參考文獻 |
[1] J. C. Bean, "Silicon-based semiconductor heterostructures column IV bandgap engineering," Proceedings of the IEEE, vol. 80, pp. 571, 1992.
[2] Y. C. Jeon, T. J. King, and R. T. Howe, "Properties of Phosphorus-Doped Poly-SiGe Films for Microelectromechanical System Applications," Journal of The Electrochemical Society, vol. 150, p. H1, 2003.
[3] M. Galindo-Mentle, F. López-Huerta, R. Palomino-Merino, C. Zúñiga-Islas, W. Calleja-Arriaga, and A. L. Herrera-May, "Fabrication process of a microstructures based on hydrogenated amorphous SiGe films for applications in MEMS devices," Journal of Mechanical Science and Technology, vol. 29, pp. 1673, 2015.
[4] Y. Ishikawa and K. Wada, "Germanium for silicon photonics," Thin Solid Films, vol. 518, pp. S83, 2010.
[5] J. Liu, R. Camacho-Aguilera, J. T. Bessette, X. Sun, X. Wang, Y. Cai, L. C. Kimerling, and J. Michel, "Ge-on-Si optoelectronics," Thin Solid Films, vol. 520, pp. 3354, 2012.
[6] J. Michel, J. Liu, and L. C. Kimerling, "High-performance Ge-on-Si photodetectors," Nature Photonics, vol. 4, pp. 527, 2010.
[7] E. Kasper and H. J. Herzog, "Structural properties of silicon–germanium (SiGe) nanostructures," pp. 3, 2011.
[8] S. Sedky, A. Witvrouw, M. Caymax, A. Saerens, and P. V. Houtte, "Characterization of Reduced-pressure Chemical Vapor Deposition Polycrystalline Silicon Germanium Deposited at Temperatures ≤550 °C," Journal of Materials Research, vol. 17, pp. 1580, 2002.
[9] M. E. Gueunier, J. P. Kleider, P. Chatterjee, P. Roca i Cabarrocas, and Y. Poissant, "Study of pm-SiGe:H thin films for p–i–n devices and tandem solar cells," Thin Solid Films, vol. 427, pp. 247, 2003.
[10] S. A. Healy and M. A. Green, "Efficiency enhancements in crystalline silicon solar cells by alloying with germanium," Solar Energy Materials and Solar Cells, vol. 28, pp. 273, 1992.
[11] O. Madelung, "Landolt–B̈ornstein New Series 1982 Group III," Berlin: Springer, vol. 17a, 1982.
[12] J .A. Tsai , A. J. Tang, T. Noguchi, and a. R. Reif, "Effects of Ge on Material and Electrical Properties of Polycrystalline Si1–xGex for Thin-Film Transistors," Journal of The Electrochemical Society, vol. 142, pp. 3220, 1995.
[13] S. Yamaguchi, S. K. Park, N. Sugii, K. Nakagawa, and M. Miyao, "Ge-induced enhancement of solid-phase crystallization of Si on SiO2," Thin Solid Films, vol. 369, pp. 195, 2000.
[14] H. Y. Tong, T. J. King, and F. G. Shia, "Crystallization of amorphous SiGe thin films," Thin Solid Films, vol. 290-291, pp. 464, 1996.
[15] T. J. King, "Deposition and Properties of Low-Pressure Chemical-Vapor Deposited Polycrystalline Silicon-Germanium Films," Journal of The Electrochemical Society, vol. 141, p. 2235, 1994.
[16] A. A. Shklyaev, V. I. Vdovin, V. A. Volodin, D. V. Gulyaev, A. S. Kozhukhov, M. Sakuraba, and J. Murota, "Structure and optical properties of Si and SiGe layers grown on SiO2 by chemical vapor deposition," Thin Solid Films, vol. 579, pp. 131, 2015.
[17] S. Sedky, P. Fiorini, M. Caymax, S. Loreti, K. Baert, L. Hermans, and R. Mertens, "Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications," Journal of Microelectromechanical Systems vol. 7, pp. 365, 1998.
[18] Z. Tang, W. Wang, D. Wang, D. Liu, Q. Liu, and D. He, "The influence of H2/Ar ratio on Ge content of the μc-SiGe:H films deposited by PECVD," Journal of Alloys and Compounds, vol. 504, pp. 403, 2010.
[19] E. V. Jelenkovic, K. Y. Tong, Z. Sun, C. L. Mak, and W. Y. Cheung, "Properties of crystallized Si1-xGex thin films deposited by sputtering," Journal of Vacuum Science Technology A, vol. 15, pp. 2836, 1997.
[20] W. K. Choi, L. K. Teh, L. K. Bera, W. K. Chim, A. T. S. Wee, and Y. X. Jie, "Microstructural characterization of rf sputtered polycrystalline silicon germanium films," Journal of Applied Physics, vol. 91, p. 444, 2002.
[21] I. Nakamura, T. Ajiki, H. Abe, D. Hoshi, and M. Isomura, "Formation of polycrystalline SiGe thin films by the RF magnetron sputtering method with Ar–H2 mixture gases," Vacuum, vol. 80, pp. 712, 2006.
[22] Y. P. Chou and S. C. Lee, "Structural, optical, and electrical properties of hydrogenated amorphous silicon germanium alloys," Journal of Applied Physics, vol. 83, p. 4111, 1998.
[23] S. F. Chen, Y. K. Fang, W. D. Wang, C. Y. Lin, and C. S. Lin, "Low temperature grown poly-SiGe thin film by Au metal-induced lateral crystallisation (MILC) with fast MILC growth rate," Electronics Letters, vol. 39, p. 1612, 2003.
[24] S. Peng, X. Shen, Z. Tang, and D. He, "Low-temperature Al-induced crystallization of hydrogenated amorphous Si1−xGex (0.2≤x≤1) thin films," Thin Solid Films, vol. 516, pp. 2276, 2008.
[25] T. Sadoh, K. Toko, H. Kanno, S. Masumori, M. Itakura, N. Kuwano, and M. Miyao, "Nucleation-Controlled Metal-Induced Lateral Crystallization of Amorphous Si1-xGex with Whole Ge Fraction on Insulator," Japanese Journal of Applied Physics, vol. 47, pp. 1876, 2008.
[26] J. Qi, Y. Yang, and D. He, "Polycrystalline Silicon–Germanium Films Prepared by Aluminum-Induced Crystallization," Journal of The Electrochemical Society, vol. 155, p. H903, 2008.
[27] M. Gjukic, M. Buschbeck, R. Lechner, and M. Stutzmann, "Aluminum-induced crystallization of amorphous silicon–germanium thin films," Applied Physics Letters, vol. 85, p. 2134, 2004.
[28] L. P. Scheller, M. Weizman, N. H. Nickel, and B. Yan, "Electrical transport in laser-crystallized polycrystalline silicon-germanium thin-films," Applied Physics Letters, vol. 95, p. 062101, 2009.
[29] H. Watakabe, "Electrical and structural properties of poly-SiGe film formed by pulsed-laser annealing," Journal of Applied Physics, vol. 95, p. 6457, 2004.
[30] K. Tao, J. Wang, Y. Sun, R. Jia, and Z. Jin, "In-situ phosphorous-doped SiGe layer on Si substrate by reactive thermal chemical vapor deposition at low temperature," Materials Science in Semiconductor Processing, vol. 38, pp. 137, 2015.
[31] Y. Kojima and M. Isomura, "Crystalline silicon germanium films grown on crystalline silicon substrates by solid phase crystallization," Japanese Journal of Applied Physics, vol. 54, p. 08KB01, 2015.
[32] D. D. Cannon, J. Liu, D. T. Danielson, S. Jongthammanurak, U. U. Enuha, K. Wada, J. Michel, and L. C. Kimerling, "Germanium-rich silicon-germanium films epitaxially grown by ultrahigh vacuum chemical-vapor deposition directly on silicon substrates," Applied Physics Letters, vol. 91, p. 252111, 2007.
[33] R. R. Lieten, J. C. McCallum, and B. C. Johnson, "Single crystalline SiGe layers on Si by solid phase epitaxy," Journal of Crystal Growth, vol. 416, pp. 34, 2015.
[34] A. Rodrı́guez, T. Rodrı́guez, J. Olivares, J. Sangrador, P. Martı́n, O. Martı́nez, J. Jiménez, and C. Ballesteros, "Nucleation site location and its influence on the microstructure of solid-phase crystallized SiGe films," Journal of Applied Physics, vol. 90, p. 2544, 2001.
[35] K. H. Chen, C. Y. Chien, W. T. Lai, T. George, A. Scherer, and P. W. Li, "Controlled Heterogeneous Nucleation and Growth of Germanium Quantum Dots on Nanopatterned Silicon Dioxide and Silicon Nitride Substrates," Crystal Growth & Design, vol. 11, pp. 3222, 2011.
[36] W. T. Xu, H. L. Tu, D. L. Liu, R. Teng, Q. H. Xiao, and Q. Chang, "Self-assembled SiGe quantum dots embedded in Ge matrix by Si ion implantation and subsequent annealing," Journal of Nanoparticle Research, vol. 14, 2012.
[37] K. H. Chen, C. C. Wang, T. George, and P. W. Li, "The role of Si interstitials in the migration and growth of Ge nanocrystallites under thermal annealing in an oxidizing ambient," Nanoscale Research Letters vol. 9, pp. 339, 2014.
[38] S. Huang, Z. Xia, H. Xiao, J. Zheng, Y. Xie, and G. Xie, "Structure and property of Ge/Si nanomultilayers prepared by magnetron sputtering," Surface and Coatings Technology, vol. 204, pp. 558, 2009.
[39] P. C. Zalm, G. F. A. Walle, D. J. Gravesteijn, and A. A. Gorkum, "Ge segregation at Si/Si1−xGex interfaces grown by molecular beam epitaxy," Applied Physics Letters, vol. 55, p. 2520, 1989.
[40] D. A. Grützmacher, T. O. Sedgwick, A. Powell, M. Tejwani, S. S. Iyer, J. Cotte, and F. Cardone, "Ge segregation in SiGe/Si heterostructures and its dependence on deposition technique and growth atmosphere," Applied Physics Letters, vol. 63, p. 2531, 1993.
[41] M. Weizman, N. H. Nickel, I. Sieber, and B. Yan, "Successive segregation in laser-crystallized poly-SiGe thin films," Journal of Non-Crystalline Solids, vol. 352, pp. 1259, 2006.
[42] M. Weizman, N. H. Nickel, I. Sieber, W. Bohne, J. Röhrich, E. Strub, and B. Yan, "Phase segregation in laser crystallized polycrystalline SiGe thin films," Thin Solid Films, vol. 487, pp. 72, 2005.
[43] P. Chaudhuri, A. Bhaduri, A. Bandyopadhyay, S. Vignoli, P. P. Ray, and C. Longeaud, "High diffusion length silicon germanium alloy thin films deposited by pulsed rf PECVD method," Journal of Non-Crystalline Solids, vol. 354, pp. 2105, 2008.
[44] T. Noguchi, "Characterization of Si1-xGexThin Films Prepared by Sputtering," Journal of the Korean Physical Society, vol. 36, pp. L1, 2000.
[45] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto, and T. Meguro, "P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering," Physica B vol. 308-310, pp. 257, 2001.
[46] N. R. Zangenberg, J. F. Pedersen, J. L. Hansen, and A. Nylandsted, "Boron and phosphorus diffusion in strained and relaxed Si and SiGe," Journal of Applied Physics, vol. 94, p. 3883, 2003.
[47] G. P. Ru, X. P. Qu, Qiang Gu, W. J. Qi, and B. Z. Li, "Boron and phosphorous diffusion in ion-beam-sputtering deposited SiGe films," Materials Letters vol. 57, pp. 921, 2002.
[48] Y. Yamamoto, B. Heinemann, J. Murota, and B. Tillack, "Phosphorus atomic layer doping in SiGe using reduced pressure chemical vapor deposition," Thin Solid Films, vol. 557, pp. 14, 2014.
[49] T. B. Asafa, A. Witvrouw, B. S. Morcos, K. Vanstreels, and S. A. M. Said, "Influence of germanium incorporation on the structural and electrical properties of boron-doped ultrathin poly-Si1−xGex films deposited by chemical vapour deposition," Applied Physics A, vol. 116, pp. 751, 2013.
[50] T. J. King, J. P. McVittie, K. C. Saraswat, and a. J. R. Pfiester, "Electrical properties of heavily doped polycrystalline silicon-germanium films," IEEE Transactions on Electron Devices, vol. 41, pp. 228, 1994.
[51] M. Lindorf, H. Rohrmann, G. L. Katona, D. L. Beke, H. F. Pernau, and M. Albrecht, "Nanostructured SiGe thin Films Obtained Through MIC Processing," Materials Today: Proceedings, vol. 2, pp. 557, 2015.
[52] J. S. Christensen, "Dopant diffusion in Si and SiGe," Doctoral Thesis from KTH Microelectronics and Information Technology, p. 52, 2004.
[53] K. Yang, A. L. Gutierrez-Aitken, X. Zhang, G. I. Haddad, and P. Bhattacharya, "Design, modeling, and characterization of monolithically integrated InP-based (1.55 μm) high-speed (24 Gbs) p-i-nHBT front-end photoreceivers," Journal of Lightwave Technology, vol. 14, pp. 1831, 1996.
[54] B.Y. Tsaur, C.K. Chen, and S. A. Marino, "Long-wavelength GexSi1-x/Si heterojunction infrared detectors and focal-plane arrays," SPIE Infrared Technology XVII, vol. 1540, pp. 580, 1991.
[55] K.-W. ANG and G.-Q. L. PATRICK, "AVALANCHE PHOTODIODES: Si charge avalanche enhances APD sensitivity beyond 100 GHz," More Detectors and Imaging Articles, 2010.
[56] E. A. Fitzgerald, Y. H. Xie, M. L. Green, D. Brasen, A. R. Kortan, J. Michel, Y. J. Mii, and B. E. Weir, "Totally relaxed Ge xSi1−x layers with low threading dislocation densities grown on Si substrates," Applied Physics Letters vol. 59, pp. 811, 1991.
[57] S. B. Samavedam, M. T. Currie, T. A. Langdo, and E. A. Fitzgerald, "High quality germanium photodiodes integrated on silicon substrates using optimized relaxed graded buffers," Applied Physics Letters, vol. 73, pp. 2125, 1998.
[58] L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. D. Gaspare, E. Palange, and F. Evangelisti, "Metal semiconductor metal near infrared light detector based on epitaxial GeSi," APPLIED PHYSICS LETTERS, vol. 72, pp. 3175, 1998.
[59] H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, "High-quality Ge epilayers on Si with low threading-dislocation densities," Applied Physics Letters, vol. 75, p. 2909, 1999.
[60] D. Choi, Y. Ge, J. S. Harris, J. Cagnon, and S. Stemmer, "Low surface roughness and threading dislocation density Ge growth on Si (001)," Journal of Crystal Growth, vol. 310, pp. 4273, 2008.
[61] J. Osmond, G. Isella, D. Chrastina, R. Kaufmann, M. Acciarri, and H. von Känel, "Ultralow dark current Ge/Si(100) photodiodes with low thermal budget," Applied Physics Letters, vol. 94, p. 201106, 2009.
[62] Y. Y. Fang, J. Tolle, J. Tice, A. V. G. Chizmeshya, J. Kouvetakis, V. R. D′Costa, and J. Menéndez, "Epitaxy driven synthesis of elemental GeSi strain-engineered materials and device structures via designer molecular chemistry," Chemistry of Materials, vol. 19, pp. 5910, 2007.
[63] S. Takeuchi, Y. Shimura, O. Nakatsuka, S. Zaima, M. Ogawa, and A. Sakai, "Growth of highly strain-relaxed Ge[sub 1−x]Sn[sub x]/virtual Ge by a Sn precipitation controlled compositionally step-graded method," Applied Physics Letters, vol. 92, p. 231916, 2008.
[64] S. S. Tseng, I. H. Chen, and P. W. Li, "Photoresponses in polycrystalline silicon phototransistors incorporating germanium quantum dots in the gate dielectrics," Applied Physics Letters, vol. 93, p. 191112, 2008.
[65] Kang L. Wang, Dongho Cha, Jianlin Liu, and C. Chen, "Ge/Si self-assembled quantum dots and their optoelectronic device applications," Proc. IEEE, vol. 95, pp. 1866, 2007.
[66] M. L. Lee, G. Dezsi, and R. Venkatasubramanian, "Analysis of SiGe/Si quantum dot superlattices grown by low-pressure chemical vapor deposition for thin solar cells," Thin Solid Films, vol. 518, pp. S76, 2010.
[67] M. Kolahdouz, A. A. Farniya, L. Di Benedetto, and H. H. Radamson, "Improvement of infrared detection using Ge quantum dots multilayer structure," Applied Physics Letters, vol. 96, p. 213516, 2010.
[68] W.T. Lai, P.H. Liao, A.P. Homyk, A. Scherer, and P. W. Li, "SiGe Quantum Dots Over Si Pillars for Visible to Near-Infrared Broadband Photodetection," IEEE Photonics Technology Letter vol. 25, pp. 1520, 2013.
[69] M. H. Kuo, C. C. Wang, W. T. Lai, T. George, and P. W. Li, "Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance," Applied Physics Letters, vol. 101, p. 223107, 2012.
[70] M. Elkurdi, P. Boucaud, S. Sauvage, O. Kermarrec, Y. Campidelli, D. Bensahel, G. Saint-Girons, and I. Sagnes, "Near-infrared waveguide photodetector with Ge/Si self-assembled quantum dots," Applied Physics Letters, vol. 80, p. 509, 2002.
[71] M. Herbst, C. Schramm, K. Brunner, T. Asperger, H. Riedl, G. Abstreiter, A. Vo¨rckel, H. Kurz, and E. Mu¨ller, "Structural and optical properties of vertically correlated Ge island layers grown at low temperatures " Materials Science and Engineering: B, vol. 89, pp. 54, 2002.
[72] Daniel A. Ruddy, Justin C. Johnson, E. Ryan Smith, and N. R. Neale, "Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals," ACS Nano, vol. 4, pp. 7459, 2010.
[73] S. Cosentino, S. Mirabella, M. Miritello, G. Nicotra, R. Lo Savio, F. Simone, C. Spinella, and A. Terrasi, "The role of the surfaces in the photon absorption in Ge nanoclusters embedded in silica," Nanoscale Research Letters vol. 6, p. 135, 2011.
[74] C. C. Wang, D. S. Wuu, S. Y. Lien, Y. S. Lin, C. Y. Liu, C. H. Hsu, and C. F. Chen, "Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer," International Journal of Photoenergy, vol. 2012, pp. 1, 2012.
[75] J. Zimmer, H. Stiebig, and H. Wagner, "a-SiGe:H based solar cells with graded absorption layer," Journal of Applied Physics, vol. 84, p. 611, 1998.
[76] M. L. Lee, C. W. Leitz, Z. Cheng, A. J. Pitera, T. Langdo, M. T. Currie, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis, "Strained Ge channel p-type metal–oxide–semiconductor field-effect transistors grown on Si[sub 1−x]Ge[sub x]/Si virtual substrates," Applied Physics Letters, vol. 79, p. 3344, 2001.
[77] C. Y. Tsao, Z. Liu, X. Hao, and M. A. Green, "In situ growth of Ge-rich poly-SiGe:H thin films on glass by RF magnetron sputtering for photovoltaic applications," Applied Surface Science, vol. 257, pp. 4354, 2011.
[78] M. Oehme, J. Werner, M. Jutzi, G. Wöhl, E. Kasper, and M. Berroth, "High-speed germanium photodiodes monolithically integrated on silicon with MBE," Thin Solid Films, vol. 508, pp. 393, 2006.
[79] M. Oehme, J. Werner, O. Kirfel, and E. Kasper, "MBE growth of SiGe with high Ge content for optical applications," Applied Surface Science, vol. 254, pp. 6238, 2008.
[80] A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination," Physical Review, vol. 56, pp. 978, 1939.
[81] M. Bendayan, R. Beserman, F. Edelman, Y. Komem, and S. S. Iyer, "Crystallization process of amorphous mixed SixGe1-x thin films," Applied Surface Science vol. 65/66, pp. 489, 1993.
[82] I. P. Herman and F. Magnotta, "Ge-Si alloy microstructure fabrication by direct-laser writing with analysis by Raman microprobe spectroscopy," Journal of Applied Physics, vol. 61, p. 5118, 1987.
[83] J. C. Tsang, P. M. Mooney, F. Dacol, and J. O. Chu, "Measurements of alloy composition and strain in thin GexSi1−x layers," Journal of Applied Physics, vol. 75, p. 8098, 1994.
[84] M. I. Alonso and K. Winer, "Raman spectra ofc-Si1−xGex alloys," Physical Review B, vol. 39, pp. 10056, 1989.
[85] J. Olivares, P. Martin, A. Rodriguez, J. Sangrador, J. Jimenez, and T. Rodriguez, "Raman spectroscopy study of amorphous SiGe films deposited by low pressure chemical vapor deposition and polycrystalline SiGe films obtained by solid-phase crystallization," Thin Solid Films, vol. 358, pp. 56, 2000.
[86] L. K. Teh, W. K. Choi, L. K. Bera, and W. K. Chim, "Structural characterisation of polycrystalline SiGe thin film," Solid State Electron, vol. 45, pp. 1963, 2001.
[87] K. Kitahara, K. Hirose, J. Suzuki, K. Kondo, and A. Hara, "Growth of Quasi-Single-Crystal Silicon–Germanium Thin Films on Glass Substrates by Continuous Wave Laser Lateral Crystallization," Japanese Journal of Applied Physics, vol. 50, p. 115501, 2011.
[88] J. D. Hoffman, "Thermodynamic Driving Force in Nucleation and Growth Processes," The Journal of Chemical Physics vol. 29, p. 1192, 1958.
[89] D. R. H. Jones and G. A. Chadwick, "An expression for the free energy of fusion in the homogeneous nucleation of solid from pure melts," Philosophical Magazine, vol. 24, p. 995, 1971.
[90] C. V. Thompson and F. Spaepen, "On the approximation of the free energy change on crystallization," Acta Metallurgica, vol. 27, pp. 1855, 1979.
[91] H. Y. Tong, Q. Jiang, D. Hsu, T. J. King, and F. G. Shi, "Microstructure Evolution of Amorphous Si1-xGex Thin Films," MRS Proceedings, vol. 472, p. 397, 1997.
[92] M. Winter, "The University of Sheffield and WebElements Ltd, UK," www.webelements.com, 1993.
[93] F. G. Shi, H. Y. Tong, and J. D. Ayers, "Free energy barrier to nucleation of amorphous to crystalline transformation selects the scale of microstructure of crystallized materials," Applied Physical Letter, vol. 67, pp. 350, 1995.
[94] M. R. Weidmann and K. E. Newman, "Simulation of elastic-network relaxation: The Si1−xGex random alloy," Physical Review B, vol. 45, pp. 8388, 1992.
[95] J. Tauc, "in Amorphous and Liquid Semiconductors," London, 1974.
[96] D. S. Bang, M. Cao, A. Wang, K. C. Saraswat, and T. J. King, "Resistivity of boron and phosphorus doped polycrystalline Si1−xGex films," Applied Physics Letters, vol. 66, p. 195, 1995.
[97] Y. T. Ouyang, C. H. Su, J. Y. Chang, S. L. Cheng, P. C. Lin, and A. T. Wu, "Metastable Ge nanocrystalline in SiGe matrix for photodiode," Applied Surface Science, vol. 349, pp. 387, 2015.
[98] J. Liu, J. Michel, W. Giziewicz, D. Pan, K. Wada, D. D. Cannon, S. Jongthammanurak, D. T. Danielson, L. C. Kimerling, J. Chen, F. O. m. Ilday, F. X. Kärtner, and J. Yasaitis, "High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform," Applied Physics Letters, vol. 87, p. 103501, 2005.
[99] S. Tong, J. L. Liu, J. Wan, and K. L. Wang, "Normal-incidence Ge quantum-dot photodetectors at 1.5 μm based on Si substrate," Applied Physics Letters, vol. 80, p. 1189, 2002.
[100] Z. Huang, J. Oh, and J. C. Campbell, "Back-side-illuminated high-speed Ge photodetector fabricated on Si substrate using thin SiGe buffer layers," Applied Physics Letters, vol. 85, p. 3286, 2004.
[101] G. Y. Hu, R. F. O′Connell, Y. L. He, and M. B. Yu, "Electronic conductivity of hydrogenated nanocrystalline silicon films," J. Appl. Phys. , vol. 78, pp. 3945, 1999.
[102] Y. L. He, G. Y. Hu, M. B. Yu, M. Liu, J. L. Wang, and G. Y. Xu, "Conduction mechanism of hydrogenated nanocrystalline silicon films," Physical Review B, vol. 59, pp. 15352, 1999.
[103] Y. J. Song, M. R. Park, E. Guliants, and W. A. Anderson, "Influence of defects and band offsets on carrier transport mechanisms in amorphous silicon_crystalline silicon heterojunction solar cells," Solar Energy Materials and Solar Cells, vol. 64, pp. 225, 2000.
[104] G. G. Pethuraja, R. E. Welser, A. K. Sood, C. Lee, N. J. Alexander, H. Efstathiadis, P. Haldar, and J. L. Harvey, "Effect of Ge Incorporation on Bandgap and Photosensitivity of Amorphous SiGe Thin Films," Materials Sciences and Applications, vol. 03, pp. 67, 2012.
[105] R. Braunstein, A. R. Moore, and F. Herman, "Intrinsic Optical Absorption in Germanium-Silicon Alloys," Physical Review, vol. 109, pp. 695, 1958.
[106] "SiGe-Band structure and carrier concentration," http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiGe/bandstr.html.
|