博碩士論文 993204042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:44.220.247.152
姓名 歐陽曜聰(Yao-tsung Ouyang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 介穩態奈米結晶矽鍺薄膜之物性研究與應用
(The Physic Properties and Applications of Metastable SiGe Nano Crystalline Thin Films)
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本篇論文探討以簡易的共濺鍍方法鍍製非晶矽鍺薄膜於熱氧化矽之矽基板上,使用快速熱處理方式生成奈米結晶結構。矽鍺為完全固溶體,因為快速熱處理以致未達熱力學平衡,本篇主要成果為生成偏析鍺奈米結晶於非晶矽鍺薄膜中。實驗中利用同步輻射X光繞射、拉曼光譜儀鑑定矽鍺薄膜之微結構,再以高解析電子顯微鏡證實偏析鍺結晶存在,發現矽鍺薄膜中鍺結晶大小隨著鍺含量提高愈趨變大,以量化方式估算薄膜中的鍺結晶數量密度。鍺材料本身具備高吸收係數與高導電度之特性,實驗中以霍爾量測(Hall)與Tauc法說明其薄膜之電性與光學性質,薄膜具備低能隙(bandgap)與高遷移率(mobility)之優越特性,本論文藉由控制鍺結晶粒大小使其調控光學能隙。
將偏析鍺結晶之矽鍺薄膜應用於光二極體,本實驗利用硼顆粒與磷擴散片摻雜矽鍺薄膜使成為p-n二極體,利用I-V分析探討其電性變化,研究成果於磷熱擴散30分鐘之後呈現整流特性;在照光影響下,正向偏壓之電流隨著鍺含量提升而增加,並以異質量子概念解釋奈米晶與非晶界面對其電性影響。另外,本論文提出漸進式能隙之概念嘗試堆疊不同含量之矽鍺薄膜,發展出吸收不同波段之光波長之方法,驗證出漸進式之結構二極體於照光下電流大幅增加,未來漸進式吸收預期將可與光感應器或太陽能電池作為結合。
本論文之結果得知,非穩態之偏析鍺結晶可有效提高遷移率並利用鍺晶粒大小控制光學能隙,使用此特性製備出漸進式結構之光二極體,增加吸收光譜範圍,亦提供業界於元件設計上之參考。
摘要(英) Amorphous Si1-xGex films were prepared by co-sputtering on an oxidized Si wafer, followed by rapid thermal annealing, which formed nanocrystal films; since the Ge nanocrystals were not formed at thermodynamic equilibrium, an amorphous Si1-xGex matrix was finally obtained. Synchrotron radiation X-ray diffraction and Raman spectroscopy were utilized to identify the microstructure of the Si1-xGex films. High-resolution transmission electron microscopy was used to characterize the increase in size of the grains in the Ge nanocrystals with the Ge content. The electrical and optical properties were determined by Hall measurement and using Tauc’s method. Ge segregation permitted high mobility of the carriers and enhanced the electrical properties of the films. The low optical bandgap of the films made them good light absorbing materials. The results herein suggest that the grain sizes of the films can be used to tune their bandgaps.
P-n junction diode with good rectifying characteristics has been prepared based on the segregation of Ge crystals of Si1-xGex thin films deposited by co-sputter system. The current-voltage characteristics in darkness and under illumination were studied. The correlation between the p-n junction performance and the microstructure of the films is discussed. The rectifying property became stronger as the fraction of Ge in the Si1-xGex films increased. The heteroquantum model was demonstrated in relation to the diodes and the energy band diagram. The optical bandgap can be tuned by controlling the grain size in Ge and SiGe crystals. The graded structure of the Si1-xGex photodiode is proposed to widen the light absorption region. The concept can be used to design high-efficiency photodiodes.
關鍵字(中) ★ 矽鍺
★ 介穩態
★ 快速熱退火
關鍵字(英) ★ SiGe
★ metastable
★ RTA
論文目次 中文摘要 I
Abstract II
Table of contents III
List of figures V
List of tables VIII
Ch.1 Introduction 1
1.1 Introduction to Si1−xGex materials for use in photodiodes 1
1.2 Review of Literature on Si1-xGex films and segregation of Ge crystals 4
1.3 Doped SiGe layer 8
1.4 SiGe on Si for optical applications (III-V v.s. Si-based) 10
1.5 Ge photodiode on silicon 12
1.6 Review of formation of Ge QDs on Si1-xGex photodiode 16
Ch.2 Motivation 18
Ch.3 Experimental 20
Ch.4 Characteristic of Si1-xGex thin films 23
4.1 Evolution of Si1-xGex film microstructures 23
4.2 HRTEM results for Si1-xGex films 29
4.3 Influence of composition on thermodynamic parameters of nucleation 33
4.4 Dependence of free energy barrier to nucleation on composition 34
4.5 Electrical and optical properties of Si1-xGex films 36
Ch.5 Si1-xGex photodiode with segregated Ge crystals 39
5.1 Fabricating and characterizing p-type Si1-xGex with segregated Ge crystals 39
5.2 Current density-voltage (J-V) of Si1-xGex photodiode 42
5.3 Heteroquantum-dots model in nanocrystalline films 46
5.4 Novel concept of graded structure 51
Ch.6 Conclusion 54
參考文獻 [1] J. C. Bean, "Silicon-based semiconductor heterostructures column IV bandgap engineering," Proceedings of the IEEE, vol. 80, pp. 571, 1992.
[2] Y. C. Jeon, T. J. King, and R. T. Howe, "Properties of Phosphorus-Doped Poly-SiGe Films for Microelectromechanical System Applications," Journal of The Electrochemical Society, vol. 150, p. H1, 2003.
[3] M. Galindo-Mentle, F. López-Huerta, R. Palomino-Merino, C. Zúñiga-Islas, W. Calleja-Arriaga, and A. L. Herrera-May, "Fabrication process of a microstructures based on hydrogenated amorphous SiGe films for applications in MEMS devices," Journal of Mechanical Science and Technology, vol. 29, pp. 1673, 2015.
[4] Y. Ishikawa and K. Wada, "Germanium for silicon photonics," Thin Solid Films, vol. 518, pp. S83, 2010.
[5] J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, "Ge-on-Si optoelectronics," Thin Solid Films, vol. 520, pp. 3354, 2012.
[6] J. Michel, J. Liu, and L. C. Kimerling, "High-performance Ge-on-Si photodetectors," Nature Photonics, vol. 4, pp. 527, 2010.
[7] E. Kasper and H. J. Herzog, "Structural properties of silicon–germanium (SiGe) nanostructures," pp. 3, 2011.
[8] S. Sedky, A. Witvrouw, M. Caymax, A. Saerens, and P. V. Houtte, "Characterization of Reduced-pressure Chemical Vapor Deposition Polycrystalline Silicon Germanium Deposited at Temperatures ≤550 °C," Journal of Materials Research, vol. 17, pp. 1580, 2002.
[9] M. E. Gueunier, J. P. Kleider, P. Chatterjee, P. Roca i Cabarrocas, and Y. Poissant, "Study of pm-SiGe:H thin films for p–i–n devices and tandem solar cells," Thin Solid Films, vol. 427, pp. 247, 2003.
[10] S. A. Healy and M. A. Green, "Efficiency enhancements in crystalline silicon solar cells by alloying with germanium," Solar Energy Materials and Solar Cells, vol. 28, pp. 273, 1992.
[11] O. Madelung, "Landolt–B̈ornstein New Series 1982 Group III," Berlin: Springer, vol. 17a, 1982.
[12] J .A. Tsai , A. J. Tang, T. Noguchi, and a. R. Reif, "Effects of Ge on Material and Electrical Properties of Polycrystalline Si1–xGex for Thin-Film Transistors," Journal of The Electrochemical Society, vol. 142, pp. 3220, 1995.
[13] S. Yamaguchi, S. K. Park, N. Sugii, K. Nakagawa, and M. Miyao, "Ge-induced enhancement of solid-phase crystallization of Si on SiO2," Thin Solid Films, vol. 369, pp. 195, 2000.
[14] H. Y. Tong, T. J. King, and F. G. Shia, "Crystallization of amorphous SiGe thin films," Thin Solid Films, vol. 290-291, pp. 464, 1996.
[15] T. J. King, "Deposition and Properties of Low-Pressure Chemical-Vapor Deposited Polycrystalline Silicon-Germanium Films," Journal of The Electrochemical Society, vol. 141, p. 2235, 1994.
[16] A. A. Shklyaev, V. I. Vdovin, V. A. Volodin, D. V. Gulyaev, A. S. Kozhukhov, M. Sakuraba, and J. Murota, "Structure and optical properties of Si and SiGe layers grown on SiO2 by chemical vapor deposition," Thin Solid Films, vol. 579, pp. 131, 2015.
[17] S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, and R. Mertens, "Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications," Journal of Microelectromechanical Systems vol. 7, pp. 365, 1998.
[18] Z. Tang, W. Wang, D. Wang, D. Liu, Q. Liu, and D. He, "The influence of H2/Ar ratio on Ge content of the μc-SiGe:H films deposited by PECVD," Journal of Alloys and Compounds, vol. 504, pp. 403, 2010.
[19] E. V. Jelenkovic, K. Y. Tong, Z. Sun, C. L. Mak, and W. Y. Cheung, "Properties of crystallized Si1-xGex thin films deposited by sputtering," Journal of Vacuum Science Technology A, vol. 15, pp. 2836, 1997.
[20] W. K. Choi, L. K. Teh, L. K. Bera, W. K. Chim, A. T. S. Wee, and Y. X. Jie, "Microstructural characterization of rf sputtered polycrystalline silicon germanium films," Journal of Applied Physics, vol. 91, p. 444, 2002.
[21] I. Nakamura, T. Ajiki, H. Abe, D. Hoshi, and M. Isomura, "Formation of polycrystalline SiGe thin films by the RF magnetron sputtering method with Ar–H2 mixture gases," Vacuum, vol. 80, pp. 712, 2006.
[22] Y. P. Chou and S. C. Lee, "Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys," Journal of Applied Physics, vol. 83, p. 4111, 1998.
[23] S. F. Chen, Y. K. Fang, W. D. Wang, C. Y. Lin, and C. S. Lin, "Low temperature grown poly-SiGe thin film by Au metal-induced lateral crystallisation (MILC) with fast MILC growth rate," Electronics Letters, vol. 39, p. 1612, 2003.
[24] S. Peng, X. Shen, Z. Tang, and D. He, "Low-temperature Al-induced crystallization of hydrogenated amorphous Si1−xGex (0.2≤x≤1) thin films," Thin Solid Films, vol. 516, pp. 2276, 2008.
[25] T. Sadoh, K. Toko, H. Kanno, S. Masumori, M. Itakura, N. Kuwano, and M. Miyao, "Nucleation-Controlled Metal-Induced Lateral Crystallization of Amorphous Si1-xGex with Whole Ge Fraction on Insulator," Japanese Journal of Applied Physics, vol. 47, pp. 1876, 2008.
[26] J. Qi, Y. Yang, and D. He, "Polycrystalline Silicon–Germanium Films Prepared by Aluminum-Induced Crystallization," Journal of The Electrochemical Society, vol. 155, p. H903, 2008.
[27] M. Gjukic, M. Buschbeck, R. Lechner, and M. Stutzmann, "Aluminum-induced crystallization of amorphous silicon–germanium thin films," Applied Physics Letters, vol. 85, p. 2134, 2004.
[28] L. P. Scheller, M. Weizman, N. H. Nickel, and B. Yan, "Electrical transport in laser-crystallized polycrystalline silicon-germanium thin-films," Applied Physics Letters, vol. 95, p. 062101, 2009.
[29] H. Watakabe, "Electrical and structural properties of poly-SiGe film formed by pulsed-laser annealing," Journal of Applied Physics, vol. 95, p. 6457, 2004.
[30] K. Tao, J. Wang, Y. Sun, R. Jia, and Z. Jin, "In-situ phosphorous-doped SiGe layer on Si substrate by reactive thermal chemical vapor deposition at low temperature," Materials Science in Semiconductor Processing, vol. 38, pp. 137, 2015.
[31] Y. Kojima and M. Isomura, "Crystalline silicon germanium films grown on crystalline silicon substrates by solid phase crystallization," Japanese Journal of Applied Physics, vol. 54, p. 08KB01, 2015.
[32] D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, J. Michel, and L. C. Kimerling, "Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates," Applied Physics Letters, vol. 91, p. 252111, 2007.
[33] R. R. Lieten, J. C. McCallum, and B. C. Johnson, "Single crystalline SiGe layers on Si by solid phase epitaxy," Journal of Crystal Growth, vol. 416, pp. 34, 2015.
[34] A. Rodrı́guez, T. Rodrı́guez, J. Olivares, J. Sangrador, P. Martı́n, O. Martı́nez, J. Jiménez, and C. Ballesteros, "Nucleation site location and its influence on the microstructure of solid-phase crystallized SiGe films," Journal of Applied Physics, vol. 90, p. 2544, 2001.
[35] K. H. Chen, C. Y. Chien, W. T. Lai, T. George, A. Scherer, and P. W. Li, "Controlled Heterogeneous Nucleation and Growth of Germanium Quantum Dots on Nanopatterned Silicon Dioxide and Silicon Nitride Substrates," Crystal Growth & Design, vol. 11, pp. 3222, 2011.
[36] W. T. Xu, H. L. Tu, D. L. Liu, R. Teng, Q. H. Xiao, and Q. Chang, "Self-assembled SiGe quantum dots embedded in Ge matrix by Si ion implantation and subsequent annealing," Journal of Nanoparticle Research, vol. 14, 2012.
[37] K. H. Chen, C. C. Wang, T. George, and P. W. Li, "The role of Si interstitials in the migration and growth of Ge nanocrystallites under thermal annealing in an oxidizing ambient," Nanoscale Research Letters vol. 9, pp. 339, 2014.
[38] S. Huang, Z. Xia, H. Xiao, J. Zheng, Y. Xie, and G. Xie, "Structure and property of Ge/Si nanomultilayers prepared by magnetron sputtering," Surface and Coatings Technology, vol. 204, pp. 558, 2009.
[39] P. C. Zalm, G. F. A. Walle, D. J. Gravesteijn, and A. A. Gorkum, "Ge segregation at Si/Si1−xGex interfaces grown by molecular beam epitaxy," Applied Physics Letters, vol. 55, p. 2520, 1989.
[40] D. A. Grützmacher, T. O. Sedgwick, A. Powell, M. Tejwani, S. S. Iyer, J. Cotte, and F. Cardone, "Ge segregation in SiGe/Si heterostructures and its dependence on deposition technique and growth atmosphere," Applied Physics Letters, vol. 63, p. 2531, 1993.
[41] M. Weizman, N. H. Nickel, I. Sieber, and B. Yan, "Successive segregation in laser-crystallized poly-SiGe thin films," Journal of Non-Crystalline Solids, vol. 352, pp. 1259, 2006.
[42] M. Weizman, N. H. Nickel, I. Sieber, W. Bohne, J. Röhrich, E. Strub, and B. Yan, "Phase segregation in laser crystallized polycrystalline SiGe thin films," Thin Solid Films, vol. 487, pp. 72, 2005.
[43] P. Chaudhuri, A. Bhaduri, A. Bandyopadhyay, S. Vignoli, P. P. Ray, and C. Longeaud, "High diffusion length silicon germanium alloy thin films deposited by pulsed rf PECVD method," Journal of Non-Crystalline Solids, vol. 354, pp. 2105, 2008.
[44] T. Noguchi, "Characterization of Si1-xGexThin Films Prepared by Sputtering," Journal of the Korean Physical Society, vol. 36, pp. L1, 2000.
[45] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto, and T. Meguro, "P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering," Physica B vol. 308-310, pp. 257, 2001.
[46] N. R. Zangenberg, J. F. Pedersen, J. L. Hansen, and A. Nylandsted, "Boron and phosphorus diffusion in strained and relaxed Si and SiGe," Journal of Applied Physics, vol. 94, p. 3883, 2003.
[47] G. P. Ru, X. P. Qu, Qiang Gu, W. J. Qi, and B. Z. Li, "Boron and phosphorous diffusion in ion-beam-sputtering deposited SiGe films," Materials Letters vol. 57, pp. 921, 2002.
[48] Y. Yamamoto, B. Heinemann, J. Murota, and B. Tillack, "Phosphorus atomic layer doping in SiGe using reduced pressure chemical vapor deposition," Thin Solid Films, vol. 557, pp. 14, 2014.
[49] T. B. Asafa, A. Witvrouw, B. S. Morcos, K. Vanstreels, and S. A. M. Said, "Influence of germanium incorporation on the structural and electrical properties of boron-doped ultrathin poly-Si1−xGex films deposited by chemical vapour deposition," Applied Physics A, vol. 116, pp. 751, 2013.
[50] T. J. King, J. P. McVittie, K. C. Saraswat, and a. J. R. Pfiester, "Electrical properties of heavily doped polycrystalline silicon-germanium films," IEEE Transactions on Electron Devices, vol. 41, pp. 228, 1994.
[51] M. Lindorf, H. Rohrmann, G. L. Katona, D. L. Beke, H. F. Pernau, and M. Albrecht, "Nanostructured SiGe thin Films Obtained Through MIC Processing," Materials Today: Proceedings, vol. 2, pp. 557, 2015.
[52] J. S. Christensen, "Dopant diffusion in Si and SiGe," Doctoral Thesis from KTH Microelectronics and Information Technology, p. 52, 2004.
[53] K. Yang, A. L. Gutierrez-Aitken, X. Zhang, G. I. Haddad, and P. Bhattacharya, "Design, modeling, and characterization of monolithically integrated InP-based (1.55 μm) high-speed (24 Gbs) p-i-nHBT front-end photoreceivers," Journal of Lightwave Technology, vol. 14, pp. 1831, 1996.
[54] B.Y. Tsaur, C.K. Chen, and S. A. Marino, "Long-wavelength GexSi1-x/Si heterojunction infrared detectors and focal-plane arrays," SPIE Infrared Technology XVII, vol. 1540, pp. 580, 1991.
[55] K.-W. ANG and G.-Q. L. PATRICK, "AVALANCHE PHOTODIODES: Si charge avalanche enhances APD sensitivity beyond 100 GHz," More Detectors and Imaging Articles, 2010.
[56] E. A. Fitzgerald, Y. H. Xie, M. L. Green, D. Brasen, A. R. Kortan, J. Michel, Y. J. Mii, and B. E. Weir, "Totally relaxed Ge xSi1−x layers with low threading dislocation densities grown on Si substrates," Applied Physics Letters vol. 59, pp. 811, 1991.
[57] S. B. Samavedam, M. T. Currie, T. A. Langdo, and E. A. Fitzgerald, "High quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers," Applied Physics Letters, vol. 73, pp. 2125, 1998.
[58] L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal semiconductor metal near infrared light detector based on epitaxial GeSi," APPLIED PHYSICS LETTERS, vol. 72, pp. 3175, 1998.
[59] H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, "High-quality Ge epilayers on Si with low threading-dislocation densities," Applied Physics Letters, vol. 75, p. 2909, 1999.
[60] D. Choi, Y. Ge, J. S. Harris, J. Cagnon, and S. Stemmer, "Low surface roughness and threading dislocation density Ge growth on Si (001)," Journal of Crystal Growth, vol. 310, pp. 4273, 2008.
[61] J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, "Ultralow dark current Ge/Si(100) photodiodes with low thermal budget," Applied Physics Letters, vol. 94, p. 201106, 2009.
[62] Y. Y. Fang, J. Tolle, J. Tice, A. V. G. Chizmeshya, J. Kouvetakis, V. R. D′Costa, and J. Menéndez, "Epitaxy driven synthesis of elemental GeSi strain-engineered materials and device structures via designer molecular chemistry," Chemistry of Materials, vol. 19, pp. 5910, 2007.
[63] S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, "Growth of highly strain-relaxed Ge[sub 1−x]Sn[sub x]/virtual Ge by a Sn precipitation controlled compositionally step-graded method," Applied Physics Letters, vol. 92, p. 231916, 2008.
[64] S. S. Tseng, I. H. Chen, and P. W. Li, "Photoresponses in polycrystalline silicon phototransistors incorporating germanium quantum dots in the gate dielectrics," Applied Physics Letters, vol. 93, p. 191112, 2008.
[65] Kang L. Wang, Dongho Cha, Jianlin Liu, and C. Chen, "Ge/Si self-assembled quantum dots and their optoelectronic device applications," Proc. IEEE, vol. 95, pp. 1866, 2007.
[66] M. L. Lee, G. Dezsi, and R. Venkatasubramanian, "Analysis of SiGe/Si quantum dot superlattices grown by low-pressure chemical vapor deposition for thin solar cells," Thin Solid Films, vol. 518, pp. S76, 2010.
[67] M. Kolahdouz, A. A. Farniya, L. Di Benedetto, and H. H. Radamson, "Improvement of infrared detection using Ge quantum dots multilayer structure," Applied Physics Letters, vol. 96, p. 213516, 2010.
[68] W.T. Lai, P.H. Liao, A.P. Homyk, A. Scherer, and P. W. Li, "SiGe Quantum Dots Over Si Pillars for Visible to Near-Infrared Broadband Photodetection," IEEE Photonics Technology Letter vol. 25, pp. 1520, 2013.
[69] M. H. Kuo, C. C. Wang, W. T. Lai, T. George, and P. W. Li, "Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance," Applied Physics Letters, vol. 101, p. 223107, 2012.
[70] M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, "Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots," Applied Physics Letters, vol. 80, p. 509, 2002.
[71] M. Herbst, C. Schramm, K. Brunner, T. Asperger, H. Riedl, G. Abstreiter, A. Vo¨rckel, H. Kurz, and E. Mu¨ller, "Structural and optical properties of vertically correlated Ge island layers grown at low temperatures " Materials Science and Engineering: B, vol. 89, pp. 54, 2002.
[72] Daniel A. Ruddy, Justin C. Johnson, E. Ryan Smith, and N. R. Neale, "Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals," ACS Nano, vol. 4, pp. 7459, 2010.
[73] S. Cosentino, S. Mirabella, M. Miritello, G. Nicotra, R. Lo Savio, F. Simone, C. Spinella, and A. Terrasi, "The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica," Nanoscale Research Letters vol. 6, p. 135, 2011.
[74] C. C. Wang, D. S. Wuu, S. Y. Lien, Y. S. Lin, C. Y. Liu, C. H. Hsu, and C. F. Chen, "Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer," International Journal of Photoenergy, vol. 2012, pp. 1, 2012.
[75] J. Zimmer, H. Stiebig, and H. Wagner, "a-SiGe:H based solar cells with graded absorption layer," Journal of Applied Physics, vol. 84, p. 611, 1998.
[76] M. L. Lee, C. W. Leitz, Z. Cheng, A. J. Pitera, T. Langdo, M. T. Currie, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis, "Strained Ge channel p-type metal–oxide–semiconductor field-effect transistors grown on Si[sub 1−x]Ge[sub x]/Si virtual substrates," Applied Physics Letters, vol. 79, p. 3344, 2001.
[77] C. Y. Tsao, Z. Liu, X. Hao, and M. A. Green, "In situ growth of Ge-rich poly-SiGe:H thin films on glass by RF magnetron sputtering for photovoltaic applications," Applied Surface Science, vol. 257, pp. 4354, 2011.
[78] M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, "High-speed germanium photodiodes monolithically integrated on silicon with MBE," Thin Solid Films, vol. 508, pp. 393, 2006.
[79] M. Oehme, J. Werner, O. Kirfel, and E. Kasper, "MBE growth of SiGe with high Ge content for optical applications," Applied Surface Science, vol. 254, pp. 6238, 2008.
[80] A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination," Physical Review, vol. 56, pp. 978, 1939.
[81] M. Bendayan, R. Beserman, F. Edelman, Y. Komem, and S. S. Iyer, "Crystallization process of amorphous mixed SixGe1-x thin films," Applied Surface Science vol. 65/66, pp. 489, 1993.
[82] I. P. Herman and F. Magnotta, "Ge-Si alloy microstructure fabrication by direct-laser writing with analysis by Raman microprobe spectroscopy," Journal of Applied Physics, vol. 61, p. 5118, 1987.
[83] J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, "Measurements of alloy composition and strain in thin GexSi1−x layers," Journal of Applied Physics, vol. 75, p. 8098, 1994.
[84] M. I. Alonso and K. Winer, "Raman spectra ofc-Si1−xGex alloys," Physical Review B, vol. 39, pp. 10056, 1989.
[85] J. Olivares, P. Martin, A. Rodriguez, J. Sangrador, J. Jimenez, and T. Rodriguez, "Raman spectroscopy study of amorphous SiGe films deposited by low pressure chemical vapor deposition and polycrystalline SiGe films obtained by solid-phase crystallization," Thin Solid Films, vol. 358, pp. 56, 2000.
[86] L. K. Teh, W. K. Choi, L. K. Bera, and W. K. Chim, "Structural characterisation of polycrystalline SiGe thin film," Solid State Electron, vol. 45, pp. 1963, 2001.
[87] K. Kitahara, K. Hirose, J. Suzuki, K. Kondo, and A. Hara, "Growth of Quasi-Single-Crystal Silicon–Germanium Thin Films on Glass Substrates by Continuous Wave Laser Lateral Crystallization," Japanese Journal of Applied Physics, vol. 50, p. 115501, 2011.
[88] J. D. Hoffman, "Thermodynamic Driving Force in Nucleation and Growth Processes," The Journal of Chemical Physics vol. 29, p. 1192, 1958.
[89] D. R. H. Jones and G. A. Chadwick, "An expression for the free energy of fusion in the homogeneous nucleation of solid from pure melts," Philosophical Magazine, vol. 24, p. 995, 1971.
[90] C. V. Thompson and F. Spaepen, "On the approximation of the free energy change on crystallization," Acta Metallurgica, vol. 27, pp. 1855, 1979.
[91] H. Y. Tong, Q. Jiang, D. Hsu, T. J. King, and F. G. Shi, "Microstructure Evolution of Amorphous Si1-xGex Thin Films," MRS Proceedings, vol. 472, p. 397, 1997.
[92] M. Winter, "The University of Sheffield and WebElements Ltd, UK," www.webelements.com, 1993.
[93] F. G. Shi, H. Y. Tong, and J. D. Ayers, "Free energy barrier to nucleation of amorphous to crystalline transformation selects the scale of microstructure of crystallized materials," Applied Physical Letter, vol. 67, pp. 350, 1995.
[94] M. R. Weidmann and K. E. Newman, "Simulation of elastic-network relaxation: The Si1−xGex random alloy," Physical Review B, vol. 45, pp. 8388, 1992.
[95] J. Tauc, "in Amorphous and Liquid Semiconductors," London, 1974.
[96] D. S. Bang, M. Cao, A. Wang, K. C. Saraswat, and T. J. King, "Resistivity of boron and phosphorus doped polycrystalline Si1−xGex films," Applied Physics Letters, vol. 66, p. 195, 1995.
[97] Y. T. Ouyang, C. H. Su, J. Y. Chang, S. L. Cheng, P. C. Lin, and A. T. Wu, "Metastable Ge nanocrystalline in SiGe matrix for photodiode," Applied Surface Science, vol. 349, pp. 387, 2015.
[98] J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. O. m. Ilday, F. X. Kärtner, and J. Yasaitis, "High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform," Applied Physics Letters, vol. 87, p. 103501, 2005.
[99] S. Tong, J. L. Liu, J. Wan, and K. L. Wang, "Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate," Applied Physics Letters, vol. 80, p. 1189, 2002.
[100] Z. Huang, J. Oh, and J. C. Campbell, "Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers," Applied Physics Letters, vol. 85, p. 3286, 2004.
[101] G. Y. Hu, R. F. O′Connell, Y. L. He, and M. B. Yu, "Electronic conductivity of hydrogenated nanocrystalline silicon films," J. Appl. Phys. , vol. 78, pp. 3945, 1999.
[102] Y. L. He, G. Y. Hu, M. B. Yu, M. Liu, J. L. Wang, and G. Y. Xu, "Conduction mechanism of hydrogenated nanocrystalline silicon films," Physical Review B, vol. 59, pp. 15352, 1999.
[103] Y. J. Song, M. R. Park, E. Guliants, and W. A. Anderson, "Influence of defects and band offsets on carrier transport mechanisms in amorphous silicon_crystalline silicon heterojunction solar cells," Solar Energy Materials and Solar Cells, vol. 64, pp. 225, 2000.
[104] G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, "Effect of Ge Incorporation on Bandgap and Photosensitivity of Amorphous SiGe Thin Films," Materials Sciences and Applications, vol. 03, pp. 67, 2012.
[105] R. Braunstein, A. R. Moore, and F. Herman, "Intrinsic Optical Absorption in Germanium-Silicon Alloys," Physical Review, vol. 109, pp. 695, 1958.
[106] "SiGe-Band structure and carrier concentration," http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiGe/bandstr.html.
指導教授 吳子嘉(Albert T. Wu) 審核日期 2015-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明