博碩士論文 993204021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.224.149.242
姓名 魏妤珊(Yu-Shan Wei)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 多層釩/氧化鋅(氧化鋅鋁)導電氧化物薄膜之研究
(Study of multilayer V:ZnO (AZO) conducting oxide thin film)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 此篇論文研究之目的為探討多層釩/氧化鋅(氧化鋅鋁)之高遷移率以及高載子濃度的導電行為。在固定的釩摻雜濃度下, 藉由拆成不同層數及厚度的釩於氧化鋅(或氧化鋅鋁)薄膜中來探討載子提供層(氧化鋅/氧化鋅鋁)與載子傳輸層(釩)間的電子傳遞機制。由實驗得知,過低或過高層數的多層釩/氧化鋅(氧化鋅鋁)皆無法得到最佳的電性表現, 然而在3×4的結構且厚度分別為63 A及453 A之多層釩/氧化鋅(氧化鋅鋁)獲得最低的電阻率及最高遷移率。藉由光激螢光光譜PL配合紫外光電子光譜UPS,本研究可得知高遷移率的主因並非來自於介面的二維電子氣2DEG, 而是釩層中的特定相。藉由光電子能譜儀XPS分析,此特定相在高溫熱處理時會形成特定的高遷移率釩鋅氧混相ZnVxOy*, 且在形成的同時,部分氧化鋅(氧化鋅鋁)內的氧原子由於釩層的氧化而被吸引至釩層, 導致氧化鋅(氧化鋅鋁)內由於化學劑量數的不平衡而形成帶有氧空缺的組成, 進一步提供了自由載子的來源。
對於多層釩/氧化鋅(氧化鋅鋁)薄膜導電機制,本研究利用不同夾層數的結構分析電性的變化,本研究得知(1) 當夾層數高於3×4時最高遷移率開始下降, 而在氧化鋅鋁中更為顯著;(2)總釩層相同的情況下, 各別分開且具有一定厚度的釩層會有較高的遷移率表現。本研究提出低載子濃度的高載子傳輸層, 將形成寬大的Debye電場, 吸引相鄰載子提供層內的自由電子進入載子傳輸層, 進行高速的載子傳遞。此外,本研究推測當載子傳輸層之間的距離開始接近以至於彼此形成的Debye電場開始重疊時, 部分Debye電場將會互相抵銷以致Debye電場的吸引力削弱。此機制亦可解釋低載子濃度、高遷移率的超薄載子傳輸層為何可以如此大幅度的提升異質結構整體的遷移率。
摘要(英) In this study, the conducting mechanism of high mobility and high carrier concentration of multilayer V:ZnO (AZO) were discussed. In Chapter 1, according to the literatures, the uniform doping shows the poor enhancement of the conductivity owing to the impurity scattering with dopants. Thus, the modulated doping method has drawn lots of attention recently, because the heavily-doped films provide the charge carreris, and the transportation occurs in the low-doped layers of the stack that are not subjected to limit the mobility by the ionized impurity scattering. In Chapter 2, the electrical properties of V:ZnO (AZO) multilayer thin films were studied. The 3×4 V:ZnO (AZO) thin films with V (63 A) and ZnO (453 A) layers exhibits the lowest resistivity with a high mobility. Analysis of PL and UPS spectra show that the high mobility path is the certain phase in the V layer. It is not the high mobility 2DEG near the V/ZnO (AZO) interfaces. XPS analysis verified that the certain phase of ZnVxOy* in the V layer would form under specific annealing temperature. Part of the oxygen in ZnO (AZO) would be drawn into the V layer owing to the oxidation of V. This stoichiometric defects of the oxygen vacancies in the ZnO layer provides the excess free carrier source.
In Chapter 3, the variation of electrical properties in several different structures of V:ZnO was used to study the conducting mechanism. Two key findings: (1) the mobility of each multi-layer structure starts to drop, as the number of the layer in the multi-layer structure is higher than 3×4. The phenomenon is even prominent in V:AZO thin films. (2) the thickness of V breaking down to thin V layers displays a higher mobility. The wide Debye electric field originated from a low carrier concentration and a high mobility transport layer will draw the carriers in the neighboring donor (ZnO) layer into the transportation (V) layer to proceed a high speed transit. Besides, as the distance between the each transport (V) layer starts to get closer with the result that the Debye electric field starts to overlap, then, partial Debye electric field will be neutralized by each others and leads to the elimination of Debye electric force. This mechanism explains how does a low carrier concentration and a high mobility ultra thin transport layer make such an immense effect on the improvement on the entire mobility by attracting the carriers from the donor layer, in which the mobility is limited.
關鍵字(中) ★ 氧化鋅
★ 氧化鋅鋁
★ 釩
★ 多層
★ 調變參雜
★ 德拜長度
關鍵字(英) ★ ZnO
★ AZO
★ Vanadium
★ multilayer
★ modulation doping
★ Debye length
論文目次 Chinese abstract I
Abstract II
List of Figures V
List of Tables VIII

Chapter 1 Introduction 1
1.1 Transparent conductive oxide 1
1.2 Transparent conductive zinc oxide 1
1.3 Electrical transport in uniformly doping ZnO 3
1.4 Higher electron mobilities in ZnO 5

Chapter 2 Study of low resistivity V:ZnO (AZO) multilayer thin films 9
2.1 Introduction 9
2.2 Experimental procedure 11
2.3 Results and discussion 11

Chapter 3 Carrier transport mechanism in V:ZnO (AZO) multilayer thin films 31
3.1 Introduction 31
3.2 Calculations for the Debye affecting region in V:ZnO thin films 32
3.3 Role and behavior of Debye electric field from ZnVxOy layer 36
3.4 Proof and the experiment evidence 40

Chapter 4 Conclusion 48
Reference 50
參考文獻 1. A. B. Djuri?i?; A. M. C. Ng; Chen, X. Y., ZnO Nanostructures for Optoelectronics: Material Properties and Device Applications. Progress in Quantum Electronics 2010, 34, 191-259.
2. G. Vijaya Prakash; K. Pradeesh; Ashwani Kumar; Rajesh Kumar; S. Venugopal Rao; M. L. Markham; J. J. Baumberg, Fabrication and Optoelectronic Characterisation of ZnO Photonic Structures. Materials Letters 2008, 62, 1183-1186.
3. Lee, J. H.; Park, B. O., Transparent Conducting ZnO: Al, In and Sn Thin Films Deposited by the Sol–Gel Method. Thin Solid Films 2003, 426, 94-99.
4. Lee, J. H.; Park, B. O., Characteristics of Al-doped ZnO Thin Films Obtained by Ultrasonic Spray Pyrolysis: Effects of Al Doping and an Annealing Treatment. Materials Science and Engineering: B 2004, 106, 242-245.
5. Lee, K. E.; Wang, M.; Kim E. J.; Hahn, S. H., Structural, Electrical and Optical Properties of Sol–Gel AZO Thin Films. Current Applied Physics 2011, 9, 683-687.
6. H. Han; N. D. Theodore; T. L. Alford, Improved Conductivity and Mechanism of Carrier Transport in Zinc Oxide with Embedded Silver Layer. Journal of Applied Physics 2008, 103, 10.1063/1.2829788.
7. T. Minami, New n-Type Transparent Conducting Oxides. MRS Bulletin 2000, 25, 38-44.
8. T. J. Coutts; Young, D. L.; Li, X., Characterization of Transparent Conducting Oxides. MRS Bulletin 2000, 25, 58-65
9. J. J. Harris; J. A. Pals; R. Woltjer, Electronic Transport in Low-Dimensional Structures. Reports on Progress in Physics 1989, 52, 1217-1266.
10. K. Hauffe; J. Block, Disorder Phenomena and Space Changes in Electron-Conducting Mixing Phases. Journal of Physical Chemistry 1950, 438, 196.
11. K. Hauffe; C. Seyferth, Reactions in and on Solids. Analytical Chemistry 1966, 259-410.
12. D. P. Norton; Y. W. Heo; M. P. Ivill; K. Ip; S. J. Pearton; M. F. Chisholm; T. Steiner, ZnO: Growth, Doping & Processing. Materials Today 2004, 7, 34-40.
13. Leenheer A.; Perkins J.; Van Hest M.; Berry J.; O’Hayre R.; Ginley D., General Mobility and Carrier Concentration Relationship in Transparent Amorphous Indium Zinc Oxide Films. Physical Review B 2008, 77, 115215.
14. Bhosle V.; Tiwari A.; Narayan J., Metallic Conductivity and Metal- Semiconductor Transition in Ga-Doped ZnO. Applied Physics Letters 2006, 88, 032106.
15. Steinhauser J.; Fay S.; Oliveira N.; Vallat-Sauvain E.; Ballif C., Transition Between Grain Boundary and Intragrain Scattering Transport Mechanisms in Boron-Doped Zinc Oxide Thin Films. Applied Physics Letters 2007, 90, 142107.
16. Lai, H. C.; Basheer T.; Kuznetsov V. L.; Egdell R. G.; Jacobs R. M. J.;Pepper M., Dopant-Induced Bandgap Shift in Al-Doped ZnO Thin Films Prepared by Spray Pyrolysis. Journal of Applied Physics 2012, 112, 083708.
17. Banerjee P.; Lee, W. J.; Bae, K. R.; Lee, S. B.; Rubloff G. W., Structural, Electrical, and Optical properties of Atomic Layer Deposition Al-Doped ZnO Films. Journal of Applied Physics 2010, 108, 043504.
18. Bikowski A.; Welzel T.; Ellmer K., The Impact of Negative Oxygen Ion Bombardment on Electronic and Structural Properties of Magnetron Sputtered ZnO:Al Films. Applied Physics Letters 2013, 102, 242106.
19. Kim, D.; Yun, I.; Kim, H., Fabrication of Rough Al Doped ZnO Films Deposited by Low Pressure Chemical Vapor Deposition for High Efficiency Thin Film Solar Cells. Current Applied Physics 2010, 10, S459-S462.
20. Liu, Y.; Li, Q.; Shao, H., Optical and Photoluminescent Properties of Al-Doped Zinc Oxide Thin Films by Pulsed Laser Deposition. Journal of Alloys and Compounds 2009, 485, 529-531.
21. S. Suzuki; T. Miyata; M. Ishii; T. Minami, Transparent Conducting V-co-Doped AZO Thin Films Prepared by Magnetron Sputtering. Thin Solid Films 2003, 434, 14-19.
22. Wang, A. J.; Chen, T. F.; Lu, S. H.; Wu, Z. L.; Li, Y. L.; Chen, H.; Wang, Y. S., Effects of Doping and Annealing on Properties of ZnO Films Grown by Atomic Layer Deposition. Nanoscale Research Letters 2015, 10, 75.
23. E. M. Mkawi; K. Ibrahim; M. K. M. Ali; M. A. Farrukh, The Effect of Dopant Concentration on Properties of Transparent Conducting Al-Doped ZnO Thin Films for Efficient Cu2ZnSnS4 Thin-Film Solar Cells Prepared by Electrodeposition Method. Applied Nanoscience 2015, 5, 993-1001.
24. W. Shockley, Electrons and Holes in Semiconductors. Van Nostrand 1950.
25. I.B. Kobiakov, Elastic, Piezoelectric and Dielectric Properties of ZnO and CdS Single Crystals in a Wide Range of Temperatures. Solid State Communications 1980, 35, 305-310.
26. E. Conwell; V. F. Weisskopf, Theory of Impurity Scattering in Semiconductors. Physical Review B 1950, 77, 388.
27. E. Conwell; V. F. Weisskopf, Theory of Impurity Scattering in Semiconductors. Physical Review B 1946, 69, 258.
28. H. Brooks, Theory of the Electrical Properties of Germanium and Silicon. Advances in Electronics and Electron Physics 1955, 7, 85.
29. H. Brooks, Scattering by Ionized Impurities in Semiconductors. Physical Review B 1951, 83, 879.
30. V. I. Fistul, Heavily Doed Semiconductors. Plenum Press 1969.
31. D. Chattopadhyay; H. J. Queisser, Electron Scattering by Ionized Impurities in Semiconductors. Reviews of Modern Physics 1981, 53, 745.
32. R. B. Dingle, Scattering of Electrons and Holes by Charged Donors and Acceptors in Semiconductors. Philosophical Magazine 1955, 46, 831.
33. W. Zawadzki, Mechanisms of Electron Scattering in Semiconductors. Handbook on Semiconductors 1982, 713-803.
34. K. Nomura; H. Ohta; K. Ueda; T. Kamiya; M. Hirano; H. Hosono, Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor. Science 2003, 300, 1269-1272.
35. J. F. Wager, Transparent Electronics. Science 2003, 300, 1245-1246.
36. B. J. Norris; J. Anderson; J. F. Wager; D. A. Keszler, Spin-Coated Zinc Oxide Transparent Transistors. Journal of Physics D 2003, 36, L105.
37. I. A. Rauf, Low Resistivity and High Mobility Tin-Doped Indium Oxide Films. Materials Letters 1993, 18, 123-127.
38. D. J. Cohen; S. A. Barnett, Predicted Electrical Properties of Modulation-Doped ZnO-Based Transparent Conducting Oxides. Journal of Applied Physics 2005, 98, 053705.
39. A. A. Grinberg; S. Luryi, Space-Charge-Limited Current and Capacitance in Double-Junction Diodes. Journal of Applied Physics 1987, 61, 1181-1189.
40. C. Guillen; J. Herrero, TCO/metal/TCO Structures for Energy and Flexible Electronics. Thin Solid Films 2011, 520, 1-17.
41. Jing, L. Q.; Yuan, F. L.; Hou, H. G.; Xin, B. F.; Cai, W. M.; Fu, H. G., Relationships of Surface Oxygen Vacancies with Photoluminescence and Photocatalytic Performance of ZnO Nanoparticles. Science in China Series B: Chemistry 2005, 48, 25-30.
42. G. Silversmit; D. Depla; H. Poelman; G. B. Marin; R. D. Gryse, Determination of the V2p XPS Binding Energies for Different Vanadium Oxidation States (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena 2004, 135, 167-175.
43. J. Mendialdua; R. Casanova; Y. Barbaux, XPS Studies of V2O5, V6O13, VO2 and V2O3. Journal of Electron Spectroscopy and Related Phenomena 1995, 71, 249-261.
44. M. Demeter; M. Neumann; W. Reichelt, Mixed-Valence Vanadium Oxides Studied by XPS. Surface Science 2000, 454-456, 41-44.
45. G. R. Dillip; A. N. Banerjee; V. C. Anitha; B. D. P. Raju; S. W. Joo; B. K. Min, Oxygen Vacancy-Induced Structural, Optical, and Enhanced Supercapacitive Performance of Zinc Oxide Anchored Graphitic Carbon Nanofiber Hybrid Electrodes. Applied Materials & Interfaces 2016, 8, 5025-5039.
46. K. Omar, Investigation on Dielectric Constant of Zinc Oxide. Modern Applied Science 2009, 3, 110-116.
47. C. Lamsal; N. M. Ravindra, Optical Properties of Vanadium Oxides-an Analysis. Journal of Materials Science 2013, 48, 6341-6351.
48. C. J. Emeleus; T. E. Whall; D. W. Smith; N. L. Mattey; R. A. Kubiak; E. H. C. Parker, Observation of Novel Transport Phenomena in a Si0.8Ge0.2 Two-Dimensional Hole Gas. Physical Review B 1993, 47, 10016-10019.
49. Wang, Y.; M. K. Niranjan, S. S. Jaswal; E. Y. Tsymbal, First-Principles Studies of a Two-Dimensional Electron Gas at the Interface in Ferroelectric Oxide Heterostructures. Physical Review B 2009, 80, 165130.
50. R. Dingle; H. L. Stormer; A. C. Gossard; W. Wiegmann, Electronic Properties of the GaAsAlGaAs Interface with Applications to Multi-Interface Heterojunction Superlattices. Surface Science 1980, 98, 90-100.
51. R. Dingle; H. L. Stormer; A. C. Gossard; W. Wiegmann, Electron Mobilities in Modulation-Doped Semiconductor Heterojunction Superlattices. Applied Physics Letters 1987, 33.
52. R. B. Dingle, Scattering of Electrons and Holes by Charged Donors and Acceptors in Semiconductors. Philosophical Magazine 1955, 46, 831-840.
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2017-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明