博碩士論文 993204032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.128.197.237
姓名 林毓源(Yu-Yuan Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究
(Wet etching process and properties of single-crystalline silicon nanowires)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究
★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究★ 新穎太陽能電池基板表面粗糙化結構之研究
★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究
★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用聚苯乙烯奈米球微影術(Polystyrene Nanosphere Lithography,PSNSL)結合金屬催化化學蝕刻法,成功地在(001)及(111)不同晶面之矽基材上,製備出大面積垂直排列且長度尺寸均一之矽晶奈米線陣列,其寬度約為120 nm。從TEM 影像及其相對應之電子繞射圖形分析鑑定可得知本研究所製備之矽晶奈米柱均為單晶結構,且軸向方向沿著基材晶面方向生成。為了進一步控制所生成矽晶奈米線的外觀,我們利用稀釋的氫氧化鉀溶液,進行溼式蝕刻製程。本實驗中,在20℃下以不同蝕刻時間進行蝕刻,可以對奈米線的寬度及長度進行控制並縮小其尺寸,其奈米線尖端的尺寸可由原本的120 nm 縮小至12 nm。由場發射性質量測所得到的數據可知,和原本的矽晶奈米線相比,經過氫氧化鉀蝕刻後的矽晶奈米線可顯著提升場發射的性質;本實驗中,所量測的最低啟動電場為1.21 V/μm,而場發射增強因子β可以增加至8127。
在氣體量測實驗中,利用平板矽試片、矽晶奈米線以及表面孔洞結構之矽晶奈米線等三種不同條件的試片做成感測器的偵測元件,並於室溫下通入水氣、酒精和丙酮等氣體進行偵測。從量測結果可清楚得知,氣體偵測的靈敏度會隨著通入氣體濃度的提升而增加;而不論是何種通入氣體,表面孔洞結構之矽晶奈米線其靈敏度相比其他兩種試片都是較高的,在11 ppm的低濃度時有著9.7 %的靈敏度,推測是因為其較高的表面積比例,可增加氣體量測性質的靈敏度。
摘要(英) In the present study, we have demonstrated that large-area, length-tunable arrays of vertically aligned Si nanowire were successfully produced on (001)Si and (111)Si substrates by using the PS nanosphere lithography combined with the Au-assisted selective chemical etching process. The diameter of the Si nanowire produced was very uniform and observed to be approximately 120 nm. Based on the analyses of the TEM image and the corresponding SAED patterns, it can be concluded that the Si nanowires produced have single-crystalline nature and form along the [001] and/or [111] directions. In order to further modulate the morphologies of the Si nanowires, a post wet etching process with a dilute KOH solution was developed. In this work, the tapering process was performed at 20℃ for various etching time. The length and width of Si nanowires can be controlled and reduced by adjusting the KOH etching duration. After appropriate KOH etching, the diameter of the Si nanowire tips can be reduced from 120 nm to about 12 nm. Field emission measurements showed that the KOH-etched Si nanowires exhibited significantly improved field emission properties compared to the as-produced Si nanowires. In the study, a low turn-on field of 1.21 V/μm was obtained, and the corresponding field enhancement factor, β value, was greatly enhanced to as high as 8127.
For the gas sensing experiments, three kinds of samples, blank-Si wafer, Si nanowires, and porous Si nanowires, were prepared and used as the gas sensing in this study. Their gas sensing properties towards water vapor, ethanol, and acetone were investigated at room temperature. The measurement results clearly show that the response magnitudes of the three kinds of sensors improved significantly with increasing the gas concentrations. Whether exposed to water vapor, ethanol, or acetone, the sensitivity of the porous Si nanowires sensor is much higher than that of the blank-Si and Si nanowires sensors. In this work, the sensitivity of the porous Si nanowires sensor reaches as high as 9.7% for 11 ppm acetone. The enhanced sensing performances of the porous Si nanowires sensor can be attributed to its high surface-to-volume ratio.
關鍵字(中) ★ 溼式蝕刻
★ 矽單晶奈米結構
關鍵字(英) ★ wet etching
★ silicon nanowires
論文目次 目錄
中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xiii
第一章 前言及文獻回顧 1
1-1 前言 1
1-2 矽晶奈米線製備方法 3
1-2-1 氣-液-固成長機制 3
1-2-2 氧催化成長機制 4
1-2-3 固-液-固成長機制 5
1-2-4 反應性離子蝕刻法 6
1-2-5 金屬催化無電鍍蝕刻法 7
1-2-6 金屬催化化學蝕刻法 8
1-3 奈米球微影技術 9
1-3-1 奈米球的自組裝行為 9
1-3-2 奈米球微影術的發展 10
1-4 金屬催化結合奈米球微影技術製備矽晶奈米線 11
1-5 不同平面之矽單晶奈米線製備 11
1-6 鹼性溶液蝕刻矽基材 12
1-6-1 矽蝕刻液種類 12
1-6-2 氫氧化鉀蝕刻矽基材 13
1-7 矽晶奈米線表面粗糙化 14
1-8 場發射電極元件 14
1-8-1 場發射理論 14
1-8-2 場發射元件發展 16
1-8-3 以矽為基材的場發射元件研究 18
1-9 化學感測器 19
1-9-1 化學感測器簡介 19
1-9-2 矽晶奈米線化學感測器之研究 20
1-10 研究動機及目標 20
第二章 實驗步驟及儀器設備 22
2-1 實驗步驟 22
2-1-1 矽晶基材使用前處理 22
2-1-2 奈米球陣列模板製備 22
2-1-3 以電漿蝕刻調變奈米球模板之尺寸 23
2-1-4 蒸鍍金薄膜 23
2-1-5 化學溼式蝕刻製備不同平面之矽單晶奈米線陣列 23
2-1-6 氫氧化鉀蝕刻製備準直有序矽單晶奈米結構陣列 24
2-1-7 製備氣體感測元件 24
2-2 試片分析 24
2-2-1 掃描式電子顯微鏡 ( SEM ) 24
2-2-2 穿透式電子顯微鏡 ( TEM ) 25
2-2-3 真空場發射特性量測系統 25
2-2-4 紫外光-可見光光譜儀 26
2-2-5 影像式接觸角量測儀 26
2-2-6 氣體感測性質量測裝置 26
第三章 結果與討論 28
3-1 奈米球模板製備 28
3-2 製備不同晶面矽單晶奈米線陣列 29
3-2-1 不同濃度對製備不同晶面矽單晶奈米線的影響 29
3-2-2 不同晶面矽單晶奈米線結構分析 30
3-3 氫氧化鉀蝕刻不同晶面之矽單晶奈米線 31
3-3-1 大面積有序排列之不同晶面矽單晶奈米結構 32
3-3-2 不同晶面之矽單晶奈米結構分析 34
3-4 不同平面矽單晶奈米結構之場發射性質量測 36
3-5 氣體感測性質分析 39
3-5-1 不同結構矽基材試片對不同氣體的偵測性質 39
3-5-2 表面粗糙之矽晶奈米線試片作為氣體偵測元件的性質測試 42
3-6 可見光-紫外光光譜儀量測分析 43
3-7 接觸角量測分析 44
第四章 結論與未來展望 46
4-1 結論 46
4-2 未來展望 47
4-2-1 氧化氫氧化鉀蝕刻後的矽晶奈米線 47
4-2-2 矽晶奈米線為基礎的氣體感測性能提升及研究 48
參考文獻 49
參考文獻 [1] G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics 38 (1965) 56-59.
[2] T. Sondergaard and S. I. Bozhevolnyi, “Metal Nano-Strip Optical Resonators,” Opt. Express 15 (2007) 4198-4204.
[3] K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, “Fabrication and Photovoltaic Property of Ordered Macroporous Silicon,” Appl. Phys. Lett. 95 (2009) 143119.
[4] D. M. Newman, M. L. Wears, M. Jollie, and D. Choo, “Fabrication and Characterization of Nano-Particulate PtCo Media for Ultra-High Density Perpendicular Magnetic Recording,” Nanotechnology 18 (2007) 205301-205309.
[5] A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” Chemphyschem 1 (2000) 18-52.
[6] Z. Kang, C. H. A. Tsang, N. B. Wong, Z. Zhang, and S. T. Lee, “Silicon Quantum Dots: A General Photocatalyst for Reduction, Decomposition, and Selective Oxidation Reactions,” J. Am. Chem. Soc. 129 (2007) 12090-12091.
[7] Z. Kang, Y. Liu, C. H. A. Tsang, D. D. D. Ma, X. Fan, N. B. Wong, and S. T. Lee, “Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence,” Adv. Mater. 21 (2009) 661–664.
[8] J. Ramanujam, D. Shiri, and A. Verma, “Silicon Nanowire Growth and Properties: A Review,” Mater. Express 1 (2011) 105-126.
[9] M. Shao, D. D. D. Ma, and S. T. Lee, “Silicon Nanowires – Synthesis, Properties, and Applications,” Eur. J. Inorg. Chem. (2010) 4264–4278.
[10] H. Zeng, Z. Zhang, X. L. Wei, X. B. Wang, Y. Bando, and D. Golberg, “White Graphenes: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping,” Nano Lett. 10 (2010) 5049–5055.
[11] R. M. Liu, X. F. Zi, Y. P. Kang, M. Z. Si, and Y. C. Wu, “Surface-Enhanced Raman Scattering Study of Human Serum on PVA–Ag Nanofilm Prepared by Using Electrostatic Self-Assembly,” J. Raman Spectrosc. 42 (2011) 137–144.
[12] W. Lur and L. J. Chen, “Growth Kinetics of Amorphous Interlayer Formed by Interdiffusion of Polycrystalline Ti Thin-Film and Single-Crystal Silicon,” Appl. Phys. Lett. 27 (1989) 13 54.
[13] M. T. Björk,J. Knoch, H. Schmid, H. Riel, and W. Riess, “Silicon Nanowire Tunneling Field-Effect Transistors,” Appl. Phys. Lett. 92 (2008) 193504.
[14] K. S. Shin, A. Pan, and C. O. Chui, “Channel Length Dependent Sensitivity of Schottky Contacted Silicon,” Appl. Phys. Lett. 100 (2012) 123504.
[15] K. Kang, H. S. Lee, D. W. Han, G. S. Kim, and D. Lee, “Maximum Li Storage in Si Nanowires for the High Capacity Three-Dimensional Li-ion Battery,” Appl. Phys. Lett. 96 (2010) 053110.
[16] C. K. Chan, H. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, and Y. Cui, “High-Performance Lithium Battery Anodes Using Silicon Nanowires,” Nature nanotechnology Vol. 3 (2008) 31-35.
[17] H. C. Wu, H. Y. Tsai, H. T. Chiu, and C. Y. Lee, “Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission,” Appl. Mater. Inter. Vol. 2 (2010) No. 11 3285–3288.
[18] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, “Stacked Silicon Nanowires with Improved Field Enhancement Factor,” Appl. Mater. Inter. Vol. 2 (2010) No. 2 331–334.
[19] H. C. Wu, T. Y. Tsai, F. H. Chu, N. H. Tai, H. N. Lin, H. T. Chiu, and C. Y. Lee, “Electron Field Emission Properties of Nanomaterials on Rough Silicon Rods,” J. Phys. Chem. C 114 (2010) 130–133.
[20] Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, and F. Patolsky, “Supersensitive Detection of Explosives by Silicon Nanowire Arrays,” Angew. Chem. Int. Ed. 49 (2010) 6830 –6835.
[21] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon Nanowires as Chemical Sensors,” Chem. Phys. Lett. 369 (2003) 220–224.
[22] K. Q. Peng, X. Wang, and S. T. Lee, “Gas Sensing Properties of Single Crystalline Porous Silicon Nanowires,” Appl. Phys. Lett. 95 (2009) 243112.
[23] J. F. Hsu, B. R. Huang, C. S. Huang, and H. L. Chen, “Silicon Nanowires as pH Sensor,” Jpn. J. Appl. Phys. 44 (2005) 2626–2629.
[24] X. Wang, K. Q. Peng, X. J. Pan, X. Chen, Y. Yang, L. Li, X. M. Meng, W. J. Zhang, and S. T. Lee, “High-Performance Silicon Nanowire Array Photoelectrochemical Solar Cells through Surface Passivation and Modification,” Angew. Chem. Int. Ed. 50 (2011) 9861 –9865.
[25] E. Garnett and P. Yang, “Light Trapping in Silicon Nanowire Solar Cells,” Nano Lett. 10 (2010) 1082–1087.
[26] W. Chern, K. Hsu, I. S. Chun, B. P. Azeredo, N. Ahmed, K. H. Kim, J. M. Zuo, N. Fang, P. Ferreira, and X. L. Li, “Nonlithographic Patterning and Metal-Assisted Chemical Etching for Manufacturing of Tunable Light-Emitting Silicon Nanowire Arrays,” Nano Lett. 10 (2010) 1582–1588.
[27] K. Peng, X. Wang, and S. T. Lee, “ Silicon Nanowire Array Photoelectrochemical Solar Cells,” Appl. Phys. Lett. 92 (2008) 163103.
[28] R. S. Wanger and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89-90.
[29] M. Lu, M. K. Li, L. B. Kong, X. Y. Guo, and H. L. Li, “Silicon Quantum-Wires Arrays Synthesized by Chemical Vapor Deposition and its Micro-Structural Properties,” Chem. Phys. Lett. 374 (2003) 542-547.
[30] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[31] K. J. Wang, K. X. Wang, H. Zhang, G. D. Li, and J. S. Chen, “Self-Oriented Single Crystalline Silicon Nanorod Arrays through a Chemical Vapor Reaction Route,” J. Phys. Chem. C 114 (2010) 2471-2475.
[32] H. Hamidinezhad, Y. Wahab, Z. Othaman, and A. K. Ismail, “Synthesis and Analysis of Silicon Nanowire Below Si–Au Eutectic Temperatures Using Very High Frequency Plasma Enhanced Chemical Vapor Deposition,” Appl. Surf. Sci. 257 (2011) 9188– 9192.
[33] Z. Zhang, X. H. Fan, L. Xu, C. S. Lee, and S. T. Lee, “Morphology and Growth Mechanism Study of Self-Assembled Silicon Nanowires Synthesized by Thermal Evaporation,” Chem. Phys. Lett. 337 (2001) 18-24.
[34] J. Niu, J. Sha, and D. Yang, “Silicon Nano-Wires Fabricated by a Novel Thermal Evaporation of Zinc Sulfide,” Physica E 24 (2004) 178-182.
[35] Z. W. Pan, Z. R. Dai, L. Xu, S. T. Lee, and Z. L. Wang, “Temperature-Controlled Growth of Silicon-Based Nanostructures by Thermal Evaporation of SiO Powders,” J. Phys. Chem. B 105 (2001) 2507-2514.
[36] Y. H. Tang, Y. F. Zhang, N. Wang, C. S. Lee, and X. D. Han, “Morphology of Si Nanowires Synthesized by High-Temperature Laser Ablation,” J. Appl. Phys. 85 (1999) 7981.
[37] Y. F. Zhang, Y. H. Tang, N. Wang, D. P. Yu, C. S. Lee, I. Bello, and S. T. Lee, “Silicon Nanowires Prepared by Laser Ablation at High Temperature,” Appl. Phys. Lett. 72 (1998) 1835.
[38] N. Fukata, S. Matsushita, N. Okada, J. Chen, T. Sekiguchi, N. Uchida, and K. Murakami, “Impurity Doping in Silicon Nanowires Synthesized by Laser Ablation,” Appl Phys A 93 (2008) 589–592.
[39] N. Megouda, R. Douani, T. Hadjersi, and R. Boukherroub, “Formation of Aligned Silicon Nanowire on Silicon by Electroless Etching in HF Solution,” J. Lumin. 129 (2009) 1750–1753.
[40] K. Peng, Y. Yan, S. Gao, and J. Zhu, “Dendrite-Assisted Growth of Silicon Nanowires in Electroless Metal Deposition,” Adv. Funct. Mater. 13 (2003) No. 2.
[41] Z. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele, “Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching,” Nano Lett. 8 (2008) 3046-3051.
[42] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metalinduced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[43] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744–748.
[44] K. Peng, M. Zhang, A. Lu, N. B. Wong, R. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[45] S. L. Cheng, C.H. Lo, C.F. Chuang, and S.W. Lee, “Site-Controlled Fabrication of Dimension-Tunable Si Nanowire Arrays on Patterned (001) Si Substrates,” Thin Solid Films 520 (2012) 3309–3313.
[46] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4 (1964) 89.
[47] D. W. F. James, and C. Lewis, “Silicon Whisker Growth and Epitaxy by the Vapor-Liquid-Solid Mechanism,” Br. J. Appl. Phys. 16 (1965) 1089.
[48] B. Kalache, P. R. Cabarrocas, and A. F. Morral, “Observation of Incubation Times in the Nucleation of Silicon Nanowires Obtained by the Vapor–Liquid–Solid Method,” Jpn. J. Appl. Phys. 45 (2006) 190–193.
[49] L. W. Yu, B. O’Donnell, P. J. Alet, S. Conesa-Boj, F. Peiro, J. Arbiol, and P. I. R. Cabarrocas, “Plasma-Enhanced Low Temperature Growth of Silicon Nanowires and Hierarchical Structures by Using Tin and Indium Catalysts,” Nanotechnology 20 (2009) 225604.
[50] I. Zardo, L. Yu, S. Conesa-Boj, S. Estrade, P. J. Alet, J. Roessler, M. Frimmer, P. R. I. Cabarrocas, F. Peiro, J. Arbiol, J. R. Morante, and A. F. I. Morral, “Gallium Assisted Plasma Enhanced Chemical Vapor Deposition of Silicon Nanowires,"Nanotechnology 20 (2009) 155602.
[51] Y. W. Wang, J. Bauer, S. Senz, O. Breitenstein, and U. Gösele, “Aluminum-Enhanced Sharpening of Silicon Nanocones,” Appl. Phys. A 99 (2010) 705–709.
[52] V. Schmidt, S. Senz, and U. Gösele, “Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires,” Nano Lett. (2005) 931-935.
[53] T. E. Bogart, S. Dey, K. Lew, S. E. Mohney, and J. M. Redwing, “Diameter-Controlled Synthesis of Silicon Nanowires Using Nanoporous Alumina Membranes,” Adv. Mater. 17 (2005) 114-117.
[54] Y. Wu, R. Fan, and P.D. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano Lett. 2 (2002) 83-86.
[55] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, and S. T. Lee, “Nucleation and Growth of Si Nanowires from Silicon Oxide,” Phys. Rev. B 8 (1998) 58 .
[56] T. Y. Tan1, S. T. Lee, and U. Gösele, “A Model for Growth Directional Features in Silicon Nanowires,” Appl. Phys. A 74 (2002) 423–432.
[57] Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, “Diameter Modification of Silicon Nanowires by Ambient Gas,” Appl. Phys. Lett. 75 (1999) 1842-1844.
[58] X. H. Fan, L. Xu, C. P. Li, Y. F. Zheng, C. S. Lee, and S. T. Lee, “Effects of Ambient Pressure on Silicon Nanowire Growth,” Chem. Phys. Lett. 334 (2001) 229-232.
[59] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires”, Adv. Mater. 15 (2003) 7-8.
[60] E. K. Lee, B. L. Choi, Y. D. Park, Y. Kuk, S. Y. Kwon, and H. J. Kim, “Device Fabrication with Solid–Liquid–Solid Grown Silicon Nanowires,” Nanotechnology 19 (2008) 185701.
[61] Y. J. Xing, Z. H. Xi, D. P. Yu, Q. L. Hang, H. F. Yan, S. Q. Feng, and Z. Q. Xue, “Growth of Silicon Nanowires by Heating Si Substrate,” Chin. Phys. Lett. 19 (2002) 240-242.
[62] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Phys. E 9 (2001) 305-309.
[63] T. Wells, M. M. E. Gomati, and J. Wood, “Low Temperature Reactive Ion Etching of Silicon with SF6/O2 Plasmas,” J. Vac. Sci. Technol. B15 (1997) 397.
[64] J. Zhu, Z. F. Yu, S. H. Fan, and Y. Cui, “Nanostructured Photon Management for High Performance Solar Cells,” Mat. Sci. Eng. R 70 (2010) 330-340.
[65] H. B. Xu, N. Lu, D. P. Qi, Li. Gao, J. Hao, Y. Wang, and L. Chi, “Broadband Antireflective Si Nanopillar Arrays Produced by Nanosphere Lithography,” Microelectronic Eng. 86 (2009) 850–852.
[66] L. Xu, W. Li, J. Xu, J. Zhou, L. Wu, X. G. Zhang, Z. Ma, and K. Chen, “Morphology Control and Electron Field Emission Properties of High-Ordered Si Nanoarrays Fabricated by Modified Nanosphere Lithography,” Appl. Surf. Sci. 255 (2009) 5414–5417.
[67] M. A. Tsai, P. C. Tseng, H. C. Chen, H. C. Kuo, and P. Yu, “Enhanced Conversion Efficiency of a Crystalline Silicon Solar Cell with Frustum Nanorod Arrays,” Opt. express 19 (2011) 28-34.
[68] J. Yoo, G. Yu, and J. Yi, “Large-Area Multicrystalline Silicon Solar Cell Fabrication Using Reactive Ion Etching(RIE),” Sol. Energ. Mat. Sol. C. 95 (2011) 2–6.
[69] K. Q. Peng, Y. J. Yan, S. P. Gao, and J. Zhu, “Synthesis of Large-Area Silicon Nanowire Arrays via Self-Assembling Nanoelectrochemistry,” Adv. Mater. 14 (2002) 1164-1167.
[70] B. Ozdemir, M. Kulakci, R. Turan, and H. E. Unalan, “Effect of Electroless Etching Parameters on the Growth and Reflection Properties of Silicon Nanowires,” Nanotechnology 22 (2011) 155606.
[71] K. Tsujino and M. Matsumura, “Morphology of Nanoholes Formed in Silicon by Wet Etching in Solutions Containing HF and H2O2 at Different Concentrations Using Silver Nanoparticles as Catalysts,” Electrochimica Acta 53 (2007) 28–34.
[72] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee, and N. B. Wong, “Preparation of Large-Area Uniform Silicon Nanowires Arrays through Metal-Assisted Chemical Etching,” J. Phys. Chem. C 112 (2008) 4444-4450.
[73] K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, and J. Zhu, “Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles,” Adv. Funct. Mater. 16 (2006) 387–394.
[74] X. Li and P. W. Bohn, “Metal-Assisted Chemical Etching in HF/H2O2 Produces Porous Silicon,” Appl. Phys. Lett. 77 (2000) 2572-2574.
[75] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub, and O. Elkechai, “Au-Assisted Electroless Etching of Silicon in Aqueous HF/H2O2 Solution,” Appl. Surf. Sci. 255 (2009) 6210–6216.
[76] H. Fang, Y. Wu, J. Zhao, and J. Zhu, “Silver Catalysis in the Fabrication of Silicon Nanowire Arrays,” Nanotechnology 17 (2006) 3768-3774.
[77] G. M. Whitesides, J. P, Mathias, and C. T. Seto, “Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures,” Science Vol. 254 (1991) No. 5036 1312-1319.
[78] C. Pacholski, A. Kornowski, and H. Weller, “Self-Assembly of ZnO: From Nanodots to Nanorods,” Angew. Chem. Int. Ed. 41 (2002) 1188-1191.
[79] S. M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf, and W. M. Shih, “Self-Assembly of DNA into Nanoscale Three-Dimensional Shapes,” Nature 459 (2009) 414-418.
[80] G. M. Whitesides and B. Grzybowski, “Self-Assembly at All Scales,” Science 295 (2002) 2418-2421.
[81] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Adv. Mater. 12 (2000) 693-713.
[82] J. C. Hulteen and R. P. V. Duyne, “Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[83] A. S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir 12 (1996) 1303-1311.
[84] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces,” Phys. Rev. Lett. 84 (2000) 2997-3000.
[85] Micheletto, H. Fukuda, and M. Ohtsu, “A Simple Method for the Production of a Two-Dimensional, Ordered Array of Small Latex Particles,” Langmuir 11 (1995) 3333-3336.
[86] J. Rybczynski, U. Ebels, and M. Giersig, “Large-Scale, 2D Arrays of Magnetic Nanoparticles,” Colloids and Surfaces A: Physicochem. Eng. Aspects 219 (2003) 1-6.
[87] H. Li, J. Low, K. S. Brown, and N. Wu, “Large-Area Well-Ordered Nanodot Array Pattern Fabricated with Self-Assembled Nanosphere Template,” IEEE Sensors J. 8 (2008) 880-884.
[88] K. H. Lee, Q. L. Chen, C. H. Yip, Q. F. Yan, and C. C. Wong, “Fabrication of Periodic Square Arrays by Angle-Resolved Nanosphere Lithography,” Microelectronic Eng. 87 (2010) 1941–1944.
[89] V. Canpean and S. Astilean, “Extending Nanosphere Lithography for the Fabrication of Periodic Arrays of Subwavelength Metallic Nanoholes,” Mater. Lett. 63 (2009) 2520–2522.
[90] J. H. Leea, Y. W. Chung, M. H. Honb, and I. C. Leu, “Fabrication of Tunable Pore Size of Nickel Membranes by Electrodeposition on Colloidal Monolayer Template,” J. Alloy. Compd. 509 (2011) 6528–6531.
[91] Z. Huang, H. Fang, and J. Zhu, “Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density,” Adv. Mater. 19 (2007) 744-748.
[92] K. Q. Peng, M. L. Zhang, A. J. Lu, N. B. Wong, R. Q. Zhang, and S. T. Lee, “Ordered Silicon Nanowire Arrays via Nanosphere Lithography and Metal-Induced Etching,” Appl. Phys. Lett. 90 (2007) 163123.
[93] X. C. Li, K. Liang, B. K. Tay, and E. H. T. Teo, ” Morphology-Tunable Assembly of Periodically Aligned Si Nanowire and Radial pn Junction Arrays for Solar Cell Applications,” Appl. Surf. Sci. 258 (2012) 6169–6176.
[94] B. Fuhrmann, H. S. Leipner, H. R. Höche, L. Schubert, P. Werner, and U. Gösele, “Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy,” Nano Lett. 5 (2005) 2524-2527.
[95] H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, “Periodic Si Nanopillar Arrays by Anodic Aluminum Oxide Template and Catalytic Etching for Broadband and Omnidirectional Light Harvesting,” Opt. Express 20 (2012) 94-103.
[96] Z. P. Huang, X. X. Zhang, M. Reiche, L. F. Liu, W. Lee, T. Shimizu, S. Senz, and U. Gösele,” Extended Arrays of Vertically Aligned Sub-10 nm Diameter [100] Si Nanowires by Metal-Assisted Chemical Etching,” Nano Lett. 8 (2008) 3046-3051.
[97] K. Q. Peng, A. J. Lu, R. Q. Zhang, and S. T. Lee,” Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching,” Adv. Funct. Mater. 18 (2008) 3026–3035.
[98] Z. P. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer, and U. Gösele, “Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon,” J. Phys. Chem. C 114 (2010) 10683–10690.
[99] H. Chen, H. Wang, X. H. Zhang, C. S. Lee, and S. T. Lee, “Wafer-Scale Synthesis of Single-Crystal Zigzag Silicon Nanowire Arrays with Controlled Turning Angles,” Nano Lett. 10 (2010) 864–868.
[100] S. W. Chang, V. P. Chuang, S. T. Boles, and C. V. Thompson, “Metal-Catalyzed Etching of Vertically Aligned Polysilicon and Amorphous Silicon Nanowire Arrays by Etching Direction Confinement,” Adv. Funct. Mater. 20 (2010) 4364–4370.
[101] I. A. Shah, B. M. A. Wolf, W. J. P. van Enckevort, and E. Vlieg, “Wet Chemical Etching of Silicon{111} : Etch Pit Analysis by the Lichtfigur Method,” J. Cryst. Growth 311 (2009) 1371-1377.
[102] J. Q. Han, S. Y. Lu, Q. Li, X. L. Li, and J. Y. Wang, “Anisotropic Wet Etching Silicon Tips of Small Opening Angle in KOH Solution with the Additions of I2/KI,” Sensor Actuat. A Phys. 152 (2009) 75–79.
[103] I. Zubel and M. Kramkowska, “Development of Etch Hillocks on Different Si(hkl) Planes in Silicon Anisotropic Etching,” Surf. Sci. 602 (2008) 1712–1721.
[104] Y. J. Hung, S. L. Lee, K. C. Wu, Y. Tai, and Y. T. Pan, “Antireflective Silicon Surface with Vertical Aligned Silicon Nanowires Realized by Simple Wet Chemical Etching Processes,” Opt. Express 19 (2011) 15792-15802.
[105] J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park, and J. H. Lee, “A Strong Antireflective Solar Cell Prepared by Tapering Silicon Nanowires,” Opt. Express 18 (2010) A286-A292.
[106] Y. Q. Qu, L. Liao, Y. J. Li, H. Zhang, Y. Huang, and X. F. Duan, “Electrically Conductive and Optically Active Porous Silicon Nanowires,” Nano Lett. 9 (2009) 4539-4543.
[107] L. H. Lin, S. P. Guo, X. Z. Sun, J. Y. Feng, and Y. Wang, ” Synthesis and Photoluminescence Properties of Porous Silicon Nanowire Arrays,” Nanoscale Res. Lett. 5 (2010) 1822–1828.
[108] X. Zhong, Y. Q. Qu, Y. C. Lin, L. Liao, and X. F. Duan, “Unveiling the Formation Pathway of Single Crystalline Porous Silicon Nanowires,” ACS Appl. Mater. Interfaces 3 (2011) 261–270.
[109] R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. Lond. A 119 (1928) 173-181.
[110] H. Wu, H. Y. Tsai, H. T. Chiu, and C. Y. Lee, “Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission,” Appl. Mater. Inter. 2 (2010) 3285–3288.
[111] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu, W. M. Zhao, P. Sun, F.i Song, J. G. Wan, and K. J. Chen, “Field Emission from a Periodic Amorphous Silicon Pillar Array Fabricated by Modified Nanosphere Lithography,” Nanotechnology 19 (2008) 135308.
[112] L. Xu, W. Li, J. Xu, J. Zhou, L. Wu, X. G. Zhang, Z. Y. Ma, and K. J. Chen, “Morphology Control and Electron Field Emission Properties of High-Ordered Si Nanoarrays Fabricated by Modified Nanosphere Lithography,” Appl. Surf. Sci. 255 (2009) 5414–5417.
[113] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai, and L. J. Chen, “High-Density Ordered Triangular Si Nanopillars with Sharp Tips and Varied Slopes: One-Step Fabrication and Excellent Field Emission Properties,” Nanotechnology 18 (2007) 505305.
[114] N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello, and S. T. Lee, “Fabrication and Field Emission of High-Density Silicon Cone Arrays,” Adv. Mater. 14 (2002) 1308-1311.
[115] S. W. Lee, B. L. Wu, and H. T. Chang, “Fabrication of Nanometer-Scale Si Field Emitters Using Self-Assembled Ge Nanomasks,” J. Electrochem. Soc. 157 (2010) 2 H174-H177.
[116] F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron Field Emission from Silicon Nanowires,” Appl. Phys. Lett. 75 (1999) 1700-1702.
[117] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, “Stacked Silicon Nanowires with Improved Field Enhancement Factor,” Appl. Mater. Inter. 2 (2010) 331-334.
[118] H. C. Wu, H. Y. Tsai, H. T. Chiu, and C. Y. Lee, “Silicon Rice-Straw Array Emitters and Their Superior Electron Field Emission,” Appl. Mater. Inter. 2 (2010) 3285-3288.
[119] Y. Li, J. Liang, Z. L. Tao, and J. Chen, “CuO Particles and Plates: Synthesis and Gas-Sensor Application,” Mater. Res. Bull. 43 (2008) 2380–2385.
[120] P Samarasekara, N. T. R. N. Kumara, and N. U. S. Yapa, “Sputtered Copper Oxide (CuO) Thin Films for Gas Sensor,” J. Phys.: Condens. Matter 18 (2006) 2417–2420.
[121] S. J. Chang, T. J. Hsueh, I C. Chen, S. F. Hsieh, S. P. Chang, C. L. Hsu, Y. R. Lin, and B. R. Huang, “Highly Sensitive ZnO Nanowire Acetone Vapor Sensor With Au Adsorption,” IEEE T Nanotechnol. 7 (2008) 754-759.
[122] Q. Qia, T. Zhang, L. Liu, X. J. Zheng, Q. J. Yu, Y. Zeng, and H. B. Yang, “Selective Acetone Sensor Based on Dumbbell-Like ZnO with Rapid Response and Recovery,” Sensor. Actuat. B-Chem 134 (2008) 166–170.
[123] M. Parthibavarman, V. Hariharan, and C. Sekar, “High-Sensitivity Humidity Sensor Based on SnO2 Nanoparticles Synthesized by Microwave Irradiation Method,” Mat. Sci. Eng. C-Mater 31 (2011) 840–844.
[124] S. C. Lee, S. Y. Kim, W. S. Lee, S. Y. Jung, B. W. Hwang, D. Ragupathy, D. D. Lee, S. Y. Lee, and J. C. Kim, “Effects of Textural Properties on the Response of a SnO2-Based Gas Sensor for the Detection of Chemical Warfare Agents,” Sensors 11 (2011) 6893-6904.
[125] X. T. Zhou, J. Q. Hu, C. P. Li, D. D. D. Ma, C. S. Lee, and S. T. Lee, “Silicon Nanowires as Chemical Sensors,” Chem. Phys. Lett. 369 (2003) 220–224.
[126] C. R. Field, H. J. In, N. J. Begue, and P. E. Pehrsson, “Vapor Detection Performance of Vertically Aligned, Ordered Arrays of Silicon Nanowires with a Porous Electrode,” Anal. Chem. 83 (2011) 4724–4728.
[127] G. G. Salgado, T. D. Becerril, H. J. Santiesteban, and E. R. Andre´s, “Porous Silicon Organic Vapor Sensor,” Opt. Mater. 29 (2006) 51–55.
[128] S. Y. Chien, C. P. Cheng, H. L. Sung, and Y. M. Shang, “Effects of Silicon Nanowire Array Fabricated by Spontaneous Electrochemical Reaction on Volatile Organic Solvent Sensing,” IEEE 4th international (2011).
[129] S. L. Cheng, C. Y. Chen, and S. W. Lee, “Kinetic Investigation of the Electrochemical Synthesis of Vertically-Aligned Periodic Arrays of Silicon Nanorods on (001) Si Substrate,” Thin Solid Films 518 (2010) S190–S195.
[130] 工業技術研究院工業安全衛生技術發展中心提供,丙酮物質安全資料表。
[131] R. K. Joshi and A. Kumar, “Room Temperature Gas Detection Using Silicon Nanowires,” Mater. Today 4 (2011) 52.
[132] S. J. Chang, T. J. Hsueh, I. C. Chen, S. F. Hsieh, S. P. Chang, C. L. Hsu, Y. R. Lin, and B. R. Huang, “Highly Sensitive ZnO Nanowire Acetone Vapor Sensor With Au Adsorption,” IEEE T Nanotechnol Vol 7 (2008) No.6.
[133] H. J. Pandya, S. Chandra, and A. L. Vyas, “Fabrication and Characterization of Low Temperature Acetone Sensor Using CuO Nanowires,” Nanosci Nanotech Let Vol.3 (2011) 744-748.
[134] S. K. Srivastava, D. Kumar, P. K. Singh, M. Kar, V. Kumar, and M. Husain, ” Excellent Antireflection Properties of Vertical Silicon Nanowire Arrays,” Solar Energ. Mater. Solar Cell 94 (2010) 1506–1511.
[135] A.B.D. Cassie and S. Baxter, “Wettability of Porous Surfaces,” Trans. Faraday Soc. 40 (1944) 0546.
指導教授 鄭紹良(Shao-liang Cheng) 審核日期 2012-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明