, A.K., M. Scholte, G. Storm, and H.J. Haisma, Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release, 2010. 151(3): p. 1-9.
20. Wang, H., C.Y. Zhong, J.F. Wu, Y.B. Huang, and C.B. Liu, Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide. Journal of Controlled Release, 2010. 143: p. 64-70.
21. Cordeiro, M.F., G.S. Schultz, R.R. Ali, S.S. Bhattacharya, and P. T Khaw, Molecular therapy in ocular wound healing. British journal of ophthalmology, 1999. 83(11): p. 1219-1224.
22. Franceschi, R., Biological approaches to bone regeneration by gene therapy. Journal of dental research, 2005. 84(12): p. 1093-1103.
23. RH, J., BCbasics, 2007.
24. Tomlinson, E. and A. Rolland, Controllable gene therapy pharmaceutics of non-viral gene delivery systems. Journal of Controlled Release, 1996. 39(2): p. 357-372.
25. Crystal, R.G., Transfer of genes to humans: early lessons and obstacles to success. SCIENCE, 1995. 270(5235): p. 404-410.
26. De Smedt, S.C., J. Demeester, and W.E. Hennink, Cationic polymer based gene delivery systems. Pharmaceutical Research, 2000. 17(2): p. 113-126.
27. Nicolau, C., A. Le Pape, P. Soriano, F. Fargette, and M.F. Juhel, In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin I. Proceedings of the National Academy of Sciences, 1983. 80(4): p. 1068.
28. Wang, C.Y. and L. Huang, pH-sensitive immunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse. Proceedings of the National Academy of Sciences, 1987. 84(22): p. 7851.
29. Ishikawa, Y. and C.J. Homcy, High efficiency gene transfer into mammalian cells by a double transfection protocol. Nucleic Acids Research, 1992. 20(16): p. 4367.
30. Douglas, K.L., C.A. Piccirillo, and M. Tabrizian, Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. Journal of Controlled Release, 2006. 115(3): p. 354-361.
31. Moreira, C., H. Oliveira, L. Pires, S. Simoes, M. Barbosa, and A. Pęgo, Improving chitosan-mediated gene transfer by the introduction of intracellular buffering moieties into the chitosan backbone. Acta Biomaterialia, 2009. 5(8): p. 2995-3006.
32. Kircheis, R., L. Wightman, and E. Wagner, Design and gene delivery activity of modified polyethylenimines. Advanced drug delivery reviews, 2001. 53(3): p. 341-358.
33. Sagara, K. and S.W. Kim, A new synthesis of galactose-poly (ethylene glycol)-polyethylenimine for gene delivery to hepatocytes. Journal of Controlled Release, 2002. 79(1): p. 271-281.
34. Wagner, E., M. Zenke, M. Cotten, H. Beug, and M.L. Birnstiel, Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proceedings of the National Academy of Sciences, 1990. 87(9): p. 3410.
35. Kircheis, R., A. Kichler, G. Wallner, M. Kursa, M. Ogris, T. Felzmann, M. Buchberger, and E. Wagner, Coupling of cell-binding ligands to polyethylenimine for targeted gene delivery. Gene therapy, 1997. 4(5): p. 409.
36. Blessing, T., M. Kursa, R. Holzhauser, R. Kircheis, and E. Wagner, Different strategies for formation of pegylated EGF-conjugated PEI/DNA complexes for targeted gene delivery. Bioconjugate chemistry, 2001. 12(4): p. 529-537.
37. Erbacher, P., J. Remy, and J. Behr, Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway. Gene therapy, 1999. 6(1): p. 138.
38. Hwa Kim, S., J. Hoon Jeong, K. Chul Cho, S. Wan Kim, and T. Gwan Park, Target-specific gene silencing by siRNA plasmid DNA complexed with folate-modified poly (ethylenimine). Journal of Controlled Release, 2005. 104(1): p. 223-232.
39. Kim, S.H., H. Mok, J.H. Jeong, S.W. Kim, and T.G. Park, Comparative evaluation of target-specific GFP gene silencing efficiencies for antisense ODN, synthetic siRNA, and siRNA plasmid complexed with PEI-PEG-FOL conjugate. Bioconjugate chemistry, 2006. 17(1): p. 241-244.
40. Lu, B., X.D. Xu, X.Z. Zhang, S.X. Cheng, and R.X. Zhuo, Low molecular weight polyethylenimine grafted N-maleated chitosan for gene delivery: properties and in vitro transfection studies. Biomacromolecules, 2008. 9(10): p. 2594-2600.
41. Jiang, H.L., Y.K. Kim, R. Arote, J.W. Nah, M.H. Cho, Y.J. Choi, T. Akaike, and C.S. Cho, Chitosan-graft-polyethylenimine as a gene carrier. Journal of Controlled Release, 2007. 117(2): p. 273-280.
42. Gao, J.Q., Q.Q. Zhao, T.F. Lv, W.P. Shuai, J. Zhou, G.P. Tang, W.Q. Liang, Y. Tabata, and Y.L. Hu, Gene-carried chitosan-linked-PEI induced high gene transfection efficiency with low toxicity and significant tumor-suppressive activity. International journal of pharmaceutics, 2010. 387(1-2): p. 286-294.
43. Zhao, Q.Q., J.L. Chen, T.F. Lv, C.X. He, G.P. Tang, W.Q. Liang, Y. Tabata, and J.Q. Gao, N/P ratio significantly influences the transfection efficiency and cytotoxicity of a polyethylenimine/chitosan/DNA complex. Biological and Pharmaceutical Bulletin, 2009. 32(4): p. 706-710.
44. Kilk, K., S. El-Andaloussi, P. Jarver, A. Meikas, A. Valkna, T. Bartfai, P. Kogerman, M. Metsis, and U. Langel, Evaluation of transportan 10 in PEI mediated plasmid delivery assay. Journal of Controlled Release, 2005. 103(2): p. 511-523.
45. Wagner, E., M. Cotten, R. Foisner, and M.L. Birnstiel, Transferrin-polycation-DNA complexes: the effect of polycations on the structure of the complex and DNA delivery to cells. Proceedings of the National Academy of Sciences, 1991. 88(10): p. 4255.
46. Haensler, J. and F.C. Szoka Jr, Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate chemistry, 1993. 4(5): p. 372-379.
47. Parente, R.A., S. Nir, and F.C. Szoka Jr, Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry, 1990. 29(37): p. 8720-8728.
48. Wang, H., C.Y. Zhong, J.F. Wu, Y.B. Huang, and C.B. Liu, Enhancement of TAT cell membrane penetration efficiency by dimethyl sulphoxide. Journal of Controlled Release, 2010. 143(1): p. 64-70.
49. Lindgren, M., M. Hallbrink, A. Prochiantz, and U. Langel, Cell-penetrating peptides. Trends in pharmacological sciences, 2000. 21(3): p. 99-103.
50. Futaki, S., Arginine-rich peptides: potential for intracellular delivery of macromolecules and the mystery of the translocation mechanisms. International journal of pharmaceutics, 2002. 245(1): p. 1-7.
51. Schwarze, S.R., A. Ho, A. Vocero-Akbani, and S.F. Dowdy, In vivo protein transduction: delivery of a biologically active protein into the mouse. SCIENCE, 1999. 285(5433): p. 1569-1572.
52. Astriab-Fisher, A., D.S. Sergueev, M. Fisher, B. Ramsay Shaw, and R.L. Juliano, Antisense inhibition of P-glycoprotein expression using peptide-oligonucleotide conjugates. Biochemical pharmacology, 2000. 60(1): p. 83-90.
53. Josephson, L., C.H. Tung, A. Moore, and R. Weissleder, High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjugate chemistry, 1999. 10(2): p. 186-191.
54. Selsted, M.E., M.J. Novotny, W.L. Morris, Y.Q. Tang, W. Smith, and J.S. Cullor, Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. Journal of Biological Chemistry, 1992. 267(7): p. 4292-4295.
55. Zhang, L., A. Rozek, and R.E.W. Hancock, Interaction of cationic antimicrobial peptides with model membranes. Journal of Biological Chemistry, 2001. 276(38): p. 35714.
56. Hsu, J.C.Y. and C.M. Yip, Molecular dynamics simulations of indolicidin association with model lipid bilayers. Biophysical journal, 2007. 92(12): p. L100-L102.
57. Shaw, J.E., J.R. Alattia, J.E. Verity, G.G. Prive, and C.M. Yip, Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. Journal of structural biology, 2006. 154(1): p. 42-58.
58. Subbalakshmi, C., V. Krishnakumari, N. Sitaram, and R. Nagaraj, Interaction of indolicidin, a 13-residue peptide rich in tryptophan and proline and its analogues with model membranes. Journal of biosciences, 1998. 23(1): p. 9-13.
59. 林達翰, Indolicidin 及其類似物的聚集行為及其與仿生細胞膜間之交互作用, 2011.
60. Song, H.P., J.Y. Yang, S.L. Lo, Y. Wang, W.M. Fan, X.S. Tang, J.M. Xue, and S. Wang, Gene transfer using self-assembled ternary complexes of cationic magnetic nanoparticles, plasmid DNA and cell-penetrating Tat peptide. Biomaterials, 2010. 31(4): p. 769-778.
61. Doyle, S.R. and C.K. Chan, Differential intracellular distribution of DNA complexed with polyethylenimine (PEI) and PEI-polyarginine PTD influences exogenous gene expression within live COS-7 cells. Genetic vaccines and therapy, 2007. 5(1): p. 11.
62. Rudolph, C., C. Plank, J. Lausier, U. Schillinger, R.H. Muller, and J. Rosenecker, Oligomers of the arginine-rich motif of the HIV-1 TAT protein are capable of transferring plasmid DNA into cells. Journal of Biological Chemistry, 2003. 278(13): p. 11411.
63. Krohn, R.I., The Colorimetric Detection and Quantitation of Total Protein. Current Protocols in Food Analytical Chemistry, 2001: p. B1.1.1-B1.1.28.
64. Yang, S.T., S.Y. Shin, K.S. Hahm, and J.I. Kim, Design of perfectly symmetric Trp-rich peptides with potent and broad-spectrum antimicrobial activities. International journal of antimicrobial agents, 2006. 27(4): p. 325-330.
65. Florea, B.I., C. Meaney, H.E. Junginger, and G. Borchard, Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures. The AAPS Journal, 2002. 4(3): p. 1-11.
66. Swami, A., A. Aggarwal, A. Pathak, S. Patnaik, P. Kumar, Y. Singh, and K.C. Gupta, Imidazolyl-PEI modified nanoparticles for enhanced gene delivery. International journal of pharmaceutics, 2007. 335(1-2): p. 180-192.
67. Zauner, W., N.A. Farrow, and A.M.R. Haines, In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. Journal of Controlled Release, 2001. 71(1): p. 39-51.
68. Akinc, A., M. Thomas, A.M. Klibanov, and R. Langer, Exploring polyethylenimine‐mediated DNA transfection and the proton sponge hypothesis. The journal of gene medicine, 2005. 7(5): p. 657-663.
69. Yoshimori, T., A. Yamamoto, Y. Moriyama, M. Futai, and Y. Tashiro, Bafilomycin A1, a specific inhibitor of vacuolar-type H (+)-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells. Journal of Biological Chemistry, 1991. 266(26): p. 17707-17712.
70. Ravi Kumar, M., G. Hellermann, R.F. Lockey, and S.S. Mohapatra, Nanoparticle-mediated gene delivery: state of the art. Expert opinion on biological therapy, 2004. 4(8): p. 1213-1224.
指導教授 胡威文(Wei-wen Hu) 審核日期 2012-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明