博碩士論文 993204024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:18.188.172.203
姓名 鄭雯璟(Wen-ching Cheng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米金觸媒在富氫氣流中選擇性一氧化碳氧化之應用
(Selective Oxidation of CO in Hydrogen Stream over gold catalysts)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 燃料電池除了能高效率的把化學能轉化成電能,更是一種方便攜帶的能源。在燃料電池產氫能的過程中會產出副產物一氧化碳,一氧化碳會毒化白金電極,而選擇性氧化一氧化碳反應(PROX)將一氧化碳減至< 5 ppm,是目前最能有效移除一氧化碳方法之一。本研究將金及銀或銠之奈米顆粒擔載於二氧化鈰上,並應用於富氫氣流中之一氧化碳選擇性氧化反應中。金-銀/二氧化鈰是以沉積沉澱法製備;另一方面,銠則是以含浸法方式與二氧化鈰擔體混合,之後再使用沉積沉澱法將金顆粒擔載於上述擔體。在此研究中,改變不同的促進劑比例和擔體鍛燒溫度找出最佳的條件以製備出最適合PROX反應之金觸媒。製備完成的觸媒經過X光繞射分析儀、穿透式電子顯微鏡、X光電子能譜儀和感應耦合電漿質譜分析儀等鑑定分析其觸媒性質。PROX反應是在固定床反應器中填充0.1克觸媒,並以進料氣體CO/O2/H2/He 體積比為1.33/1.33/65.33/32.01,總流量控制在50 ml/min下進行反應。結果顯示金-銀/二氧化鈰觸媒及金-銠/二氧化鈰觸媒在80-100℃對一氧化碳的轉化率及轉化率皆比金/二氧化鈰觸媒更好。其中金-銀(1:1)/二氧化鈰觸媒在80℃下更可將一氧化碳完全轉化。金以2-5奈米的大小分佈於擔體上。加入銀後,銀失去的電子可使吸附的氧分子解離成氧原子,有助於二氧化碳的形成,此外,電子也可使金的正三價離子轉變成金屬態,也有助於一氧化碳選擇性氧化反應。另一方面,反應中一氧化碳之選擇性隨銀的添加量而提高。金-銠/二氧化鈰觸媒在較高的觸媒鍛燒溫度下(350℃)在轉化率及選擇率上才有比較明顯的促進作用。兩種觸媒在燃料電池操作溫度(65-100℃)下進行反應,金-銀(1:1)/二氧化鈰觸媒鍛燒溫度180℃的觸媒可在80℃將一氧化碳完全轉化。
摘要(英) Nanoscaled gold, silver and gold, rhodium particles supported on CeO2 was used for preferential oxidation of carbon monoxide in hydrogen-rich stream (PROX). They were loaded on CeO2 through deposition-precipitation method. The catalysts with different amounts of silver and different calcination temperatures were tested to develop the best catalyst for PROX reaction. These catalysts were characterized by XRD, TEM, XPS, and TPR. The PROX reaction was carried out in a fixed bed continuous flow reactor with a feed of CO: O2: H2: He = 1.33: 1.33: 65.33: 32.01 in volume ratios. The results showed that the catalyst with specific Ag content and calcinations temperature could reach 100% of CO conversion at the PEM fuel cells operating temperature (65℃-100℃) even as the gold content was 0.5 wt. %. The particle size of gold was around 2-5 nm and Au particles were dispersed well on the support. In Au-Ag/CeO2 catalysts, the higher calcination temperature resulted sintering of gold, leading to the lower activity. The CO selectivity increased with increasing silver amount. The promotional effect of rhodium addition was more obvious at higher calcination temperature (350℃) of catalyst. However, the exist of this hydroxide did not show significant promotion on catalytic selectivity. These two kinds of catalyst underwent reaction with operating temperature 80℃, the Au-Ag/CeO2 (1:1) catalysts calcined at 180℃ can converted CO to CO2 completely.
關鍵字(中) ★ 金觸媒
★ 銀
★ 一氧化碳氧化
★ 二氧化鈰
★ 燃料電池
關鍵字(英) ★ CeO2
★ CO oxidation
★ silver
★ gold
★ PROX
★ fuel cell
論文目次 摘要 I
Abstract II
Table of Content. III
List of Figures . VI
List of Tables .. XI
Chapter 1. Introduction . 1
Chapter 2. Literature Review . 3
2.1 PROX Catalyst 3
2.2 Applications of Gold Catalyst . 4
2.3 Preparation of Gold Catalysts . 4
2.3.1 Impregnation method 5
2.3.2 Deposition-precipitation Method 6
2.3.3 Other Method . 10
2.4 Au-support Interaction . 14
2.5. Gold Catalysts Apply on PROX Reaction 15
2.5.1 Active Site of Gold Catalyst .. 15
2.5.2 Particle size effect 17
2.5.3 Support Effect 18
2.5.4 Promoter Effect . 21
2.5.5 Reaction Mechanism . 23
Chapter 3. Experimental 30
Chapter 4. Au-Ag/CeO2 Catalyst for Preferential Oxidation of CO in Hydrogen-rich Stream .. 36
4.1 Introduction 36
4.2 The Effect of Ag/(Au+Ag)Ratio on Au-Ag/CeO2 catalyst 38
4.2.1 TEM . 38
4.2.2 XRD . 40
4.2.3 TPR .. 42
4.2.4 XPS .. 44
4.2.5 Reaction Test of Au-Ag/ CeO2 with Different Ag Contents in Selective CO Oxidation . 48
4.3 The Effect of Calcination Temperature of Catalyst .. 52
4.3.1 TEM . 52
4.3.2 XRD . 54
4.3.3 XPS .. 56
4.3.4 Reaction Test of Au-Ag/ CeO2 with Different Calcination Temperature of Catalyst in Selective CO Oxidation 62
4.4 Conclusion .. 64
Chapter 5. Au-Rh/CeO2 Catalyst for Preferential Oxidation of CO in Hydrogen-rich Stream .. 65
5.1 Introduction . 65
5.2 The Effect of Rh/(Au+Rh)Ratio on Au-Rh/CeO2 catalyst .. 66
5.2.1 TEM . 66
5.2.2 XRD . 68
5.2.3 XPS .. 70
5.2.4 Reaction Test of Au-Rh/ CeO2 with Different Rh Contents in Selective CO Oxidation . 75
5.3 The Effect of Calcination Temperature of Catalyst 79
5.3.1 TEM . 79
5.3.2 XRD . 81
5.3.3 XPS .. 83
5.3.4 Reaction Test of Au-Rh/CeO2 with Different Calcination 5.4Temperature of Catalyst in Selective CO Oxidation . 89
Chapter 6. Summary 94
Reference .. 95
參考文獻 1. Abdelsayed, V., Aljarash, A., El-Shall, M.S., ” Microwave Synthesis of Bimetallic Nanoalloys and CO Oxidation on Ceria-Supported Nanoalloys”, Chem. Mater. 21 (2009) 2825–2834
2. Akita, T., Okumura, M., Tanaka, K., Kohyama, M., Haruta, M., ” Analytical TEM observation of Au nano-particles on cerium oxide”, Catalysis Today 117 (2006) 62–68
3. Alayoglu, S., Eichhorn, B., ” Rh-Pt Bimetallic Catalysts: Synthesis, Characterization, and Catalysis of Core-Shell, Alloy, and Monometallic Nanoparticles”, J. AM. CHEM. SOC. 130 (2008) 17479–17486
4. Andreeva, D., ” Low Temperature Water Gas Shift over Gold Catalysts”, Gold Bulletin 35 (2002) 3-10
5. Barton, D.G., Podkolzin, S.G., ” Kinetic Study of a Direct Water Synthesis over Silica-Supported Gold Nanoparticles”, J. Phys. Chem. B 109 (2005) 2262-2274
6. Benson, S.W., Dobis, O., ” Existence of Negative Activation Energies in Simple Bimolecular Metathesis Reactions and Some Observations on Too-Fast Reactions”, J. Phys. Chem. A 102 (1998) 5175-5181
7. Bera, P., Hegde, M.S.,”Charaterization and catalytic properties of combustion synthesized Au/CeO2 catalyst”, Catal Lett 79 (2002) 1-4
8. Bond, G.C., Thompson, D.T., ” Gold-Catalysed Oxidation of Carbon Monoxide”, GoldBulletin 2 (2000) 33
9. Casaletto, M.P., Longo, A., Martorana, A., Prestianni, A., Venezia, A.M., ” XPS study of supported gold catalysts: the role of Au0 and Au+d species as active sites”, Surf. Interface Anal. 38 (2006) 215–218
10. Chen, M.S., Goodman, D.W., ” The Structure of Catalytically Active Gold on Titania”, Science 306 (2004) 252-255
11. Chen, Z., Gao, Q., ” Enhanced carbon monoxide oxidation activity over gold–ceria nanocomposites”, Applied Catalysis B: Environmental 84 (2008) 790–796
12. Dekkers, M.A.P., Lippits, M.J., Nieuwenhuys, B.E., ” Supported gold/MOx catalysts for NO/H2 and CO/O2 reactions”, Catalysis Today 54 (1999) 381–390
13. Delannoya, L., Weiherb, N., Tsapatsarisb, N., Beesleyb, A.M., Ncharib, L., Schroederb, L.M., Louis, C., ” Reducibility of supported gold (III) precursors: influence of the metal oxide support and consequences for CO oxidation activity”, Topics in Catalysis Vol. 44 (2007) 1-2
14. Finch, R.M., Hodge, N.A., Hutchings, G.J., Meagher, A., Pankhurst, Q.A., Siddiqui, R.H., Wagnerc, F.E., Whymanb, R., ” IdentiÐcation of active phases in Au.Fe catalysts for low-temperature CO oxidation”, Phys. Chem. Chem. Phys., 1 (1999) 485-489
15. Fu, Q., Saltsburg, H., Stephanopoulos, M.F., ” Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts”, Science 301 (2003) 935-938
16. Galletti, C., Specchia, S., Saracco, G., Specchia, V., ” Catalytic Performance of Rhodium-Based Catalysts for CO Preferential Oxidation in H2-Rich Gases”, Ind. Eng. Chem. Res. 47 (2008) 5304–5312
17. Gluhoi, A.C., Vreeburg, H.S., Bakker, J.W., Nieuwenhuys, B.E., ” Activation of CO, O2 and H2 on gold-based catalysts”, Applied Catalysis A: General 291 (2005) 145–150
18. Grisel, R. J. H., Nieuwenhuys, B.E., ” Selective Oxidation of CO, over Supported Au Catalysts”, Journal of Catalysis 199 (2001) 48–59
19. Grisel, R.J.H., Weststrate, C.J., Goossens, A., Crajé, M.W.J., Kraan, A.M., Nieuwenhuys, B.E., ” Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment”, Catalysis Today 72 (2002) 123–132
20. Guldura, C., Balikci, F., ” Selective carbon monoxide oxidation over Ag-based composite oxides”, International Journal of Hydrogen Energy 27 (2002) 219–224
21. Gustafson, J., Westerstro, R., Resta, A., Mikkelsen, A., Andersen, J.N., Balmes, O., Torrelles, X., Schmid, M., Varga, P., Hammerf, B., Kresse, G., Baddeley, C.J., Lundgren, E., ” Structure and catalytic reactivity of Rh oxides”, Catalysis Today 145 (2009) 227–235
22. Gustafson,J., Westerström, R., Mikkelsen, A., Torrelles, X., Balmes, O., Bovet, N., Andersen, J.N., Baddeley, C.J., Lundgren, E., ” Sensitivity of catalysis to surface structure: The example of CO oxidation on Rh under realistic conditions”, PHYSICAL REVIEW B 78, (2008)
23. Haruta, M., “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications”, Gold Bulletin 37 (2004 ) 1–2
24. Haruta, M., ” Nanoparticulate Gold Catalysts for Low-Temperature CO Oxidation”, Journal of New Materials for Electrochemical Systems 7 (2004) 163-172
25. Haruta, M., ” Size- and support-dependency in the catalysis of gold”, Catalysis Today 36 (1997) 153-166
26. Huang, X.S., Sun, H., Wang, L.C., Liu, Y.M., Fan, K.N., Cao, Y., ” Morphology effects of nanoscale ceria on the activity of Au/CeO2 catalysts for low-temperature CO oxidation”, Applied Catalysis B: Environmental 90 (2009) 224–232
27. Imai, H., Date, M., Tsubota, S., ” Preferential Oxidation of CO in H2-Rich Gas at Low Temperatures over Au Nanoparticles Supported on Metal Oxides”, Catal Lett 124 (2008) 68–73
28. Kima, S., Qadira, K., Jin, S., Reddya, A.S., Seob, B., Munc, B.S., Joob, S.H., Parka, J.Y., ” Trend of catalytic activity of CO oxidation on Rh and Ru nanoparticles: Role of surface oxide”, Catalysis Today 185 (2012) 131– 137
29. Kipnis, M., Volnina, E., ” Н2 oxidation and preferential CO oxidation over Au: new approaches”, Applied Catalysis B, Environmental (2010)1-25
30. Kolli, T., Kanerva, T., Lappalainen, P., Huuhtanen, M., Vippola, M., Kinnunen, T., Kallinen, K., Lepisto, T., ¨ A, J. Lahtinen A R. L. Keiski,“The Effect of SO2 and H2O on the Activity of Pd/CeO2 and Pd/Zr–CeO2 Diesel Oxidation Catalysts”, Top Catal 52 (2009) 2025–2028
31. Kondarides, D.I., Verykios, X.E., ” Interaction of Oxygen with Supported Ag–Au Alloy Catalysts”, Journal of Catalysis 158 (1996) 363–377
32. Laguna, O.H., Sarria, F., Centeno, M.A., Odriozola, J.A., ” Gold supported on metal-doped ceria catalysts (M = Zr, Zn and Fe) for the preferential oxidation of CO (PROX)”, Journal of Catalysis 276 (2010) 360–370
33. Lepage, M., Visser, T., Soulimani, F., Beale, A.M., Juez, A.I. , Eerden, M.J., Weckhuysen, B.M., ” Promotion Effects in the Oxidation of CO over Zeolite-Supported Rh Nanoparticles”, J. Phys. Chem. C 112 (2008) 9394–9404
34. Ligthart, D. A., Santen, R.A., Hensen, E.J.M., ” Supported Rhodium Oxide Nanoparticles as Highly Active CO Oxidation Catalysts”, Chem. Int. Ed. 50 (2011) 5306 –5310
35. Ligthart, D.A.J., Santen, R.A., Hensen, E.J.M., ” Supported Rhodium Oxide Nanoparticles as Highly Active CO Oxidation Catalysts”, Angew. Chem. Int. Ed. 50 (2011) 5306 –5310
36. Liotta, L.F., Carlo, G.D., Pantaleo, G., Venezia, M., ” Supported gold catalysts for CO oxidation and preferential oxidation of CO in H2 stream: Support effect”, Catalysis Today 158 (2010) 56–62
37. Luengnaruemitchaia, A., Osuwana, S., Gularib, E., ” Selective catalytic oxidation of CO in the presence of H2 over gold catalyst”, International Journal of Hydrogen Energy 29 (2004) 429 – 435
38. Mariño, F., Descorme, C., Duprez, D., ” Noble metal catalysts for the preferential oxidation of carbon monoxide in the presence of hydrogen (PROX)”, Applied Catalysis B: Environmental 54 (2004) 59–66
39. Mavrikakis, M., Stoltze, P., Nørskov, J.K., ” Making gold less noble”, Catalysis Letters 64 (2000) 101–106
40. Moreau, F., Bond, G.C., Taylor, A.O., ” Gold on titania catalysts for the oxidation of carbon monoxide:control of pH during preparation with various gold contents”, Journal of Catalysis 231 (2005) 105–114
41. Okumura, M., Kitagawa, Y., Haruta, M., Yamaguchi, K., ” The interaction of neutral and charged Au clusters with O2, CO and H2”, Applied Catalysis A: General 291 (2005) 37–44
42. Okumura, M., Nakamura, S., Tsubota, S., Nakamura, T., Azuma, M., Haruta, M., ” Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2”, Catalysis Letters 51 (1998) 53–58
43. O´va´ri, L., Bugyi, L., Majzik, Z., Berko´, A., Kiss, J., ” Surface Structure and Composition of Au-Rh Bimetallic Nanoclusters on TiO2(110): A LEIS and STM Study”, J. Phys. Chem. C 112 (2008) 18011–18016
44. Panzera, G., Modafferi, V., Candamanoa, S., Donato, A., Frusteri, F., Antonucci, P.L., ” CO selective oxidation on ceria-supported Au catalysts for fuel cell application”, Journal of Power Sources 135 (2004) 177–183
45. Qi, C., Akita, T., Okumura, M., Kuraoka, K., Haruta, M., ” Effect of surface chemical properties and texture of mesoporous titanosilicates on direct vapor-phase epoxidation of propylene over Au catalysts at high reaction temperature”, Applied Catalysis A: General 253 (2003) 75–89
46. Quinet, E., Morfin, F., Diehl, F., Avenier, P., Caps, V., a, Rousset, J.L., ” Hydrogen effect on the preferential oxidation of carbon monoxide over alumina-supported gold nanoparticles”, Applied Catalysis B: Environmental 80 (2008) 195–201
47. Quinet, E., Piccolo, L., Morfin, F., Avenier, P., Diehl, F., Caps, V., Rousset, J.L., ” On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation”, Journal of Catalysis 268 (2009) 384–389
48. Qu, Z., Cheng, M., Huang, W., Bao, X., ” Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts”, Journal of Catalysis 229 (2005) 446–458
49. Qu, Z., Cheng, M., Shi, C., Bao, X., ” Low-temperature selective oxidation of CO in H2-rich gases over Ag/SiO2 catalysts”, Journal of Molecular Catalysis A: Chemical 239 (2005) 22–31
50. Rossignol, C., Arrii, S., Morfin, F., Piccolo,L., Caps, V., Rousset, J., “Selective oxidation of CO over model gold-based catalysts in the presence of H2”, Journal of Catalysis 230 (2005) 476–483
51. Sandoval, A., Aguilar, A., Louis, C., Traverse, A., Zanella, R., ” Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipitation: High activity and stability in CO oxidation”, Journal of Catalysis 281 (2011) 40–49
52. Sangeetha, P., Chang, L.H., Chen, Y.W., ” Preferential Oxidation of CO in H2 Stream on Au/TiO2 Catalysts: Effect of Preparation Method”, Ind. Eng. Chem. Res. 48 (2009) 5666–5670
53. Schubert, M.M., Hackenberg, S., Veen, A.C., Muhler. M., Plzak, V., Behm, R.J., ” CO Oxidation over Supported Gold Catalysts—“Inert” and “Active”Support Materials and Their Role for the Oxygen Supply during Reaction”, Journal of Catalysis 197 (2001) 113–122
54. Schubert, M.M., Plzak, V., Garche, J., Behm, R.J., ” Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas”, Catalysis Letters Vol. 76, No. 3–4, (2001)
55. Tian, D., Yng, G., Dai, Y., Yan, X., Liu, S., ” CO Oxidation Catalyzed by Ag/SBA-15 Catalysts Prepared via in situ Reduction: The Influence of Reducing Agents”, Catal Lett 130 (2009) 211–216
56. Venezia, A.M., Pantaleo, G., Longo, A., Carlo, G.D., Casaletto, M.P., Liotta, F.L., Deganello, G., ” Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts”, J. Phys. Chem. B 109 (2005) 2821-2827
57. Villalpando, M.D.S., Berry, D.A., Gardner, T., ” Partial oxidation of methane over Rh/supported-ceria catalysts: Effect of catalyst reducibility and redox cycles”, INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 33 ( 2008 ) 2695 – 2703
58. Wang, A.Q., Liu, J.H., Lin, S.D., Lin, T.S., Mou, C.Y., ” A novel efficient Au–Ag alloy catalyst system:preparation, activity, and characterization”, Journal of Catalysis 233 (2005) 186–197
59. Wang, H., Zhu, H., Qin, Z., Wang, G., Liang, F., Wang, J., ” Preferential oxidation of CO in H2 rich stream over Au/CeO2–Co3O4 catalysts”, Catalysis Communications 9 (2008) 1487–1492
60. Wang, J. G., Hammer, B., ” Oxidation state of oxide supported nanometric gold”, Topics in Catalysis Vol. 44, Nos. 1–2, June (2007)
61. Wang, X., Lu, G., Guo, Y., Zhang, Z., Guo, Y., ” Role of Rh promoter on increasing stability of Au/Al2O3 catalyst for CO oxidation at low temperature”, Environ Chem Lett 9 (2011) 185–189
62. Widmann, D., Leppelt, R., Behm, R.J., ” Activation of a Au/CeO2 catalyst for the CO oxidation reaction by surface oxygen removal/oxygen vacancy formation”, Journal of Catalysis 251 (2007) 437–442
63. Yi, G., Yang, H., Li, B., Lin, H., Tanaka, K., Yuan, Y., ” Preferential CO oxidation in a H2-rich gas by Au/CeO2 catalysts: Nanoscale CeO2 shape effect and mechanism aspect”, Catalysis Today 157 (2010) 83–88
64. Yuana, Y., Asakurac, K., Kozlovaa, A.P., Wanb, H., Tsaib, K., Iwasawa,Y., ” Supported gold catalysis derived from the interaction of a Au±phosphine complex with as-precipitated titanium hydroxide and titanium oxide”, Catalysis Today 44 (1998) 333–342
65. Zanella, R., Giorgio, S., Henry, C.R., Louis, C., ” Alternative Methods for the Preparation of Gold Nanoparticles Supported on TiO2”, J. Phys. Chem. B 106 (2002) 7634-764
66. Zhao, B., Yang, Y.F., Chen, Y.W., ” Au/FeOx-TiO2 Catalysts for the Preferential Oxidation of CO in H2 Stream”, The 13th Asia Pacific Confederation of APCChE 2010 Chemical Engineering Congress (2010)
指導教授 陳郁文(Yu-wen Chen) 審核日期 2012-6-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明