博碩士論文 993204046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.204.56.97
姓名 何宇軒(Yu-Xuan He)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 變溫吸附程序分離煙道氣中二氧化碳之連續性探討與實驗設計分析
相關論文
★ 醫療用氧氣濃縮機之改善與發展★ 變壓吸附法濃縮及回收氣化產氫製程中二氧化碳與氫氣之模擬
★ 變壓吸附法應用於小型化醫療用製氧機及生質酒精脫水產生無水酒精之模擬★ 變壓吸附法濃縮及回收氣化產氫製程中一氧化碳、二氧化碳與氫氣之模擬
★ 利用吸附程序於較小型發電廠煙道氣進氣量下捕獲二氧化碳之模擬★ 利用週期性吸附反應程序製造高純度氫氣並捕獲二氧化碳之模擬
★ 利用PEI/SBA-15於變溫及真空變溫吸附捕獲煙道氣中二氧化碳之模擬★ PEI/SBA-15固態吸附劑對二氧化碳吸附之實驗研究
★ 以變壓吸附法分離汙染空氣中氧化亞氮之模擬★ 以變壓吸附法分離汙染空氣中氧化亞氮之實驗
★ 以變壓吸附法濃縮己二酸工廠尾氣中氧化亞氮之模擬★ 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗
★ 變壓吸附法回收發電廠廢氣與合成氣中二氧化碳之模擬★ 利用變壓吸附程序分離甲醇裂解產氣中氫氣及一氧化碳之模擬
★ 變壓吸附程序捕獲合成氣中二氧化碳之實驗研究與吸附劑之選擇評估★ 以變壓吸附法回收水煤氣反應後合成氣中二氧化碳之模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年由於溫室氣體引起的環境問題日益受到重視,溫室氣體減量計畫變得勢不容緩。而溫室氣體中的二氧化碳排放最主要來自於工業上化石燃料的燃燒,因此如何純化及回收煙道氣中的二氧化碳便顯得相當重要。
本研究以發電後所產生之煙道氣作為變溫吸附分離程序實驗的對象(15.03% CO2和84.97% N2),所使用的吸附劑為依台電綜合研究所配方製備的聚苯胺固態CO2吸附劑,目的為藉微量天平實驗、貫流曲線實驗和變溫吸附實驗數據,分析連續操作所造成的暫時性或永久性特性變化,並利用實驗設計分析方法探討各操作變因(進料壓力、吸附溫度、脫附溫度、沖洗壓力等)對製程的影響,期望對未來建立量產製程與系統環境操作提供參考。
摘要(英) Due to the environmental problems cased by greenhouse gases in recent years, the projects of reducing the emission of greenhouse gases become urgent. CO2 released into the atmosphere are mainly attributed to fossil fuel combustion, so the purification and recovery of CO2 from flue gas is the first important step in solving CO2 problem.
In this study, temperature swing adsorption process is utilized to separate CO2 and N2 from the power plant flue gas(15.03% CO2和84.97% N2) with solid polyaniline sorbent. By using Micro-Balance Thermo D-200, breakthrough curve experiment and temperature swing adsorption experiment, the property change of adsorbent cased by continuous operation can be analyzed. Also,using the method of experimental design analysis to investigate the change of CO2 concentration and recovery by varying the operating conditions(feed gas pressure, adsorption temperature, desorption temperature,purge pressure, etc), can provide references to the establishment of the mass production process and system operation in the future.
關鍵字(中) ★ 突破曲線
★ 實驗設計
★ 變溫吸附
★ 連續性操作
關鍵字(英) ★ temperature swing adsorption process
★ breakthrough curve
★ continuous operation
★ experimental design analysis
論文目次 第一章 、緒論 - 1 -
第二章 、簡介及文獻回顧 - 4 -
2-1 吸附現象簡介 - 4 -
2-1-1 變溫吸附法的基本原理 - 5 -
2-1-2 吸附劑及其選擇性 - 6 -
2-1-3 再生方法 - 7 -
2-1-4 等溫平衡吸附曲線 - 8 -
2-1-5貫流曲線 - 12 -
2-2聚苯胺固態二氧化碳吸附劑 - 13 -
2-2-1 胺基化處理 - 14 -
2-2-2 苯胺聚合物反應 - 19 -
2-3 變溫吸附程序(TSA)相關文獻 - 22 -
第三章 、實驗 - 23 -
3-1聚苯胺固態CO2吸附劑之製備 - 23 -
3-1-1 實驗藥品 - 23 -
3-1-2 矽膠固著苯胺聚合物吸附劑製備流程 - 23 -
3-2等溫吸附平衡曲線實驗 - 26 -
3-2-1實驗裝置 - 26 -
3-2-2實驗步驟 - 31 -
3-2-3天平校正 - 32 -
3-2-4空白實驗 - 32 -
3-2-5連續變溫吸脫附實驗 - 33 -
3-3貫流曲線實驗 - 34 -
3-3-1 實驗裝置、各部規格及特性 - 34 -
3-3-2實驗系統參數與操作條件 - 38 -
3-3-3實驗步驟 - 39 -
3-4變溫吸附實驗 - 40 -
3-4-1實驗裝置、各部規格及特性 - 42 -
3-4-2實驗步驟 - 46 -
第四章 、實驗結果與討論 - 49 -
4-1等溫吸附平衡曲線實驗結果與討論 - 49 -
4-1-1空白實驗結果 - 50 -
4-1-2 平衡吸附曲線實驗結果 - 54 -
4-1-3連續變溫吸脫附實驗 - 58 -
4-2貫流曲線實驗結果與討論 - 62 -
4-2-1塔內壓力及流速對貫流行為的影響 - 63 -
4-2-2 連續操作對貫流行為之影響 - 70 -
4-2-3 連續操作對不同批吸附劑貫流行為之影響 - 72 -
4-3變溫吸附實驗之實驗設計分析 - 73 -
4-3-1 殘差常態機率圖(Normal Probability Plot of the residuals)之分析 - 76 -
4-3-2變異數分析(Analysis of variance, ANOVA) - 83 -
4-3-3 Main Effect Plot與Interaction Plot - 90 -
4-3-4 Regression Analysis - 98 -
4-3-5 以模型回歸之結果與實驗值比較 - 115 -
4-4變溫吸附實驗結果 - 122 -
4-4-1 G1各組實驗隨循環數改變所產生變化 - 123 -
4-4-2 G2各組實驗與G1對應組別之比較 - 173 -
4-5連續變溫吸附實驗對吸附劑之影響 - 190 -
第五章 、結論 - 192 -
參考文獻 - 193 -
附錄A、Thermo Cahn D-200操作流程 - 198 -
附錄B GC操作步驟 - 200 -
附錄C 單塔變溫吸附實驗第三步驟數據 - 202 -
附錄D 單塔變溫吸附實驗第四步驟數據 - 203 -
附錄E 單塔變溫吸附實驗總回收率數據 - 204 -
參考文獻 [1] F. Su, C. Lu, S. Kuo and W. Zeng, “Adsorption of CO2 on an amine-functionalized Y-type zeolite”, Energy Fuels, vol. 24, pp. 1441–1448, 2010.
[2] O. Leal, C. Bolivar, C. Ovalles, J.J. Garcia and Y. Espidel, “Reversible adsorption of carbon dioxide on amine surface-bonded silica gel”, Inorg. Chim. Acta, vol. 240, pp.183–189, 1995.
[3] S. Kim, J. Ida, V.V. Guliants and J.Y. Lin, “Tailoring pore properties of MCM-48 silica for selective adsorption of CO2”, J. Phys. Chem. B, vol. 109, pp. 6287–6293, 2005.
[4] M.B. Yue, L.B. Sun, Y. Cao, Z.J. Wang, Y. Wang, Q. Yu and J.H. Zhu, “Promoting the CO2 adsorption in the amine-containing SBA-15 by hydroxyl group.” Microporous Mesoporous Mater. vol. 114, pp.74–81, 2008.
[5] S. Lee, T.P. Filburn, M. Gray, J.W. Park and H.J. Song, “Screening test of solid amine sorbents for CO2 capture”, Ind. Eng. Chem. Res., vol. 47, pp. 7419–7423, 2008.
[6] M.L. Gray, K.J. Champagne, D. Fauth, J.P. Baltrus and H. Pennline, “Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide”, Int. J. Greenhouse Gas Control, vol. 2, pp. 3–8, 2008.
[7] Gregg, S. J. and K. S. W. Sing , Adsorption, Surface area and Porosity, Acadmic press, New York, 1982.
[8] O. Leal, C. Bolivar, C. Ovalles, J.J. Garcia and Y. Espidel, “Reversible adsorption of carbon dioxide on amine surface-bonded silica gel”, Inorg. Chim. Acta, vol. 240, pp.183–189, 1995.
[9] H.Y. Huang, R.T. Yang, D. Chinn and C.L. Munson, “Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas”, Ind. Eng. Chem. Res. , vol. 42, pp.2427–2433,2003.
[10] G.P. Knowles, J.V. Graham, S.W. Delaney and A.L. Chaffee, “Aminopropylfunctionalized mesoporous silica as CO2 adsorbents”, Fuel Process Technol. , vol. 86 , pp. 1435–1448,2005.
[11] G.P. Knowles, S.W. Delaney and A.L. Chaffee, “Diethylenetriamine[propyl(silyl)]-functionalized(DT) mesoporous silicas as CO2 adsorbents”, Ind. Eng. Chem. Res., vol. 45 ,pp.2626–2633, 2006.
[12] P.J.E. Harlick and A. Sayari, “Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption”, Ind. Eng. Chem. Res., vol. 45, pp.3248 – 3255,2006.
[13] Y. Belmabkhout and A. Sayari, “Effect of pore expansion and aminefunctionalization of mesoporous silica on CO2 adsorption over a wide range of conditions”, Adsorption, vol. 15, pp.318–328,2009.
[14] A. Sayari, M. Kruk, M. Jaroniec and I.L. Moudrakovski, “New approaches to pore size engineering of mesoporous silicates”, Adv. Mater., vol. 10 , pp.1376–1379, 1998.
[15] A. Sayari, “Unprecedented expansion of the pore size and volume of periodic mesoporous silica”, Angew. Chem. Int. Ed., vol. 112, pp. 3042–3044,2000.
[16] P.J.E. Harlick and A. Sayari, “Applications of pore-expanded mesoporous silicas. 5. Triamine grafted material with exceptional CO2 dynamic and equilibrium adsorption performance”, Ind. Eng. Chem. Res., vol. 46 , pp. 446–458,2007.
[17] A. Sayari and Y. Belmabkhout, “Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor”, J. Am. Chem. Soc., vol. 132 , pp. 6312–6314,2010.
[18] N. Hiyoshi, K. Yogo and T. Yashima, “Adsorption characteristics of carbon dioxide on organically functionalized SBA-15”, Micropor. Mesopor. Mater., vol. 84, pp. 357–365,2005.
[19] S.N. Kim, W.J. Son, J.S. Choi and W.S. Ahn, “CO2 adsorption using aminefunctionalized mesoporous silica prepared via anionic surfactant-mediated synthesis”, Micropor. Mesopor. Mater., vol. 115 , pp. 497–503,2008.
[20] C. Knofel, J. Descarpenteries, A. Benzaouia, V. Zelenak, S. Mornet, P.L. Llewellyn and V. Hornebecq, “Functionalized micro-/mesoporous silica for the adsorption of carbon dioxide”, Micropor. Mesopor. Mater., vol. 99, pp. 79–85,2007.
[21] L. Wang, L. Ma, A. Wang, Q. Liu and T. Zhang, “CO2 adsorption on SBA-15 modified by aminosilane”, Chin. J. Catal., vol. 28, pp. 805–810,2007.
[22] J. Wei, J. Shi, H. Pan, W. Zhao, Q. Ye and Y. Shi, “Adsorption of carbon dioxide on organically functionalized SBA-16”, Micropor. Mesopor. Mater., vol. 116 , pp. 394–399,2008.
[23] V. Zelenak, M. Badanicova, D. Halamova, J. Cejka, A. Zukal, N. Murafa and G. Goerigk, “Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture”, Chem. Eng. J., vol. 144 , pp. 336–342,2008.
[24] V. Zelenak, D. Halamova, L. Gaberova, E. Bloch and P. Llewellyn, “Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: effect of amine basicity on sorption properties”, Micropor. Mesopor. Mater., vol. 116 , pp. 358–364,2008.
[25] C. Knofel, C. Martin, V. Hornebecq and P.L. Llewellyn, “Study of carbon dioxide adsorption on mesoporous aminopropylsilane-functionalized silica and titania combining microcalorimetry and in situ infrared spectroscopy”, J. Phys. Chem. C , vol. 113, pp. 21726–21734. ,2009.
[26] C. Lu, F. Su, S.C. Hsu, W. Chen, H. Bai, J.F. Hwang and H.H. Lee, “Thermodynamics and regeneration of CO2 adsorption on mesoporous spherical-silica particles”, Fuel Process. Technol., vol. 90 , pp. 1543–1549,2009.
[27] C.W. Jones, J.C. Hicks, D.J. Fauth and M. Gray, “Structures for capturing CO2, methods of making the structures and methods of capturing CO2”,US Patent Application No. US2007/0149398, 2007.
[28] J.C. Hicks, J.D. Drese, D.J. Fauth, M.L. Gray, G. Qi and C.W. Jones, “Designing adsorbents for CO2 capture from flue gas – hyperbranched aminosilicas capable of capturing CO2 reversibly”, J. Am. Chem. Soc., vol. 130 , pp. 2902–2903,2008.
[29] J.H. Drese, S. Choi, R.P. Lively, W.J. Koros, D.J. Fauth, M.L. Gray and C.W. Jones, “Synthesis–structure–property relationships for hyperbranched aminosilica CO2 adsorbents”, Adv. Func. Mater., vol. 19 , pp. 3821–3832,2009.
[30] R.K. Iler, The Chemistry of Silica : Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. John Wiley & Sons, New York. pp.173,1979.
[31] C.G. Wu and T. Bein, “Conducting polyaniline filaments in a mesoporous channel host,’’ Science, vol. 264, pp.1757-1759,1994.
[32] T. Takei, Yoshimura K. and Yonesaki Y., et al., “Preparation of polyaniline/mesoporous silica hybrid and its electrochemical properties”, Journal of Porous Materials, vol.12, pp. 337 —343,2005.
[33] N. Tlili, G. Grevillot and C. Vallieres, “Carbon dioxide capture and recovery by means of TSA and/ or VSA”, Int. J. Greenhouse Gas Control, vol. 3, pp. 519-527, 2009.
[34] M.G. Plaza, S. Garcia, F. Rubiera, J.J. Pis and C. Pevida, “Post-combustion CO2 capture with a commercial activated carbon: comparison of different regeneration strategies”, Chem. Eng. J., vol. 163, pp. 41-47, 2010.
[35] B. Dutcher, H. Adidharma and M. Radosz, “Carbon filter process for flue-gas carbon capture on carbonaceous sorbents: steam-aided vacuum swing adsorption option”, Ind. Eng. Chem. Res., vol. 50, pp. 9696-9703, 2011.
[36] J. Mérel, M. Clausse and F. Meunier, “Carbon dioxide capture by indirect thermal swing adsorption using 13X zeolite”, Environ. Prog., vol. 25, pp. 327–333, 2006.
[37] J. Mérel, M. Clausse and F. Meunier, “Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites”, Ind. Eng. Chem. Res., vol. 47, pp.209–215, 2008.
[38] M. Clausse, J. Mérel and F. Meunier, “Numerical parametric study on CO2 capture by indirect thermal swing adsorption”, Int. J. Greenhouse Gas Control, vol. 5, pp. 1206- 1213, 2011.
[39] C.Y. Wen and L.T. Fan, Models for flow systems and chemical reactors, Dekker, New York, 1975.
[40] R.B. Bird, W.E. Stewart and E.N. Lightfoot, Transport Phenomena ,Revised 2nd Edition , Wiley, New York, 2007.
[41] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A comparison of methods for predicting gaseous diffusion coefficients”, J. Gas Chromatogr., vol. 3, pp. 222-227, 1965.
[42] E.N. Fuller, P.D. Schettler and J.C. Giddings, “A new method for prediction of binary gas-phase diffusion coefficients”, Ind. Eng. Chem. Res., vol. 58, no. 5, pp. 18-27, 1966.
[43] W.L.McCabe, J.C. Smith and P. Harriott, Unit Operations of Chemical Engineering, Sixth Edition, McGraw-Hill, Inc., New York, 2001.
[44] W.H. McAdams, Heat Transmission, Third Edition, McGraw-Hill, Inc., New York, 1954
指導教授 周正堂、楊閎舜
(C.T. Chou、H.S. Yang)
審核日期 2013-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明