博碩士論文 993204051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.227.81.161
姓名 蔡孟勳(Meng-hsun Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 核黃素之同質異構物結晶篩選與核黃素螯合金屬有機網狀化合物,輔以濕式研磨法作為特定分子感測器之應用。
(Polymorphs Screening of Riboflavin and Riboflavin Chelated Luminescent Metal-Organic Framework: Identified by Liquid-Assisted Grinding for Specific Molecule Sensing via Chromaticity Coordinates)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度
★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選
★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究★ 生命的起源與天門冬氨酸在水中的結晶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 化學感應器泛指具有高靈敏度、小體積,並對特定有機、無機或生化醫學物質具有相當高選擇性之偵測器。每一種化學感測器皆由化學感應材料辨識單元、訊號轉換單元所組成。由於化學感應材料必須盡可能對偵測分子具單一選擇性,且感應後所產生的訊號也必須要清晰及穩定的輸出。故化學感應器的化學感應材料之合成與設計,為化學研究上很有意義的挑戰。
核黃素因分子本身具有多牙基結構,可與許多金屬產生錯合物;此外核黃素也能透過氫鍵與水楊酸、3,5-二羥基苯甲酸、甲基胍胺、三聚氰胺等分子形成超分子水溶膠。故本論文嘗試利用具光激發光特性,且放光波長於可見光範圍的金屬有機網狀化合物作為感應訊號平台,將核黃素以錯合方式,接枝於金屬有機網狀化合物的結構上,藉以形成(有機金屬網狀結構)-(核黃素)的錯合晶體;並配合濕式研磨法,檢視作為感應分子的核黃素與可能之目標分析物,包括:水楊酸、3,5-二羥基苯甲酸、甲基胍胺、三聚氰胺等分子產生化學反應的難易度,以來預測形成(有機金屬網狀結構)-(感應分子) -(分析物)結合系統的可能性。而偵測到的光感應訊號將進一步轉譯於色度座標圖上,以獲得數值化的感測訊號結果。
此論文所提出的(有機金屬網狀結構)-(感應分子)-(分析物)感應系統是一個全新的概念,可破除金屬有機網狀結構作為感測器的孔洞限制,並增強與分析物的結合作用力;而濕式研磨法可以協助找出合適的感應分子,從而建立完整的感測系統。之後,也期望藉由這套方法找出更多可行性高的化學感測器系統。
除此之外,此論文也對核黃素的基本結晶特性進行探討,並蒐羅了歷年來所發表的專利文獻,從中發現核黃素存在六種同質異構物晶體,當中亦包含了三種水合物。為了統整所有資料,此論文也更進一步地建立所有核黃素同質異構物的相互關係圖、製造流程以及鑑定方法,期待此論文所提供的資訊能有效幫助日後對於核黃素的相關研究。
摘要(英) Chemical sensor is generally defined as a detector with high sensitive, small size, and highly selective to special organic matter, inorganic substance, or biomedical substance. All the chemical sensors are composed by molecular recognition unit and signal transduction unit. Chemical sensing material must select the wanted analyte as specific as possible. Furthermore, the signal output that caused by binding with the analyte have to be distinguishable and stable. Therefore, the synthesis and design of the chemical sensing material are the significant challenges in chemical research.
Riboflavin has the polydentate ligand to form the complexes with different metals. Moreover, it also can form the supramolecule with salicylic acid, 3,5-dihydroxybenzoic acid, acetoguanamine, and melamine through the hydrogen bonding formation. Therefore, our research uses visible-light emitting metal-organic frameworks (MOFs) as a sensing platform, and riboflavin molecules are grafted on the framework structures by chelation to form the (MOFs)-(riboflavin) chelating crystals. Besides, liquid-assisted grinding can help to check the interactions between the sensing molecule (i.e. riboflavin) and target analytes (i.e. salicylic acid, 3,5-dihydroxybenzoic acid, acetoguanamine, and melamine), then, to predict the possibility of forming (MOFs)-(sensing molecule)-(analyte) binding system. Finally, the detecting light signal will further translate to the chromaticity coordinates to quantify the sensing results.
The (MOFs)-(sensing molecule)-(analyte) sensing system is a novel concept, it can overcome the limitation of size exclusion of MOFs sensors, and strengthen the binding interaction with analyte. On the other hand, the search for the candidate of sensing molecule can be easily and rapidly achieved by liquid-assisted grinding to develop a complete sensing system. Afterwards, we expect to construct more possible chemical sensing systems using this strategy.
Apart from this, this thesis also investigates the fundamental crystallized properties of riboflavin, and collects information about riboflavin from different patents. In these patents, we find that six polymorphs of riboflavin have already been published, including three types of hydrates. Furthermore, to summarize the significant data, the polymorph transformation diagram, manufacturing procedures, and characterized principles are provided as well. We hope these data we offer in this thesis will aid the related research about riboflavin in the future.
關鍵字(中) ★ 化學感測器
★ 金屬有機網狀化合物
★ 核黃素
★ 色度座標圖
★ 濕式研磨法
關鍵字(英) ★ Chromaticity coordinate
★ Liquid-assisted grinding
★ Chemical sensor
★ Riboflavin (vitamin B2)
★ Metal-organic framework (MOF)
論文目次 摘要 i
Abstract iv
Acknowledgement vi
Table of Contents vii
List of Figures xii
List of Tables xix
Chapter 1 Executive Summary 1
1.1 Chemical Sensor 1
1.2 Metal-Organic Frameworks Materials as Chemical Sensors 4
1.3 Brief Introduction of Riboflavin 7
1.4 Brief of Melamine and Sensing Techniques 9
1.5 Conceptual Framework 12
1.6 References 14
Chapter 2 Analytical Instruments 31
2.1 Introduction 31
2.2 Microscopic Method 35
2.2.1 Polarized Optical Microscopy (POM) 35
2.3 Crystallographic Analysis Method 38
2.3.1 Powder X-ray Diffractometry (PXRD) 38
2.4 Thermal Analysis Methods 41
2.4.1 Differential Scanning Calorimetry (DSC) 41
2.4.2 Thermal Gravimetric Analysis (TGA) 43
2.5 Spectroscopic Methods 45
2.5.1 Fourier Transform Infrared (FT-IR) Spectroscopy 45
2.5.2 Photoluminescence Spectroscopy (PL) 48
2.6 Conclusions 51
2.7 References 52
Chapter 3 Polymorph Screening, Property Characterization of Riboflavin and Synthesis of [AgL]n‧ nH2O 57
3.1 Riboflavin 57
3.1.1 Polymorphs 58
3.1.2 Riboflavin-Metal Chelates 58
3.1.3 Bicomponent Hydrogels of Riboflavin 60
3.2 Metal-Organic Frameworks 62
3.2.1 [AgL]n‧ nH2O 62
3.3 Materials 63
3.3.1 Chemicals 63
3.3.2 Solvents 63
3.4 Experimental Methods 64
3.4.1 Polymorphs Screening of Riboflavin 64
3.4.2 Hydrothermal Synthesis of AgL 65
3.5 Analytical Measurements 67
3.5.1 Optical Microscopy 67
3.5.2 Fourier Transform Infrared (FT-IR) Spectroscopy 67
3.5.3 Powder X-ray Diffractometry (PXRD) 67
3.5.4 Differential Scanning Calorimetry (DSC) 68
3.5.5 Thermal Gravimetric Analysis (TGA) 68
3.5.6 Photoluminescence Spectroscopy (PL) 69
3.6 Results and Discussion 70
3.6.1 Riboflavin 70
3.6.1.1 Polymorph Screening of Riboflavin 70
3.6.1.2 Characterization 71
3.6.1.3 Solubility 75
3.6.1.4 Photoluminescence 75
3.6.2 AgL 76
3.6.2.1 Characterization 76
3.6.2.2 Photoluminescence of AgL 79
3.7 Conclusions 81
3.8 References 82
Chapter 4 Riboflavin Chelated Luminescent Metal-Organic Framework: Identified by Liquid-Assisted Grinding for Specific Molecule Sensing via Chromaticity Coordinates 87
4.1 Introduction 87
4.2 Commission Internationale de l’Eclairage (CIE) 1931 Chromaticity Coordinates 91
4.3 Materials 94
4.3.1 Chemicals 94
4.3.2 Solvents 94
4.4 Experimental Methods 95
4.4.1 Liquid-Assisted Grinding 95
4.4.2 Synthesis of (AgL)-(Riboflavin) Chelation Crystals 95
4.4.3 Molecule Sensing by (AgL)-(Riboflavin) Chelation Crystals 96
4.5 Analytical Measurements 97
4.5.1 Optical Microscopy 97
4.5.2 Fourier Transform Infrared (FT-IR) Spectroscopy 97
4.5.3 Powder X-ray Diffractometry (PXRD) 97
4.5.4 Differential Scanning Calorimetry (DSC) 98
4.5.5 Thermal Gravimetric Analysis (TGA) 98
4.5.6 Photoluminescence Spectroscopy (PL) 98
4.6 Results and Discussion 99
4.6.1 Liquid-Assisted Grinding Method 99
4.6.2 Characterization of (AgL)-(Riboflavin) Chelation Crystals 105
4.6.3 Specific Molecules Sensing by (AgL)-(Riboflavin) Chelation Crystals 112
4.7 Conclusions 120
4.8 References 121
Chapter 5 Conclusions and Future Work 127
5.1 Polymorph Screening and Property Characterization of Riboflavin 127
5.2 Riboflavin Chelated Luminescent Metal-Organic Frameworks: Identified by Liquid-Assisted Grinding for Specific Molecule Sensing via Chromaticity Coordinates 127
5.3 Future Work 128
5.3.1 Developing Novel Sensing Systems 128
5.3.2 Fabricating (AgL) Thin Film 129
5.4 References 130
參考文獻 1. Hulanicki, A.; Geab, S.; Ingman, F., Chemical Sensors Deffinitions and Classification Pure Appl. Chem. 1991, 63 (9), 1247-1250.
2. Frost, M.; Meyerhoff, M. E., In Vivo Chemical Sensors: Tackling Biocompatibility. Anal. Chem. 2006, 78 (21), 7370-7377.
3. Kaetsu, I., Signal Responsive Chemical Delivery Systems by Radiation Techniques and the Use for Brain Research. Radiat. Phys. Chem. 1995, 46 (2), 247-256.
4. Kottmann, J.; Rey, J. M.; Luginbhl, J.; Reichmann, E.; Sigrist, M. W., Glucose Sensing in Human Epidermis Using Mid-Infrared Photoacoustic Detection. Biomed. Opt. Express. 2012, 3 (4), 667-680.
5. Zanon, N. C. M.; Oliveira Jr, O. N.; Caseli, L., Immbolization of Uricase Enzyme in Langmuir and Langmuir-Blodgett Films of Fatty Acids: Possible Use as a Uric acid Sensor. J. Colloid Interface Sci. 2012, 373 (1), 69-74.
6. Burmeister, J. J.; Arnold, M. A., Evaluation of Measurement Sites for Noninvasive Blood Glucose Sensing with Near-Infrared Transmission Spectroscopy. Clin. Chem. 1999, 45 (9), 1621-1627.
7. Fear, E. G.; Sill, J. M. In Preliminary Investigations of Tissue Sensing Adaptive Radar for Breast Tumor Detection, Engineering in Medicine and Biology Society, 2003. Proceedings of the 25th Annual International Conference of the IEEE, 2003; pp 3787-3790
8. Yoo, J.-H.; Park, Z.-T.; Kim, J.-G.; Chung, L., Development of a Galvanic Sensor System for Detecting the Corrosion Damage of the Steel Embedded in Concrete Structures: Part 1. Laboratory Tests to Correlate Galvanic Current with Actual Damage. Cem. Concr. Res. 2003, 33 (12), 2057-2062.
9. Steele, J. P. H.; Ganesh, C.; Kleve, A., Control and Scale Model Simulation of Sensor-Guided LHD Mining Machines. IEEE Trans. Ind. Appl. 1993, 29 (6), 1232-1238.
10. Harada, T.; Uchida, T.; Yoshida, M.; Kobayashi, Y.; Narazaki, R.; Ohwaki, T., A New Method for Evaluating the Bitterness of Medicines in Development Using a Taste Sensor and a Disintegration Testing Apparatus. Chem. Pharm. Bull. 2010, 58 (8), 1009-1014.
11. Ensafi, A.; Arabzadeh, A., A New Sensor for Electrochemical Determination of Captopril Using Chlorpromazine as a Mediator at a Glassy Carbon Electrode. J. Anal. Chem. 2012, 67 (5), 486-496.
12. Kataoka, M.; Tokuyama, E.; Miyanaga, Y.; Uchida, T., The Taste Sensory Evaluation of Medicinal Plants and Chinese Medicines. Int. J. Pharm. 2008, 351 (1–2), 36-44.
13. Chen, H.; Zuo, X.; Su, S.; Tang, Z.; Wu, A.; Song, S.; Zhang, D.; Fan, C., An Electrochemical Sensor for Pesticide Assays Based on Carbon Nanotube-Enhanced Acetycholinesterase Activity. Analyst. 2008, 133 (9), 1182-1186.
14. Roy, S., Fiber Optic Sensor for Determining Adulteration of Petrol and Diesel by Kerosene. Sens. Actuators, B-Chem. 1999, 55 (2–3), 212-216.
15. Marina, A.; Che Man, Y.; Amin, I., Use of the SAW Sensor Electronic Nose for Detecting the Adulteration of Virgin Coconut Oil with RBD Palm Kernel Olein. J. Am. Oil Chem. Soc. 2010, 87 (3), 263-270.
16. Kaneyasu, K.; Otsuka, K.; Setoguchi, Y.; Sonoda, S.; Nakahara, T.; Aso, I.; Nakagaichi, N., A Carbon Dioxide Gas Sensor Based on Solid Electrolyte for Air Quality Control. Sens. Actuators, B-Chem. 2000, 66 (1–3), 56-58.
17. Zhou, J.; Li, P.; Zhang, S.; Long, Y.; Zhou, F.; Huang, Y.; Yang, P.; Bao, M., Zeolite-Modified Microcantilever Gas Sensor for Indoor Air Quality Control. Sens. Actuators, B-Chem. 2003, 94 (3), 337-342.
18. Glasgow, H. B.; Burkholder, J. M.; Reed, R. E.; Lewitus, A. J.; Kleinman, J. E., Real-Time Remote Monitoring of Water Quality: A Review of Current Applications, and Advancements in Sensor, Telemetry, and Computing Technologies. J. Exp. Mar. Biol. Ecol. 2004, 300 (1–2), 409-448.
19. Adamchuk, V. I.; Hummel, J. W.; Morgan, M. T.; Upadhyaya, S. K., On-the-Go Soil Sensors for Precision Agriculture. Comput. Electron. Agr. 2004, 44 (1), 71-91.
20. Kish, L. B.; Yingfeng, L.; Solis, J. L.; Marlow, W. H.; Vajtai, R.; Granqvist, C. G.; Lantto, V.; Smulko, J. M.; Schmera, G., Detecting Harmful Gases Using Fluctuation-Enhanced Sensing with Taguchi Sensors. IEEE Sens. J. 2005, 5 (4), 671-676.
21. Nanto, H.; Yokoi, Y.; Mukai, T.; Fujioka, J.; Kusano, E.; Kinbara, A.; Douguchi, Y., Novel Gas Sensor Using Polymer-Film-Coated Quartz Resonator for Environmental Monitoring. Mater. Sci. Eng., C. 2000, 12 (1–2), 43-48.
22. Lewis, S. E.; DeBoer, J. R.; Gole, J. L.; Hesketh, P. J., Sensitive, Selective, and Analytical Improvements to a Porous Silicon Gas Sensor. Sens. Actuators, B-Chem. 2005, 110 (1), 54-65.
23. Galli, S.; Masciocchi, N.; Colombo, V.; Maspero, A.; Palmisano, G.; Lopez-Garzo渃, F. J.; Domingo-Garci愃, M.; Ferna渃dez-Morales, I.; Barea, E.; Navarro, J. A. R., Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs. Chem. Mater. 2010, 22 (5), 1664-1672.
24. Feng, C.-D.; Sun, S.-L.; Wang, H.; Segre, C. U.; Stetter, J. R., Humidity Sensing Properties of Nation and Sol-Gel Derived SiO2/Nafion Composite Thin Films. Sens. Actuators, B: Chem. 1997, 40 (2–3), 217-222.
25. Delvaux, M.; Demoustier-Champagne, S., Immobilisation of Glucose Oxidase within Metallic Nanotubes Arrays for Application to Enzyme Biosensors. Biosens. Bioelectron. 2003, 18 (7), 943-951.
26. Katz, E.; Willner, I., Probing Biomolecular Interactions at Conductive and Semiconductive Surfaces by Impedance Spectroscopy: Routes to Impedimetric Immunosensors, DNA-Sensors, and Enzyme Biosensors. Electroanal. 2003, 15 (11), 913-947.
27. Domaille, D. W.; Que, E. L.; Chang, C. J., Synthetic Fuorescent Sensors for Studying the Cell Biology of Metals. Nat. Chem. Biol. 2008, 4 (3), 168-175.
28. Takakusa, H.; Kikuchi, K.; Urano, Y.; Sakamoto, S.; Yamaguchi, K.; Nagano, T., Design and Synthesis of an Enzyme-Cleavable Sensor Molecule for Phosphodiesterase Activity Based on Fluorescence Resonance Energy Transfer. J. Am. Chem. Soc. 2002, 124 (8), 1653-1657.
29. Liu, H.; Kameoka, J.; Czaplewski, D. A.; Craighead, H. G., Polymeric Nanowire Chemical Sensor. Nano. Lett. 2004, 4 (4), 671-675.
30. Liess, M., Electric-Field-Induced Migration of Chemisorbed Gas Molecules on a Sensitive Film—a New Chemical Sensor. Thin Solid Films. 2002, 410 (1–2), 183-187.
31. Snow, E. S.; Perkins, F. K.; Houser, E. J.; Badescu, S. C.; Reinecke, T. L., Chemical Detection with a Single-Walled Carbon Nanotube Capacitor. Science. 2005, 307 (5717), 1942-1945.
32. Lef瘀re, N.; Ciabrini, J. P.; Michard, G.; Brient, B.; DuChaffaut, M.; Merlivat, L., A New Optical Sensor for PCO2 Measurements in Seawater. Mar. Chem. 1993, 42 (3–4), 189-198.
33. Lee, T.; Liu, Z. X.; Lee, H. L., A Biomimetic Nose by Microcrystals and Oriented Films of Luminescent Porous Metal–Organic Frameworks. Cryst. Growth Des. 2011, 11 (9), 4146-4154.
34. Endo, T.; Yanagida, Y.; Hatsuzawa, T., Colorimetric Detection of Volatile Organic Compounds Using a Colloidal Crystal-Based Chemical Sensor for Environmental Applications. Sens. Actuators, B-Chem. 2007, 125 (2), 589-595.
35. Dickert, F. L.; Hayden, O.; Zenkel, M. E., Detection of Volatile Compounds with Mass-Sensitive Sensor Arrays in the Presence of Variable Ambient Humidity. Anal. Chem. 1999, 71 (7), 1338-1341.
36. Mailly, F.; Giani, A.; Bonnot, R.; Temple-Boyer, P.; Pascal-Delannoy, F.; Foucaran, A.; Boyer, A., Anemometer with Hot Platinum Thin Film. Sen. Actuators A-Phys. 2001, 94 (1–2), 32-38.
37. Chiriac, H.; Tibu, M.; Moga, A.-E.; Herea, D. D., Magnetic GMI Sensor for Detection of Biomolecules. J. Magn. Magn. Mater. 2005, 293 (1), 671-676.
38. Endres, H. E.; G琀琀氀攀r, W.; Hartinger, R.; Drost, S.; Hellmich, W.; M氀氀攀r, G.; Braunmhl, C. B.-v.; Krenkow, A.; Perego, C.; Sberveglieri, G., A Thin-Film SnO2 Sensor System for Simultaneous Detection of CO and NO2 with Neural Signal Evaluation. Sens. Actuators, B-Chem. 1996, 36 (1–3), 353-357.
39. Bao, S.-J.; Li, C. M.; Zang, J.-F.; Cui, X.-Q.; Qiao, Y.; Guo, J., New Nanostructured TiO2 for Direct Electrochemistry and Glucose Sensor Applications. Adv. Funct. Mater. 2008, 18 (4), 591-599.
40. Varfolomeev, A. E.; Volkov, A. I.; Eryshkin, A. V.; Malyshev, V. V.; Rasumov, A. S.; Yakimov, S. S., Detection of Phosphine and Arsine in Air by Sensors Based on SnO2 and ZnO. Sens. Actuators, B-Chem. 1992, 7 (1–3), 727-729.
41. Deliang, C.; Xianxiang, H.; Hejing, W.; Yu, W.; Hailong, W.; Xinjian, L.; Rui, Z.; Hongxia, L.; Hongliang, X.; Shaokang, G.; Jing, S.; Lian, G., The Enhanced Alcohol-Sensing Response of Ultrathin WO3 Nanoplates. Nanotechnology. 2010, 21 (3), 035501.
42. J渀猀猀漀渀, G.; Gorton, L., An Amperometric Glucose Sensor Made by Modification of a Graphite Electrode Surface with Immobilized Glucose Oxidase and Adsorbed Mediator. Biosensors. 1985, 1 (4), 355-368.
43. Budnikov, H. C.; Medyantseva, E. P.; Babkina, S. S., An Enzyme Amperometric Sensor for Toxicant Determination. J. Electroanal. Chem. Interfacial Electrochem. 1991, 310 (1–2), 49-55.
44. Yao, S.; Xu, J.; Wang, Y.; Chen, X.; Xu, Y.; Hu, S., A Highly Sensitive Hydrogen Peroxide Amperometric Sensor Based on MnO2 Nanoparticles and Dihexadecyl Hydrogen Phosphate Composite Film. Anal. Chim. Acta. 2006, 557 (1–2), 78-84.
45. Zhou, Y.; Yu, B.; Levon, K., Potentiometric Sensor for Dipicolinic Acid. Biosens. Bioelectron. 2005, 20 (9), 1851-1855.
46. Fergus, J. W., The Application of Solid Fluoride Electrolytes in Chemical Sensors. Sens. Actuators, B-Chem. 1997, 42 (2), 119-130.
47. Fjeldly, T. A.; Nagy, K., Glass Electrodes with Solid-State Membrane Contacts and Their Application in Differential Potentiometric Sensors. Sens. Actuators, B-Chem. 1985, 8 (4), 261-269.
48. Miura, N.; Hisamoto, J.; Yamazoe, N.; Kuwata, S.; Salardenne, J., Solid-State Oxygen Sensor Using Sputtered LaF3 Film. Sens. Actuators, B-Chem. 1989, 16 (4), 301-310.
49. Fouletier, J., Gas Analysis with Potentiometric Sensors. A Review. Sens. Actuators, B-Chem. 1982, 3 (0), 295-314.
50. Maruyama, T.; Sasaki, S.; Saito, Y., Potentiometric Gas Sensor for Carbon Dioxide Using Solid Electrolytes. Solid State Ionics. 1987, 23 (1–2), 107-112.
51. Kinlen, P. J.; Heider, J. E.; Hubbard, D. E., A Solid-State pH Sensor Based on a Nafion-Coated Iridium Oxide Indicator Electrode and a Polymer-Based Silver Chloride Reference Electrode. Sens. Actuators, B-Chem. 1994, 22 (1), 13-25.
52. Karyakina, E. E.; Neftyakova, L. V.; Karyakin, A. A., A Novel Potentiometric Glucose Biosensor Based on Polyaniline Semiconductor Films. Anal. Lett. 1994, 27 (15), 2871-2882.
53. Suslick, K. S.; Rakow, N. A.; Sen, A., Colorimetric Sensor Arrays for Molecular Recognition. Tetrahedron. 2004, 60 (49), 11133-11138.
54. Zhang, C.; Suslick, K. S., A Colorimetric Sensor Array for Organics in Water. J. Am. Chem. Soc. 2005, 127 (33), 11548-11549.
55. Zhang, C.; Suslick, K. S., Colorimetric Sensor Array for Soft Drink Analysis. J. Agric. Food Chem. 2006, 55 (2), 237-242.
56. Jose, D. A.; Mishra, S.; Ghosh, A.; Shrivastav, A.; Mishra, S. K.; Das, A., Colorimetric Sensor for ATP in Aqueous Solution. Org. Lett. 2007, 9 (10), 1979-1982.
57. Skrdla, P. J.; Saavedra, S. S.; Armstrong, N. R.; Mendes, S. B.; Peyghambarian, N., SolGel-Based, Planar Waveguide Sensor for Water Vapor. Anal. Chem. 1999, 71 (7), 1332-1337.
58. Conzen, J. P.; Brck, J.; Ache, H. J., Characterization of a Fiber-Optic Evanescent Wave Absorbance Sensor for Nonpolar Organic Compounds. Appl. Spectrosc. 1993, 47 (6), 753-763.
59. Eiji, T.; Nobuyuki, K.; Atsushi, N.; Masahiro, S., In Situ Measurement of Hydrocarbon Fuel Concentration Near a Spark Plug in an Engine Cylinder Using the 3.392 洀 Infrared Laser Absorption Method: Application to an Actual Engine. Mea. Sci. Technol. 2003, 14 (8), 1357.
60. Roy, B.; Saha, A.; Nandi, A. K., Melamine SensingThrough Riboflavin Stabilized Gold Nanoparticles. Analyst. 2011, 136 (1), 67-70.
61. Lan, A.; Li, K.; Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M.; Li, J., A Luminescent Microporous Metal–Organic Framework for the Fast and Reversible Detection of High Explosives. Angew Chem. Int. Ed. 2009, 48 (13), 2334-2338.
62. Stich, M. I. J.; Nagl, S.; Wolfbeis, O. S.; Henne, U.; Schaeferling, M., A Dual Luminescent Sensor Material for Simultaneous Imaging of Pressure and Temperature on Surfaces. Adv. Funct. Mater. 2008, 18 (9), 1399-1406.
63. Toal, S. J.; Jones, K. A.; Magde, D.; Trogler, W. C., Luminescent Silole Nanoparticles as Chemoselective Sensors for Cr(VI). J. Am. Chem. Soc. 2005, 127 (33), 11661-11665.
64. Lee, S.-K.; Okura, I., Optical Sensor for Oxygen Using a Porphyrin-doped Sol-Gel Glass. Analyst. 1997, 122 (1), 81-84.
65. Hayden, O.; Bindeus, R.; Hadersp挀欀, C.; Mann, K.-J.; Wirl, B.; Dickert, F. L., Mass-Sensitive Detection of Cells, Viruses and Enzymes with Artificial Receptors. Sens. Actuators, B-Chem. 2003, 91 (1–3), 316-319.
66. Dickert, F. L.; Schuster, O., Supramolecular Detection of Solvent Vapours with Calixarenes: Mass-Sensitive Sensors, Molecular Mechanics and BET Studies. Microchim. Acta. 1995, 119 (1), 55-62.
67. Lieberzeit, P.; Dickert, F., Sensor Technology and Its Application in Environmental Analysis. Anal. Bioanal. Chem. 2007, 387 (1), 237-247.
68. Hal洀攀欀, J.; Makower, A.; Kn猀挀he, K.; Skldal, P.; Scheller, F. W., Piezoelectric Affinity Sensors for Cocaine and Cholinesterase Inhibitors. Talanta. 2005, 65 (2), 337-342.
69. Long, Y.; Nie, L.; Chen, J.; Yao, S., Piezoelectric Quartz Crystal Impedance and Electrochemical Impedance Study of HSA–Diazepam Interaction by Nanogold-Structured Sensor. J. Colloid Interface Sci. 2003, 263 (1), 106-112.
70. van Honschoten, J. W.; Krijnen, G. J. M.; Svetovoy, V. B.; de Bree, H. E.; Elwenspoek, M. C. In Optimisation of a Two-Wire Thermal Sensor for Flow and Sound Measurements, Micro Electro Mechanical Systems, 2001. MEMS 2001. The 14th IEEE International Conference, 2001; pp 523-526.
71. Deng, Y.; Nevell, T. G., Oscillatory Behaviour of Pd/Al2O3, Pd-Pt/Al2O3 and Pd/Al2O3-CeO2 in the Oxidation of Methane. Faraday Discuss. 1996, 105, 33-46.
72. Jaree, A.; Hudgins, R. R.; Budman, H.; Silveston, P. L.; Yakhnin, V.; Menzinger, M., Amplification of Inlet Temperature Disturbances in a Packed-Bed Reactor for CO Oxidation Over Pt/Al2O3. Chem. Eng. Sci. 2003, 58 (3–6), 833-839.
73. Grancharov, S. G.; Zeng, H.; Sun, S.; Wang, S. X.; O’’Brien, S.; Murray, C. B.; Kirtley, J. R.; Held, G. A., Bio-functionalization of Monodisperse Magnetic Nanoparticles and Their Use as Biomolecular Labels in a Magnetic Tunnel Junction Based Sensor. J. Phys. Chem. B 2005, 109 (26), 13030-13035.
74. Aytur, T.; Foley, J.; Anwar, M.; Boser, B.; Harris, E.; Beatty, P. R., A Novel Magnetic Bead Bioassay Platform Using a Microchip-Based Sensor for Infectious Disease Diagnosis. J. Immunol. Methods. 2006, 314 (1–2), 21-29.
75. Graham, D. L.; Ferreira, H. A.; Freitas, P. P.; Cabral, J. M. S., High Sensitivity Detection of Molecular Recognition Using Magnetically Labelled Biomolecules and Magnetoresistive Sensors. Biosens. Bioelectron. 2003, 18 (4), 483-488.
76. Hong, H.-B.; Krause, H.-J.; Song, K.-B.; Choi, C.-J.; Chung, M.-A.; Son, S.-w.; Offenh甀猀猀攀r, A., Detection of Two Different Influenza A viruses Using a Nitrocellulose Membrane and a Magnetic Biosensor. J. Immunol. Methods. 2011, 365 (1–2), 95-100.
77. Yaghi, O. M.; Li, H., Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels. J. Am. Chem. Soc. 1995, 117 (41), 10401-10402.
78. Tranchemontagne, D. J.; Mendoza-Cortes, J. L.; O’’Keeffe, M.; Yaghi, O. M., Secondary Building Units, Nets and Bonding in the Chemistry of Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1257-1283.
79. Collins, D. J.; Zhou, H.-C., Hydrogen Storage in Metal-Organic Frameworks. J.Mater. Chem. 2007, 17 (30), 3154-3160.
80. Li, J.-R.; Ma, Y.; McCarthy, M. C.; Sculley, J.; Yu, J.; Jeong, H.-K.; Balbuena, P. B.; Zhou, H.-C., Carbon Dioxide Dapture-related Gas Adsorption and Separation in Metal-Organic Frameworks. Coord. Chem. Rev. 2011, 255 (15–16), 1791-1823.
81. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C., Selective Gas Adsorption and Separation in Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1477-1504.
82. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T., Metal-Organic Framework Materials as Catalysts. Chem. Soc. Rev. 2009, 38 (5), 1450-1459.
83. Janiak, C.; Vieth, J. K., MOFs, MILs and More: Concepts, Properties and Applications for Porous Coordination Networks (PCNs). New J. Chem. 2010, 34 (11), 2366-2388.
84. Farha, O. K.; Spokoyny, A. M.; Mulfort, K. L.; Hawthorne, M. F.; Mirkin, C. A.; Hupp, J. T., Synthesis and Hydrogen Sorption Properties of Carborane Based Metal伢rganic Framework Materials. J. Am. Chem. Soc. 2007, 129 (42), 12680-12681.
85. Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P., A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 2008, 130 (42), 13850-13851.
86. Lu, Z.-Z.; Zhang, R.; Li, Y.-Z.; Guo, Z.-J.; Zheng, H.-G., Solvatochromic Behavior of a Nanotubular Metal伢rganic Framework for Sensing Small Molecules. J. Am. Chem. Soc. 2011, 133 (12), 4172-4174.
87. Lee, H.; Jung, S. H.; Han, W. S.; Moon, J. H.; Kang, S.; Lee, J. Y.; Jung, J. H.; Shinkai, S., A Chromo-Fluorogenic Tetrazole-Based CoBr2 Coordination Polymer Gel as a Highly Sensitive and Selective Chemosensor for Volatile Gases Containing Chloride. Chem. Eur. J. 2011, 17 (10), 2823-2827.
88. Pramanik, S.; Zheng, C.; Zhang, X.; Emge, T. J.; Li, J., New Microporous Metal伢rganic Framework Demonstrating Unique Selectivity for Detection of High Explosives and Aromatic Compounds. J. Am. Chem. Soc. 2011, 133 (12), 4153-4155.
89. Lu, G.; Hupp, J. T., Metal伢rganic Frameworks as Sensors: A ZIF-8 Based Fabry倢攀爃漀琀 Device as a Selective Sensor for Chemical Vapors and Gases. J. Am. Chem. Soc. 2010, 132 (23), 7832-7833.
90. Kreno, L. E.; Hupp, J. T.; Van Duyne, R. P., Metal伢rganic Framework Thin Film for Enhanced Localized Surface Plasmon Resonance Gas Sensing. Anal. Chem. 2010, 82 (19), 8042-8046.
91. Achmann, S.; Hagen, G.; Kita, J.; Malkowsky, I.; Kiener, C.; Moos, R., Metal-Organic Frameworks for Sensing Applications in the Gas Phase. Sensors. 2009, 9 (3), 1574-1589.
92. Ohba, M.; Yoneda, K.; Kitagawa, S., Guest-responsive Porous Magnetic Frameworks Using Polycyanometallates. CrystEngComm. 2010, 12 (1), 159-165.
93. Kepert, C. J., Advanced Functional Properties in Nanoporous Coordination Framework Materials. Chem. Commun. 2006, 42 (7), 695-700.
94. Zybaylo, O.; Shekhah, O.; Wang, H.; Tafipolsky, M.; Schmid, R.; Johannsmann, D.; Woll, C., A Novel Method to Measure Diffusion Coefficients in Porous Metal-Organic Frameworks. Phys. Chem. Chem. Phys. 2010, 12 (28), 8092-8097.
95. K猀最攀渀猀, P.; Rose, M.; Senkovska, I.; Frde, H.; Henschel, A.; Siegle, S.; Kaskel, S., Characterization of Metal-Organic Frameworks by Water Adsorption. Micropor. Mesopor. Mat. 2009, 120 (3), 325-330.
96. Moriyama, Y., Riboflavin Transporter is Finally Identified. J. Biochem. 2011, 150 (4), 341-343.
97. Berger, K. C.; Truog, E., Boron Determination in Soils and Plants. Ind. Eng. Chem., Anal. Ed. 1939, 11 (10), 540-545.
98. Bretzel, W.; Schurter, W.; Ludwig, B.; Kupfer, E.; Doswald, S.; Pfister, M.; van Loon, A. P. G. M., Commercial Riboflavin Production by Recombinant Bacillus Subtilis : Down-Stream Processing and Comparison of the Composition of Riboflavin Produced by Fermentation or Chemical Synthesis. J. Ind. Microbio. Biotechnol. 1999, 22 (1), 19-26.
99. Yutaka N.; Nobuo Y. Melamine resin flame-retardant fibers. U. S. Patent 4,088,620, May 9, 1978.
100. Junfeng, S.; Wang, L.; Ren, L., Fabrication and Thermal Properties of MicroPCMs: Used Melamine-Formaldehyde Resin as Shell Material. J. Appl. Polym. Sci. 2006, 101 (3), 1522-1528.
101. Lam, C. W.; Lan, L.; Che, X.; Tam, S.; Wong, S. S. Y.; Chen, Y.; Jin, J.; Tao, S. H.; Tang, X. M.; Yuen, K. Y.; Tam, P. K. H., Diagnosis and Spectrum of Melamine-Related Renal Disease: Plausible Mechanism of Stone Formation in Humans. Clin. Chim. Acta. 2009, 402 (1–2), 150-155.
102. Brown, C. A.; Jeong, K.-S.; Poppenga, R. H.; Puschner, B.; Miller, D. M.; Ellis, A. E.; Kang, K.-I.; Sum, S.; Cistola, A. M.; Brown, S. A., Outbreaks of Renal Failure Associated with Melamine and Cyanuric Acid in Dogs and Cats in 2004 and 2007. J. Vet. Diagn. Invest. 2007, 19 (5), 525-531.
103. Macartney, J., China Baby Milk Scandal Spreads as Sick Toll Rises to 13,000. The Times. September 22, 2008.
104. Toth, J. P.; Bardalaye, P. C., Capillary Gas Chromatographic Separation and Mass Spectrometric Detection of Cyromazine and Its Metabolite Melamine. J.Chromatogr. A. 1987, 408 (0), 335-340.
105. Filigenzi, M. S.; Tor, E. R.; Poppenga, R. H.; Aston, L. A.; Puschner, B., The Determination of Melamine in Muscle Tissue by Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007, 21 (24), 4027-4032.
106. Lin, M.; He, L.; Awika, J.; Yang, L.; Ledoux, D. R.; Li, H.; Mustapha, A., Detection of Melamine in Gluten, Chicken Feed, and Processed Foods Using Surface Enhanced Raman Spectroscopy and HPLC. J. Food Sci. 2008, 73 (8), T129-T134.
107. Zhu, L.; Gamez, G.; Chen, H.; Chingin, K.; Zenobi, R., Rapid Detection of Melamine in Untreated Milk and Wheat Gluten by Ultrasound-Assisted Extractive Electrospray Ionization Mass Spectrometry (EESI-MS). Chem. Commun. 2009, 45 (5), 559-561.
108. Ai, K.; Liu, Y.; Lu, L., Hydrogen-Bonding Recognition-Induced Color Change of Gold Nanoparticles for Visual Detection of Melamine in Raw Milk and Infant Formula. J. Am. Chem. Soc. 2009, 131 (27), 9496-9497.
109. Lee, J.; Jeong Jeong, E.; Kim, J., Selective and Sensitive Detection of Melamine by Intra/Inter Liposomal Interaction of Polydiacetylene Liposomes. Chem. Commun. 2011, 47 (1), 358-360.
110. Zacher, D.; Shekhah, O.; Woll, C.; Fischer, R. A., Thin Films of Metal-Organic Frameworks. Chem. Soc. Rev. 2009, 38 (5), 1418-1429.
111. Kim, K., Metal-Organic Frameworks: Entering the Recognition Domain. Nat. Chem. 2009, 1 (8), 603-604.
112. Greathouse, J. A.; Ockwig, N. W.; Criscenti, L. J.; Guilinger, T. R.; Pohl, P.; Allendorf, M. D., Computational Screening of Metal-organic Frameworks for Large-Molecule Chemical Sensing. Phys. Chem. Chem. Phys. 2010, 12 (39), 12621-12629.
指導教授 李度(Tu Lee) 審核日期 2012-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明