博碩士論文 993204036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:18.210.22.132
姓名 莊家穠(Chia-Nung Chuang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米金觸媒在對氯硝基苯氫化反應之研究
(Hydrogenation of p-chloronitrobenzene over gold catalysts)
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 奈米金觸媒於對-氯硝基苯氫化反應上有很好的催化活性和選擇性,此研究中,主要為利用添加劑(氧化鐵、氧化鋁、氧化鈰、氧化鎂、氧化錳和氧化鋯)對金觸媒於二氧化鈦在對-氯硝基苯氫化反應活性的影響。以氧化鐵為例,先以硝酸鐵含浸於二氧化鈦,之後以沉積沉澱法將金擔載於擔體上,製備一系列不同添加劑觸媒,以感應耦合電漿質譜儀、X光繞射儀、穿透式電子顯微鏡、X光能譜散佈分析儀、程式升溫還原分析法和X光光電子能譜儀等儀器鑑定其物理、化學特性和表面性質,並探討其物理與化學特性於對-氯硝基苯氫化反應上的影響,利用液相選擇性對-氯硝基苯氫化反應來測試觸媒的活性與選擇性,反應條件設定在:反應器為半批式反應器;反應溫度為353 K;壓力為1.2 MPa;攪拌速率500 rpm;反應溶劑為甲醇。結果顯示適量的添加劑加入,能強化觸媒的熱穩定度、活性位置的分散性,提升反應的活性和選擇率,改質後的金觸媒,其中以添加鐵之觸媒活性最好、選擇性最佳。而後製備一系列部不同鐵/鈦莫耳比的Au/FeOx-TiO2觸媒進行探討,在相同的反應條件下,結果顯示當鐵/鈦擔體煅燒300℃且Fe/Ti 原子比為4比6時達最高的活性及選擇性。添加鐵於Au/TiO2觸媒可避免金燒結,且降低金的氧化態,增加反應活性基點,表示利用金觸媒的良好選擇性與添加氧化鐵,可以有效提高觸媒活性。
摘要(英) Nanosized gold catalyst has been reported to be a good catalyst for the liquid phase hydrogenation reactions due to their excellent activity and selectivity. In this study, various additives (FeOx, AlOx, CeO2, MgO, MnOx, ZrO) were added into Au/TiO2 catalyst.. The modified-TiO2 support was prepared by incipient-wetness impregnation0. Gold catalysts were prepared by deposition-precipitation method with 4wt. % Au loading. The activity of the modified catalyst was tested for the hydrogenation of p-chloronitrobenzene. These catalysts were characterized by inductively-coupled-plasma-mass spectrometry, X–ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and temperature programmed reduction. The catalytic properties of gold based catalysts were studied on hydrogenation of p–chloronitrobenzene(p-CNB). The conditions for hydrogenation reaction were 1.2 MPa H2 pressure, 353 K reaction temperature and 500 rpm stirring speed. Methanol was used as the solvent, the concentration of p-CNB was 0.2 M (2.54g p–CNB in 80 ml methanol) and the amount of gold based catalyst was 0.5g. For modified gold catalysts, Fe-doped ones were better than the other catalysts, and it had the highest activity and selectivity. A series of Au catalysts supported on FeOx-TiO2 with various Fe contents were prepared. The iron oxide in Au/FeOx-TiO2 played the role of a textural promoter, prevents from sintering of gold particles. The results showed that the additive of Fe could prevent Au0 from being oxidized, increased the active sites and enhanced catalytic activity. Au/ FeOx-TiO2 with Fe/Ti atomic ratio of 4/6 exhibited the highest activity among the series of Au/ FeOx-TiO2. It could be concluded that adding suitable iron amount showed the best performance, and could promote the activity of Au catalyst effectively.
關鍵字(中) ★ 奈米金觸媒
★ 液相氫化反應
★ 對氯苯胺
★ 對氯硝基苯
關鍵字(英) ★ Nanoalloy gold catalyst
★ hydrogenation
★ p-chloronitrobenzene
★ p-chloroaniline
論文目次 中文摘要 I
Abstract II
Table of Contents IV
List of Tables VI
List of Figures VII
List of Schemes X
Chapter 1. Introduction 1
Chapter 2. Literature Review 6
2.1 Nanoalloy gold catalysts 6
2.2 The application of gold catalysts 8
2.2.1 Pollution control 8
2.2.2 Chemical processing 9
2.2.3 Fuel cells 10
2.3 Preparation method of gold catalysts 10
2.3.1 Deposition-precipitation method 11
2.3.2 Photo-deposition method 12
2.3.3 Impregnation method 13
2.3.4 Coprecipitation method 14
2.3.5 Chemical vapor deposition (CVD) method 14
2.4 Hydrogenation 14
2.4.1 Liquid phase hydrogenation of p-chloronitrobenzene 15
2.4.2 Hydrogenation over gold catalysts 20
2.5 Objectives 20
Chapter 3. Experimental 29
3.1 Chemicals 29
3.2 Preparation of catalysts 29
3.2.1 Preparation of Au/TiO2 catalysts 29
3.2.2 Preparation of Au/X-TiO2 catalysts 30
3.2.3 Preparation of physically and chemically mixed FeOx-TiO2 support Au catalysts 31
3.3 The characterization of catalysts 32
3.3.1 X-ray diffraction (XRD) 32
3.3.2 Transmission electron microscopy (TEM) 32
3.3.3 Temperature-programmed reduction (TPR) 33
3.3.4 X-ray photoelectron spectroscopy (XPS) 33
3.4 Catalytic activity test 33
Chapter 4. Hydrogenation of p-chloronitrobenzene 42
4.0 Abstract 42
4.1 Introduction 42
4.2 Results and discussion 46
4.2.1 X-ray diffraction (XRD) 46
4.2.2 Transmission electron microscopy (TEM) 47
4.2.3 X-ray photoelectron spectroscopy (XPS) 48
4.2.4 Reaction Test 50
4.2.5 Reaction rate constant 53
4.3 Conclusion 55
Chapter 5. Hydrogenation of p-chloronitrobenzene 73
5.0 Abstract 73
5.1 Introduction 74
5.2 Results and discussion 76
5.2.1 X-ray diffraction (XRD) 76
5.2.2 Transmission electron microscopy (TEM) 77
5.2.3 Temperature programmed reduction (TPR) 78
5.2.4 X-ray photoelectron spectroscopy (XPS) 80
5.2.5 Reaction Test 82
5.2.6 Reaction rate constant 85
5.3 Conclusion 86
Chapter 6. Summary 105
6.1 Hydrogenation of p-chloronitrobenzene on Nanosized modified Au/TiO2 catalysts 106
6.2 Hydrogenation of p-chloronitrobenzene on Nanosized Au/FeOx-TiO2 catalysts 107
Reference 109
Appendix A 122
參考文獻 Akita, Tomoki, Lu, Ping, Ichikawa, Satoshi, Tanaka, Koji, Haruta Masatake, “Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures”, Surf. Interface Anal. 31 (2001) 73–75.
Aronniemi, M., Sainio, J., Lahtinen, J., “XPS study on the correlation between chemical state and oxygen-sensing properties of an iron oxide thin film”, Applied Surface Science 253 (2007) 9478–9479.
Bailie, J.E., Abdullah, H.A., Anderson, J.A., Rochester, C.H., Richardson, N.V., Hodge, N., Zhang, J.G., Burrows, A., Kiely, C.J., Hutchings, G.J., “Hydrogenation of but-2-enal over supported Au/ZnO catalysts”, Phys. Chem. Chem. Phys. 3 (2001) 4113.
Bailie, J.J. and . Hutchings, G.J, “Promotion by sulfur of Ag/ZnO catalysts for the hydrogenation of but-2-enal”, C atal. Commun. 2 (2001) 291.
Bailie, J.J. and Hutchings, G.J., “Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation”, Chem. Commun. (1999) 2151.
Bond, G.C. and D.T. Thompson, “Catalysis by Gold”, Catalysis Review Science Engineering, 41 (1999) 319.
Bond, G. C., Thomphson, D. T., “Gold-catalysed oxidation of carbon monoxide”, Gold Bull. 33 (2000) 41.
Brown, H.C. and Brown, C.A., “The reaction of sodium borohydride with nickel acetate in aqueous solution-A convenient synthesis of an active nickel hydrogenation catalyst of low isomerizing tendency”, J. Am. Chem. Soc. 85 (1963) 1003.
Chen, Yu-Wen, Chang, Li-Hsin, Sasirekha, Natarajan, “Au/MnO2-TiO2 catalyst for preferential oxidation of carbon monoxide in hydrogen stream”, Catalysis Communications 8 (2007) 1702.
Chen, Yu-Wen, Yang, Yi-Fen, Sangeetha, Palanivelu, “Au/FeOx-TiO2 Catalysts for the Preferential Oxidation of CO in a H2 Stream”, Ind. Eng. Chem. Res. (2009) 1-3.
Chen, Y.W., Liu, Y.C., Huang, C.Y., “Hydrogenation of p-chloronitrobenzene on Ni-B nanometal catalysts”, J. Nanopart. Res. 8 (2006) 223-234.
Chen, Y.W., Liu, Y.C., Huang, C.Y., “Liquid-phase selective hydrogenation of p-chloronitrobenzene on Ni-P-B nanocatalysts”, Ind. Eng. Chem. Res. 45 (2006) 62.
Chen, Y.W., Liu, Y.C., “Hydrogenation of p-chloronitrobenzene on lanthanum-promoted NiB nanometal catalysts”, Ind. Eng. Chem. Res. 45 (2006) 2973.
Chen, Y.W., Liu, Y.C., Huang, C.Y., “Hydrogenation of p-chloronitrobenzene on Ni-B nanometal catalysts”, J. Nanopart. Res., 8 (2006) 223.
Chan, S. C., Barteau, M. A., “Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition” Langmuir 21 (2005) 5588.
Chen, Y. Z. and Chen, Y. C., “Hydrogenation of para-chloronitrobenzene over nickel borides”, Appl. Catal., A 115 (1994) 45.
Chen, Y., “Chemical preparation and characterization of metal-metalloid ultrafine amorphous alloy particles”, Catal. Today 44 (1998) 3.
Chen, X.F., Li, H.X., Luo, H.S. and Qiao, M.H., “Liquid phase hydrogenation of furfural to furfuryl alcohol over Mo-doped Co-B amorphous alloy catalyst”, Appl. Catal. A: Gen. 233 (2002) 13.
Chen, L. F., Chen, Y. W., “Effect of additive (W, Mo, and Ru) on Ni-B amorphous alloy catalyst in hydrogenation of p-chloronitrobenzene”, Ind. Eng. Chem. Res. 45 (2006) 8866.
Claus, P., Mohr, C., Hofmeister, H., “The influence of real structure of gold catalysts in the partial hydrogenation of acrolein”, Journal of Catalysis 213 (2003) 86.
Claus, P., “Heterogeneously catalysed hydrogenation using gold catalysts”, Appl. Cata. A: Gen 291 (2005) 222.
Claus, P., Brückner, A., Mohr, C. and Hofmeister, H., “Supported Gold Nanoparticles from Quantum Dot to Mesoscopic Size Scale: Effect of Electronic and Structural Properties on Catalytic Hydrogenation of Conjugated Functional Groups”, J. Am. Chem. Soc. 122 (2000) 11430
Claus, P., Schimpf, S., Schödel, R., Kraak, P. Mörke, W. Hönicke, D., “Hydrogenation of crotonaldehyde on Pt/TiO2 catalysts: Influence of the phase composition of titania
on activity and intramolecular selectivity”, Appl. Catal. A 165 (1997) 429.
Coq, B., Tijani, A. and Figueras, F., “Influence of alloying platinum for the hydrogenation of p-chloronitrobenzene over PtM/Al2O3 catalysts with M=Sn, Pb, Ge, Al, Zn”, J. Mol. Catal. 71 (1992) 317.
Coq, B., Tijani, A., Dutartre, R. and Figueras, F., “Influence of support and metallic precursor on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts”, J. Mol. Catal. 79 (1993) 253.
Dai, W.L., Qiao, M.H. and Deng, J.F., “XPS studies of a novel amorphous Ni-Co-W-B alloy powder”, Appl. Surf. Sci. 120 (1997) 119.
Daté, M., Ichihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catal. Today 72 (2002) 89.
Delannoy, L., Weiher, N., Tsapatsaris, N., Beesley, A. M., Nchari, L., Schroeder, A. L. M., Louis, C., “Reducibility of supported gold (III) precursors: influence of the metal oxide support and consequences for CO oxidation activity”, Top. Catal. 44 (2007) 263.
Deng, J.F., Li, H. and Wang, W.J., “Progress in design of new amorphous alloy catalysts”, Catal. Today 51 (1999) 113.
Domka, F., Basi´nska, A., Jó´zwiak, W.K., Góralski, J., “The behaviour of Ru/Fe2O3 catalysts and Fe2O3 supports in the TPR and TPO conditions”, Applied Catalysis A: General 190 (2000) 109.
Descostes, M., Mercier, F., Thromat, N., Beaucaire, C., Gautier-Soyer, M., “Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium”, Applied Surface Science 165 (2000) 291-292.
Gallezot, P. and Richard, D., “Selective Hydrogenation of α, β-Unsaturated Aldehydes “, Catal. Rev. Sci. Eng. 40 (1998) 81.
Galvagnoa, S., Neri, G., Visco, A.M., Donato, A., Panzalorto, M., “Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization”, Thermochimica Acta 329 (1999) 41-45.
Goodman, D. W., Chen M. S., “The structure of catalytically active gold on titania”, Science 306 (2004) 252.
Grisel, R. J. H., Nieuwenhuys, B. E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts”, Catal. Today 64 (2001) 69.
Grisel, R. J. H., Nieuwenhuys, B. E., “Selective oxidation of CO, over supported Au catalysts”, J. Catal. 199 (2001) 48.
Han, X.X., Zhou, R.X., Lai, G.H. and Zheng, X.M., “Influence of support and transition metal (Cr, Mn, Fe, Co, Ni and Cu) on the hydrogenation of p-chloronitrobenzene over supported platinum catalysts”, Catal. Today 93-95 (2004) 433.
Haruta, Masatake, “Gold as a Novel Catalyst in the 21st Century: Preparation, Working Mechanism and Applications”, Gold Bulletin (2004) 28.
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3,and Co3O4”, J. Catal. 144 (1993) 175.
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catal. Today 36 (1997) 153.
Haruta, M., “Gold as a low-temperature oxidation catalyst: factors controlling activity and selectivity”, Stud. Surf. Sci. Catal. 110 (1997) 123.
Haruta, M., “Catalysis of gold nanoparticles deposited on metal oxides”, Cattech 6 (2002) 102.
Haruta, M., “Nanoparticulate gold catalysts for low-temperature CO oxidation”, J. New Mater. Electrochem. Sys. 7 (2004) 163.
Hou, Y.J., Wang, Y.Q., He, F., Han, S., Mi, Z.T., Wu, W., Min, E., “Liquid pahse hydrogenation of 2-ethylanthraquinone over La-doped Ni-B amorphous alloy catalysts”, Mat. Lett. 58 (2004) 1267.
Jacobs, G., Graham, U. M., Chenu, E., Patterson, P. M., Dozier, A., Davis, B. H. “Low-temperature water–gas shift: impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design”, J. Catal 229 (2005) 499.
Jia, J., Haraki, K., Kondo, J.N., Domen, K., Tamaru, K., “Selective Hydrogenation of Acetylene over Au/Al2O3 Catalyst”, J. Phys. Chem. B 104 (2000) 11153.
Keane, Mark A., Cardenas-Lizana, Fernando, Gomez-Quero, Santiago, Hugon, Antoine, Delannoy, Laurent, Louis, Catherine, “Pd-promoted selective gas phase hydrogenation of p-chloronitrobenzene over alumina supported Au”, Journal of Catalysis 262 (2009) 235-243.
Keane, Mark A., Cardenas-Lizana, Fernando, Gomez-Quero, Santiago, Idriss, Hicham, “Gold particle size effects in the gas-phase hydrogenation of m-dinitrobenzene over Au/TiO2”, Journal of Catalysis 268 (2009) 223-224.
Kozlov, A. I., Kozlova, A. P., Liu, H., Iwasawa, Y., “A new approach to active supported Au catalysts”, Appl. Catal. A 182 (1999) 9.
Kozlov, A. I., Kozlova, A. P., Asakura, K., Matsui, Y., Kogure, T., Shido, T., Iwasawa, Y., “Supported gold catalysts prepared from a gold phosphine precursor and as-precipitated metal-hydroxide precursors: effect of preparation conditions on the catalytic performance”, J. Catal. 196 (2000) 56.
Li, Hexing, Li, Hui, Zhang, Jing, “Ultrasound-assisted preparation of a novel Ni-B amorphous catalyst in uniform nanoparticles for p-chloronitrobenzene hydrogenation”, Catalysis Communications 8 (2007) 2212.
Li, H., Li, H.X., Dai, W.L., Wang, W.J., Fang, Z.G., “XPS studies on surface electronic characteristics of Ni-B and Ni-P amorphous alloy and its correlation to their catalytic properties”, Appl. Sur. Sci. 152 (1999) 25.
Li, H.X., Luo, H.S., Zhuang, L., Dai, W.L., Qiao, M.H., “Liquid phase hydrogenation of furfrual to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts”, J. Mol. Catal. A: Chem. 203 (2003) 267.
Li, H.X., Li, H., Dai, W.L., Qiao, M.H., “Preparation of the Ni-B amorphous alloys with variable boron content and its correlation to the hydrogenation activity”, Appl. Catal. A: Gen. 238 (2003) 119.
Li, H., Zhao, Q.F., Li, H.X., “Selective hydrogenation of p-chloronitrobenzene over Ni-P-B amorphous catalyst and synergistic promoting effect of B and P”, J. Mol. Catal. A: Chem. 285 (2008) 29.
Li, H., Zhang, J., Li, H.X., “Ultrasound-assisted preparation of a novel Ni-B amorphous catalyst in uniform nanoparticles for p-chloronitrobenzene hydrogenation”, Catal. Comm. 8 (2007) 2211.
Liu, M.H., Yu, W.Y., Liu, H.F., “Selective hydrogenation of o-chloronitrobenzene over polymer-stabilized ruthenium colloidal catalysts”, J. Mol. Catal. A: Chem. 138 (1999) 295.
Liu, R., Yu, Y., Yoshida, K., Li, G., Jiang, H., Zhang, M., Zhao, F., Fujita, S., Arai, M., “Physically and chemically mixed TiO2-supported Pd and Au catalysts: unexpected synergistic effects on selective hydrogenation of citral in supercritical CO2”, J. Catal. 269 (2010) 191-193.
Lin, S., Vannice, M.A., “Gold dispersed on TiO2 and SiO2: adsorption properties and catalytic behavior in hydrogenation reactions”, Catal. Lett. 10 (1991) 47.
Luengnaruemitchaia, A., Osuwana, S., Gularib, E., “Selective catalytic oxidation of CO in the presence of H2 over gold catalyst”, Int. J. Hydrogen Energy 29 (2004) 429.
Luengnaruemitchai, A., Thoa, D. T. K., Osuwan, S., Gulari, E., “A comparative study of Au/MnOx and Au/FeOx catalysts for the catalytic oxidation of CO in hydrogen rich stream”, Int. J. Hydrogen Energy 30 (2005) 981.
Ma, Y.F., Li, W., Zhang, M.G., Zhou, Y., Tao, K.Y., “Preparation and catalytic properties of amorphous alloys in hydrogenation of sulfolene”, Appl. Catal. A: Gen. 246 (2003) 215.
Mahata, N., Cunha, A.F., Órfão, J.J.M., Figueired, J.L., “Hydrogenation of chloronitrobenzenes over filamentous carbon stabilized nickel nanoparticles”, Catal. Commun. 10 (2009) 1203.
Margitfalvi, J.L., Fási, A., Hegedűs, A.M., Lóny, F., Gőbölös, F.S., Bogdanchikova, S.N., “Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation”, Catal. Today 72 (2002) 157.
Milone, C., Trapani, M.C., Galvagno, S., “Synthesis of cinnamyl ethyl ether in the hydrogenation of cinnamaldehyde on Au/TiO2 catalysts”, Applied Catalysis A: General 337 (2008) 163.
Milone, C., Tropeano, M.L., Gulino, G., Neri, G., Ingoglia, R., Galvagno, S., “Selective liquid phase hydrogenation of citral on Au/Fe2O3 catalysts”, Chem. Commun. (2002) 868.
Mohr, C., Hofmeister, H., Lucas, M. and Claus, P., “Gold Catalysts for the Partial Hydrogenation of Acrolein”, Chem. Eng. Technol. 23 (2000) 324.
Moreau, F., Bond, G. C., Taylor, A. O., “Gold on titania catalysts for the oxidation of carbon monoxide: control pH during preparation with various gold content”, J. Catal. 231 (2005) 107.
Moreau, F., Bond, G. C., “CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component”, Catal. Today 114 (2006) 362.
Moreau, F., Bond, G. C., Linden, B. V. D., Silberva, B. A. A., Makkee, M., “Gold supported on mixed oxides for the oxidation of carbon monoxide”, Appl. Catal. A: Gen. 347 (2008) 208.
Munteanu, G., Ilieva, L., Andreeva, D., “Kinetic parameters obtained from TPR data for α-Fe2O3 and Au/α-Fe2O3 systems”, Therrnochimica Acta 291 (1997) 172.
Xu, J., Ning, J.B., Liu, J., Miao, H., Ma, H., Chen, C., Li, X.Q., Zhou, L.P., Yu, W.Q., “A remarkable promoting effect of water addition on selective hydrogenation of p-chloronitrobenzenein ethanol”, Catal. Commun. 8 (2007) 1763.
Okumura, M., Tsubota, S., Haruta, M., “Preparation of supported gold catalysts by gas-phase grafting of gold acethylacetonate for low-temperature oxidation of CO and of H2” J. Mol. Catal. A: Chem. 199 (2003) 73.
Parks, G.L., Pease, M.L., Burns, A.W., Layman, K.A., Bussell, M.E., Wang, X., Hanson, J. and Rodriguez, J.A., “Characterization and hydrodesulfurization properties of catalysts derived from amorphous metal-boron materials”, J. Catal. 246 (2007) 277.
Rayminde, Touroude, Rodolfo, Zanella, Catherine, Louis, Suzanne, Giorgio, “Crotonaldehyde hydrogenation by gold supported on TiO2: structure sensitivity and mechanism”, Journal of Catal. 223 (2004) 328-329.
Rossignol, C., Arrii, S., Morfin, F., Piccolo, L., Caps, Rousset, J. L., “Selective oxidation of CO over model gold-based catalysts in the presence of H2”, J. Catal. 230 (2005) 476.
Schubert, M.M., Plzak, V., Garvhe, J., Behm, R.J., “Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas”, Catal. Lett. 76 (2001) 143.
Schubert, M.M., Venugopal, A., Kahlich, M.J., Plzak, V., Behm, R. J., “Influence of H2O and CO2 on the selective CO oxidation in H2-rich gases over Au/α-Fe2O3”, J. Catal. 222 (2004) 32.
Sermon, P.A., Bond, G.C., Wells, P.B., “Hydrogenation of alkenes over supported gold”, J. Chem. Soc., Faraday Trans. I 75 (1979) 385.
Shen, J., Hu, Z., Zhang, H., Li, Z., Chen, Y., “The preparation of Ni-P ultrafine amorphous alloy particles by chemical reduction”, Appl. Phys. Lett. 59 (1991) 3545.
Shen, J., Hu, Z., Zhang, Q., Zhang, L., Chen, Y., “Investigation of Ni-P-B ultrafine amorphous alloy particles produced by chemical reduction”, J. Appl. Phys. 71 (1992) 5217.
Smirnov, V.V., Nikolaev, S.A., “Selective hydrogenation of phenylacetylene on gold nanoparticles”, Gold Bulletin Volume 42 No3 (2009) 185.
Stobinski, L., “Molecular and atomic deuterium chemisorption on thin gold films at 78 K: an isotope effect”, Appl. Surf. Sci. 103 (1996) 503.
Stobinski, L., Nowakowski, R., Dus, R., “Atomic hydrogen adsorption on thin discontinuous and continuous gold films- similarities and differences”, Vaccum 48 (1997) 203.
Stobinski, L., Dus, R., “Atomic hydrogen solubility in thin gold films and its influence on hydrogen thermal desorption spectra from the surface”, Appl. Surf. Sci. 62 (1992) 77.
Stobinski, L., Zommer, L., Dus, R., “Molecular hydrogen interactions with discontinuous and continuous thin gold films”, Appl. Surf. Sci. 141 (1999) 319.
Tijani, A., Coq, B., Figueras, F., “Hydrogenation of para-chloronitrobenzene over supported ruthenium-based catalysts”, Appl. Catal. 76 (1991) 255.
Tijani, A., Coq, B., Figuéras, F., “Pt/γ-Al2O3 catalytic membranes vs. Pt on γ-Al2O3 powders in the selective hydrogenation of p-chloronitrobenzene”, J. Mol. Catal. 68 (1991) 331.
Tsubota, S., Cunningham, D.A.H., Bando, Y., Haruta, M., “Preparation of nanometer gold strongly interacted with TiO2 and the structure sensitivity in low-temperature oxidation of CO”, Stud. Surf. Sci. Catal. 91 (1995) 227.
Venugopal, Akula, Scurrell, Mike S., “Low temperature reductive pretreatment of Au/Fe2O3 catalysts, TPR/TPO studies and behaviour in the water–gas shift reaction”, Applied Catalysis A: General 258 (2004) 241–245.
Venezia, A.M., Pawelec, B., Parola, V. La, Cano-Serrano, E., Campos-Martin, J.M., Fierro, J.L.G., “AuPd alloy formation in Au-Pd/Al2O3 catalysts and its role on aromatics hydrogenation”, Applied Surface Science 242 (2005) 382.
Venezia, A.M., Pantaleo, G., Longo, A., Carlo, G.D., Casaletto, M.P., Liotta, F.L., Deganello, G., “Relationship between Structure and CO Oxidation Activity of Ceria-Supported Gold Catalysts”, J. Phys. Chem. B 109 (2005) 2821.
Wang, C.Y., Liu, C.Y., Zheng, X., Chen, J., Shen, T., “The surface chemistry of hybrid nanometer-sized particles: I. Photochemical deposition of gold on ultrafine TiO2 particles”, Colloids Surf. A 131 (1998) 271.
Wang, D., Hao, Z., Cheng, D., Shi, X., Hu, C., “Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts”, J. Mol. Catal. A: Chem. 200 (2003) 229.
Wang, M.G., Li, H.X., Wu, Y.D., Zhang, J., “Comparative studies on the catalytic behaviors between the Ni-B amorphous alloy and other Ni-based catalysts during liquid phase hydrogenation of acetonitrile to ethylamine”, Mat. Letters 57 (2003) 2954.
Weiher, N., Bus, E., Delannoy, L., Louis, C., Ramaker, D.E., Miller, J.T., VanBokhoven, J.A., “Structure and oxidation state of gold on different supports under various CO oxidation conditions”, Volume 240, Issue 2(2006) 100.
Wolf, A., Schüth, F., “A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Appl. Catal. A: Gen. 226 (2002) 1.
Wood, B.J., Wise, H., “The role of adsorbed hydrogen in the catalytic hydrogenation of cyclohexene”, J. Catal. 5 (1966) 135.
Yamashita, H., Yoshikawa, H., Funabiki, T., Yoshida, S., “Catalysis by amorphous metal alloy”, J. Chem. Soc. Faraday Trans.I. 82 (1986) 1771.
Yan, X.H., Sun, J.Q., Wang, Y.W., Yang, J.F., “A Fe-promoted Ni-P amorphous alloy catalyst (Ni-Fe-P) for liquid phase hydrogenation of m- and p-chloronitrobenzene”, J. Mol. Catal. A: Chem 252 (2006) 17.
Yu, Z.K., Liao, S.J., Xu, Y., Yang, B., Yu, D.R., “ Hydrogenation of nitroaromatics by polymer-anchored bimetallic palladium-ruthenium and palladium-platinum catalysts under mild conditions“, J. Mol. Catal. A: Chem. 120 (1997) 247.
Zanella, R., Delannoy, L., Louis, C., “Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition–precipitation with NaOH and urea”, Appl. Catal. A: Gen. 291 (2005) 62.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2012-6-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明