博碩士論文 993204049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:52.15.209.168
姓名 王裕貴(Yu-Kuei Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 兩性雙離子性共聚物之合成以抵抗聚丙烯膜表面之生物積垢
(Amphiphilic and zwitterionic copolymer synthesis for anti-fouling surface coating on polypropylene membranes)
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 量子點表面改質與動物細胞標定
★ 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向★ 利用雙功能吸附基材進行蛋白復性-蛋白吸附狀態對復性的影響
★ 界面聚合之奈米過濾膜的抗氯性研究★ 以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用
★ 負電性奈米過濾膜之排鹽特性★ 金奈米粒子親水化及與DNA一對一鍵結之探討
★ 以雙重電性表面改質方式製作抗生物吸附之超過濾與奈米過濾膜★ 以表面修飾之材料控制間葉幹細胞貼附及對其往軟骨分化之影響
★ 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用★ 以三聚氰氯為單體的抗氯型奈米過濾膜
★ 鹼性胜肽抗生素indolicidin及其類似物之溶血作用機制探討★ 蛋白質特定方向固定化-以α-amylase為例
★ Indolicidin及其類似物與微脂粒交互作用之熱力學研究★ 位向性固定化葡萄糖氧化酶之新方法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙離子性(zwitterionic)材料為一同時具有正電性電荷及負電性電荷於同一單體而成一電中性的結構,已被證實具有良好的抗生物積垢能力,但不易改質至疏水性材料表面,因此本篇研究擬合成一同時具有疏水性片段與雙離子性結構片段的共聚物,使其疏水性片段得以利用疏水性作用力附著於疏水性聚丙烯(polypropylene, PP)濾膜上,暴露在外的雙離子性結構則用以對抗生物分子的沾黏。本研究選用順丁烯二酸酐(Maleic anhydride, MA),使之與疏水性單體丙烯酸十八酯(octadecyl acrylate, OA)及丙烯酸己酯(hexyl acrylate, HA)於共溶劑下共聚合,再將所得之共聚物再以N,N’-二甲基乙二胺(N,N’-Dimethylethylenediamine, DMEA)開環而形成一同時具有疏水性片段與雙離子性結構片段的共聚物(MAOA-DMEA與MAHA-DMEA),並透過控制不同的共聚合起始劑量以獲得不同分子量共聚物,且藉由核磁共振光譜儀(1H-NMR)分析其化學結構,及以膠體滲透層析儀(GPC)分析其分子量。接著量測經過不同分子量的共聚物改質之PP濾膜對牛血清蛋白(bovine serum albumin, BSA)溶液中的蛋白質吸附變化量,並觀察測試細菌E. coli與S. maltophilia在經共聚物改質後的PP膜上貼附的情形。實驗結果發現經過MAOA-DMEA系列改質的PP緻密膜可降低80%以上的BSA吸附量,且對抵抗E. coli與S. maltophilia的貼附具有一定的能力。雙離子性(zwitterionic)材料為一同時具有正電性電荷及負電性電荷於同一單體而成一電中性的結構,已被證實具有良好的抗生物積垢能力,但不易改質至疏水性材料表面,因此本篇研究擬合成一同時具有疏水性片段與雙離子性結構片段的共聚物,使其疏水性片段得以利用疏水性作用力附著於疏水性聚丙烯(polypropylene, PP)濾膜上,暴露在外的雙離子性結構則用以對抗生物分子的沾黏。本研究選用順丁烯二酸酐(Maleic anhydride, MA),使之與疏水性單體丙烯酸十八酯(octadecyl acrylate, OA)及丙烯酸己酯(hexyl acrylate, HA)於共溶劑下共聚合,再將所得之共聚物再以N,N’-二甲基乙二胺(N,N’-Dimethylethylenediamine, DMEA)開環而形成一同時具有疏水性片段與雙離子性結構片段的共聚物(MAOA-DMEA與MAHA-DMEA),並透過控制不同的共聚合起始劑量以獲得不同分子量共聚物,且藉由核磁共振光譜儀(1H-NMR)分析其化學結構,及以膠體滲透層析儀(GPC)分析其分子量。接著量測經過不同分子量的共聚物改質之PP濾膜對牛血清蛋白(bovine serum albumin, BSA)溶液中的蛋白質吸附變化量,並觀察測試細菌E. coli與S. maltophilia在經共聚物改質後的PP膜上貼附的情形。實驗結果發現經過MAOA-DMEA系列改質的PP緻密膜可降低80%以上的BSA吸附量,且對抵抗E. coli與S. maltophilia的貼附具有一定的能力。
摘要(英) Zwitterionic moieties that simultaneously own a positively and a negatively charged groups have been demonstrated to have excellent anti-fouling ability. The remaining problem is how to attach zwitterionic moieties onto the surface of a hydrophobic membrane, such as the polypropylene (PP) membrane. To solve this problem, we try to synthesize amphiphilic zwitterionic copolymers, which compromise both hydrophobic and zwitterionic monomers, onto the PP membranes. Zwitterionic monomers are highly water soluble. It is difficult to find a suitable solvent which simultaneously dissolve hydrophobic and zwitterionic monomers. Therefore, we try to synthesize the copolymers by co-polymerize octadecyl acrylate or hexyl acrylate with maleic anhydride in toluene, and then the maleic anhydride in copolymers are reacted with N,N’-Dimethylethylenediamine (DMEA) to form a zwitterionic moiety containing both carboxylic and N,N’-dimethylethyleneamine. The structures and molecular weight of copolymers have been characterized by NMR and GPC. The effect of molecular weight of copolymers on the antifouling properties of coated membranes are under investigation. The amount of BSA adsorption and bacteria (E. coli and S. maltophilia) adhesion on PP membranes are measured. The experimental results show that the PP dense membrane which modified through the MAOA-DMEA series copolymer can reduce more than 80% of BSA adsorption, and they have certain ability to resist the adhesion of S. maltophilia.
關鍵字(中) ★ 丙烯酸酯
★ 馬來酸酐
★ 抗生物積垢
★ 聚丙烯膜
★ 雙離子性
關鍵字(英) ★ Zwitterionic
★ Polypropylene membrane
★ Anti-fouling
★ Maleic anhydride
★ Acrylate
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XIV
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 聚丙烯膜(Polypropylene, PP)簡介 4
2.2 生物性分子與材料表面之交互作用 4
2.2.1 生物積垢(Bio-fouling) 4
2.2.2 蛋白質與材料表面之交互作用 6
2.2.3 細菌與材料表面之交互作用 9
2.3 抗生物積垢材料之簡介 12
2.3.1 聚乙烯乙二醇之簡介與發展 12
2.3.2 仿生雙離子性高分子相關研究 15
2.3.2.1 Phosphorylcholine,PC類雙離子性高分子 16
2.3.2.2 Sulfobetaine,SBMA類雙離子高分子 19
2.3.2.3 Carboxybetaine, CBMA類雙離子高分子 27
2.4 共聚物簡介與表面改質方法 31
2.4.1 共聚物簡介 31
2.4.2 表面改質方法 33
第三章 實驗藥品、儀器設備與方法 36
3.1 實驗藥品 36
3.2 實驗儀器設備 38
3.3 實驗方法 39
3.3.1 實驗架構 39
3.3.2 雙離子性高分子(MAOA-DMEA)共聚物的製備 39
3.3.2.1 共聚物(MAOA)的製備 39
3.3.2.2 兩性雙離子性共聚物(MAOA-DMEA)的製備 40
3.3.3 雙離子性共聚物(MAHA-DMEA)高分子的製備 41
3.3.3.1 共聚物(MAHA)的製備 41
3.3.3.2 雙離子性共聚物(MAHA-DMEA)的製備 41
3.3.4 MAOA-DMEA共聚物分子量鑑定 42
3.3.5 MAHA-DMEA共聚物分子量鑑定 42
3.3.6 MAOA-DMEA共聚物結構鑑定 42
3.3.7 MAHA-DMEA共聚物結構鑑定 43
3.3.8 PP膜-f表面改質 43
3.3.8.1 PP膜-f表面改質前清洗 43
3.3.8.2 MAOA-DMEA共聚物改質PP膜-f表面 43
3.3.8.3 MAHA-DMEA共聚物改質PP膜-f表面 44
3.3.8.4 MAO-DMEA共聚物改質PP膜-f表面 44
3.3.8.5 SMA-DMEA共聚物改質PP膜-f表面 45
3.3.8.6 PP膜-m表面改質 46
3.3.8.7 PP膜-m表面改質前清洗 46
3.3.8.8 MAOA-DMEA共聚物改質PP膜-m表面 46
3.3.8.9 MAHA-DMEA共聚物改質PP膜-m表面 47
3.3.8.10 MAO-DMEA共聚物改質PP膜-m表面 47
3.3.8.11 SMA-DMEA共聚物改質PP膜-m表面 48
3.3.9 改質後PP膜之表面鑑定 49
3.3.10 螢光標記蛋白質(BSA-FITC)的製備 49
3.3.11 螢光標記蛋白質(BSA-FITC)吸附實驗 49
3.3.11.1 PP膜-f的螢光標記蛋白質吸附實驗 49
3.3.11.2 PP膜-m的螢光標記蛋白質吸附實驗 50
3.3.12 改質後PP膜-f穩定性實驗 50
3.3.13 E.coli貼附實驗 51
3.3.13.1 E.coli菌液液態培養 51
3.3.13.2 改質後PP膜-f的E.coli貼附實驗 51
3.3.14 S.epidermidis貼附實驗 52
3.3.14.1 S.epidermidis菌液液態培養 52
3.3.14.2 改質後PP膜-f的S.epidermidis貼附實驗 52
第四章 結果與討論 53
4.1 兩性雙離子性共聚物製備 53
4.2 兩性雙離子性共聚物分子量鑑定 55
4.3 兩性雙離子性共聚物結構鑑定 56
4.4 兩性雙離子性共聚物在PP膜上的改質 68
4.5 螢光蛋白質(BSA-FITC)吸附實驗 70
4.5.1 BSA-FITC在改質PP膜上-f的吸附實驗 71
4.5.2 BSA-FITC在改質PP膜-m上的吸附實驗 74
4.6 革蘭氏細菌在改質後PP膜-f的貼附實驗 77
第五章 結論 80
第六章 參考文獻 81
附錄一 85
附錄二 86
參考文獻 [1] M. Mulder, Basic Principles of membrane technology, Kluwer Academic Publishers, Netherlands, 1996.
[2] W.S. Winston Ho, K.K. Sirkar, Membrane Handbook, Van Nostrand Reinhold, New York, 1992.
[3] G. Belfort, R.H. Davis, A.L. Zydney, The behavior of suspensions and macromolecular solutions in crossflow microfiltration, Journal of Membrane Science 96 (1994) 1-58.
[4] K.J. Jim, A.G. Fane, C.J.D. Fell, D.C. Joy, Fouling mechanisms of membranes during protein ultrafiltration, Journal of Membrane Science 68 (1992) 79-91.
[5] R. Chan, V. Chen, Characterization of protein fouling on membranes: opportunities and challenges, Journal of Membrane Science 242 (2004) 169-188.
[6] J. Mueller, R.H. Davis, Protein fouling of surface-modified polymeric microfiltration membranes, Journal of Membrane Science 116 (1996) 47-60.
[7] S.T. Kelly, A.L. Zydney, Mechanisms for BSA fouling during microfiltration, Journal of Membrane Science 107 (1995) 115-127.
[8] M. Habash, G. Reid, Microbial biofilms: Their development and significance for medical device-related infections, Journal of Clinical Pharmacology 39 (1999) 887-898.
[9] J.D. Andrade, Surface and interfacial Aspects of Biomedical Polymers., Plenum Press, New York and London, 1985.
[10] C.A. Johnson, P. Wu, A.M. Lenhoff, ELECTROSTATIC AND VAN-DER-WAALS CONTRIBUTIONS TO PROTEIN ADSORPTION .2. MODELING OF ORDERED ARRAYS, Langmuir 10 (1994) 3705-3713.
[11] R. Hunter, Foundations of Colloid Science, vol. I., Oxford Science Publications, New York, 1989.
[12] J.J. Ramsden, PUZZLES AND PARADOXES IN PROTEIN ADSORPTION, Chemical Society Reviews 24 (1995) 73-78.
[13] L. Vroman, The importance of surfaces in contact phase reactions, Semin Thromb Hemost 13 (1987) 79-85.
[14] C. Salvagnini, Thrombin inhibitors grafting on polyester membranes for the preparation of blood-compatible materials, Universite Catholique de Louvain, Belgium, 2005.
[15] L. Vroman, Finding seconds count after contact with blood (and that is all I did), Colloids Surf B Biointerfaces 62 (2008) 1-4.
[16] P. Kingshott, J. Wei, D. Bagge-Ravn, N. Gadegaard, L. Gram, Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion, Langmuir 19 (2003) 6912-6921.
[17] I.W. Wang, J.M. Anderson, R.E. Marchant, Staphylococcus epidermidis adhesion to hydrophobic biomedical polymer is mediated by platelets, J Infect Dis 167 (1993) 329-336.
[18] I.W. Wang, J.M. Anderson, M.R. Jacobs, R.E. Marchant, Adhesion of Staphylococcus epidermidis to biomedical polymers: contributions of surface thermodynamics and hemodynamic shear conditions, J Biomed Mater Res 29 (1995) 485-493.
[19] A.T. Poortinga, R. Bos, W. Norde, H.J. Busscher, Electric double layer interactions in bacterial adhesion to surfaces, Surface Science Reports 47 (2002) 3-32.
[20] A.L. Mills, J.S. Herman, G.M. Hornberger, T.H. Dejesus, Effect of solution ionic strength and iron coatings on mineral grains on the sorption of bacterial cells to quartz sand, Appl Environ Microbiol 60 (1994) 3300-3306.
[21] A. Filimon, E. Avram, S. Dunca, L. Stoica, S. Ioan, Surface Properties and Antibacterial Activity of Quaternized Polysulfones, Journal of Applied Polymer Science 112 (2009) 1808-1816.
[22] A. Terada, A. Yuasa, T. Kushimoto, S. Tsuneda, A. Katakai, M. Tamada, Bacterial adhesion to and viability on positively charged polymer surfaces, Microbiology-Sgm 152 (2006) 3575-3583.
[23] A.M. Klibanov, Permanently microbicidal materials coatings, Journal of Materials Chemistry 17 (2007) 2479-2482.
[24] B.R.F. Gerard J. Tortora, Christine L. Case, Microbiology : An Introduction, Benjamin-Cummings Publishing Company, United States, 1998.
[25] I.E. Alcamo, Fundamentals of microbiology, Baker & Taylor Books, Charlotte, North Carolina, 1997.
[26] J.M. Harris, Poly(ethylene glycol) chemistry biotechnical and biomedical applications, Plenum Press, New York, 1992.
[27] A. Abuchowski, T. van Es, N.C. Palczuk, F.F. Davis, Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol, J Biol Chem 252 (1977) 3578-3581.
[28] J.H. Lee, H.B. Lee, J.D. Andrade, BLOOD COMPATIBILITY OF POLYETHYLENE OXIDE SURFACES, Progress in Polymer Science 20 (1995) 1043-1079.
[29] R.E. Holmlin, X.X. Chen, R.G. Chapman, S. Takayama, G.M. Whitesides, Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer, Langmuir 17 (2001) 2841-2850.
[30] G.S. Georgiev, E.B. Kamenska, E.D. Vassileva, I.P. Kamenova, V.T. Georgieva, S.B. Iliev, I.A. Ivanov, Self-assembly, antipolyelectrolyte effect, and nonbiofouling properties of polyzwitterions, Biomacromolecules 7 (2006) 1329-1334.
[31] A.L. Lewis, Phosphorylcholine-based polymers and their use in the prevention of biofouling, Colloids Surf B Biointerfaces 18 (2000) 261-275.
[32] N.N. Kadoma Y, Masuhara E, Yamauchi J,, Synthesis and hemolysis test of polymer containing phophorylcholine groups., Koubunshi Ronbunshu (Japanese Journal of Polymer Science and Technology) 35 (1978) 423-427.
[33] W. Feng, S. Zhu, K. Ishihara, J.L. Brash, Adsorption of fibrinogen and lysozyme on silicon grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom transfer radical polymerization, Langmuir 21 (2005) 5980-5987.
[34] K. Ishihara, T. Ueda, N. Nakabayashi, PREPARATION OF PHOSPHOLIPID POLYMERS AND THEIR PROPERTIES AS POLYMER HYDROGEL MEMBRANES, Polymer Journal 22 (1990) 355-360.
[35] Y. Chang, S. Chen, Z. Zhang, S. Jiang, Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines, Langmuir 22 (2006) 2222-2226.
[36] Z. Zhang, S. Chen, Y. Chang, S. Jiang, Surface grafted sulfobetaine polymers via atom transfer radical polymerization as superlow fouling coatings, J Phys Chem B 110 (2006) 10799-10804.
[37] Z. Zhang, T. Chao, S. Chen, S. Jiang, Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides, Langmuir 22 (2006) 10072-10077.
[38] G. Cheng, Z. Zhang, S. Chen, J.D. Bryers, S. Jiang, Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces, Biomaterials 28 (2007) 4192-4199.
[39] O. Azzaroni, A.A. Brown, W.T. Huck, UCST wetting transitions of polyzwitterionic brushes driven by self-association, Angew Chem Int Ed Engl 45 (2006) 1770-1774.
[40] N. Cheng, A.A. Brown, O. Azzaroni, W.T.S. Huck, Thickness-dependent properties of polyzwitterionic brushes, Macromolecules 41 (2008) 6317-6321.
[41] W. Yang, S. Chen, G. Cheng, H. Vaisocherova, H. Xue, W. Li, J. Zhang, S. Jiang, Film thickness dependence of protein adsorption from blood serum and plasma onto poly(sulfobetaine)-grafted surfaces, Langmuir 24 (2008) 9211-9214.
[42] Y. Chang, S.C. Liao, A. Higuchi, R.C. Ruaan, C.W. Chu, W.Y. Chen, A highly stable nonbiofouling surface with well-packed grafted zwitterionic polysulfobetaine for plasma protein repulsion, Langmuir 24 (2008) 5453-5458.
[43] J.K. Nagy, A.K. Hoffmann, M.H. Keyes, D.N. Gray, K. Oxenoid, C.R. Sanders, Use of amphipathic polymers to deliver a membrane protein to lipid bilayers, Febs Letters 501 (2001) 115-120.
[44] R.S. Kane, P. Deschatelets, G.M. Whitesides, Kosmotropes form the basis of protein-resistant surfaces, Langmuir 19 (2003) 2388-2391.
[45] Z. Zhang, S. Chen, S. Jiang, Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization, Biomacromolecules 7 (2006) 3311-3315.
[46] Z. Zhang, H. Vaisocherova, G. Cheng, W. Yang, H. Xue, S. Jiang, Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects, Biomacromolecules 9 (2008) 2686-2692.
[47] B. Chapman, Glow Discharge Processes, Wiley, New York.
[48] Alfred Grill, Cold Plasma in Materials Fabrication., IEEE Press, 1994.
[49] H. Kita, T. Inada, K. Tanaka, K.-i. Okamoto, - 87 (1994) - 147.
[50] X.L. Ma, Y.L. Su, Q. Sun, Y.Q. Wang, Z.Y. Jiang, Preparation of protein-adsorption-resistant polyethersulfone ultrafiltration membranes through surface segregation of amphiphilic comb copolymer, Journal of Membrane Science 292 (2007) 116-124.
[51] Y. Wang, J.H. Kim, K.H. Choo, Y.S. Lee, C.H. Lee, Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization, Journal of Membrane Science 169 (2000) 269-276.
[52] Y.C. Chiag, Y. Chang, W.Y. Chen, R.C. Ruaan, Biofouling Resistance of Ultrafiltration Membranes Controlled by Surface Self-Assembled Coating with PEGylated Copolymers, Langmuir 28 (2012) 1399-1407.
指導教授 阮若屈、張雍
(Ruoh-chyu Ruaan、Yung Chang)
審核日期 2012-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明