博碩士論文 993204056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.17.68.14
姓名 柯昌延(Chang-Yen Ko)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 錫碲擴散偶之擴散阻障層界面反應
(Evaluation of Diffusion Barrier between Pure Tin and Tellurium)
相關論文
★ 熱電材料與擴散阻障層在電流影響下的界面反應研究★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試
★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究★ 高可靠度車用印刷電路板之表面處理層開發
★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究
★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析★ 電遷移對純錫導線晶粒旋轉之研究
★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究★ 鋁鍺薄膜封裝研究
★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長
★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究
★ 無鉛銲料與碲化鉍基材之界面反應研究★ 高摻雜之二氧化錫薄膜能隙窄化現象及氧化銦薄膜之應力量測與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本實驗為了簡化碲化鉍系熱電材料之元素種類來評估熱電模組中銲點的可靠度,選用純碲做為基材,將Ni-P及Ni-P/Co-P擴散阻障層以無電鍍製程鍍在基材上,與銲料接合後觀察界面反應。Ni為常用於電子構裝中作為擴散阻障層之材料。Sn/Ni-P/Te擴散偶中界面主要生成Ni3Sn4、Ni2SnP 、Ni3P及NiTe介金屬化合物,NiTe介金屬化合物生成所需活化能為70.9 kJ/mol。Sn/Ni-P和Ni-P/Te界面皆生成Ni3P,Ni3P層中生成大量的柱狀孔洞。Ni-P/Te界面的孔洞數量大於Sn/Ni-P界面,因為Ni-P/Te界面Ni不平衡之交互擴散通量較大所造成的結果。為了改抑制Ni-P/Te界面的柱狀孔洞,本實驗將Co-P鍍在Ni-P/Te的中間觀察Sn/Ni-P/Co-P/Te擴散偶之界面反應。Sn/Ni-P/Co-P/Te擴散偶在本實驗之退火條件下,Co-P/Te界面沒有生成Co-Te化合物。180℃退火240小時後在Co-P/Te界面生成極薄的Ni-Te化合物,目前尚無法確認Ni是經由何種擴散路徑穿過Co-P層擴散到Co-P/Te界面與Te反應生成Ni-Te化合物。比較NiTe及CoTe2在450K下的自由能發現,NiTe比CoTe2來的穩定。Co-P/Te界面並沒有觀察到Ni3P及孔洞的生成,代表Co可以有效抑制Ni3P、Ni-Te化合物及孔洞的生成,改善附著及銲接品質。
摘要(英) To simplify the element of bismuth telluride thermoelectric materials, the experiments reported in this study used Te as the substrate to evaluate the capability of Ni as a diffusion barrier. Ni-P or Ni-P/Co-P was coated on Te by electroless plating and then jointed to observe interfacial reaction with Sn solder. Ni has been widely used as a diffusion barrier between Sn-based solder and chip in electronic industry. Ni3Sn4, Ni3P, and NiTe are the major compound layers formed at the Sn/Ni-P /Te interfaces. The apparent activation energy of NiTe in a Ni-P/ Te system is 70.9 kJ/ mol. The Ni3P layers formed both at the Ni/Sn and Ni/Te interfaces, with columnar voids embedded in Ni3P. The number of columnar voids at the Ni/Te interface is greater than that at the Ni/Sn interface. The larger Ni flux caused a greater unbalance interdiffusion and induced more voids formed at the Ni/Te side. To inhibit the flux of Ni toward the Te side, a layer of Co was selected as the diffusion barrier. The Co-P was electroless plated between the Ni and Te substrate. In Sn/Ni-P/Co-P/Te couple, Co-Te IMC was not found between Co-P and the Te interface at all annealing temperatures. A very thin Ni-Te IMC layer formed between Co-P and Te at 180℃ for 240 h. At 450 K, the formation Gibbs free energy of NiTe and was -1.78 kJ/mol and lower than that of CoTe2 was -0.86 kJ/mol, suggesting that the formation of Ni-Te IMC was energetically favorable. At all annealing temperature, Ni3P and columnar voids did not appear at the Ni-P/Co-P/Te interface. These results prove that Co is an effective diffusion barrier suppressing the growth of Ni3P and thereby preventing voiding problems. Finally, the Co-P barrier enhanced the quality of the solder joint because it suppressed the formation of Ni-Te IMC and large voids.
關鍵字(中) ★ 無電鍍鈷
★ 無鉛銲料
★ 熱電材料
★ 無電鍍鎳
★ 界面反應
★ 擴散阻障層
關鍵字(英) ★ electroless nickel
★ electroless cobalt
★ Pb-free solder
★ interfacial reaction
★ thermoelectric material
★ diffusion barrier
論文目次 中文摘要 …...............................................................................................................ⅰ
Abstract ………………………………………………………………...……….…...ⅱ
誌謝..…………………………………………………………………………………ⅲ
目錄 ……………………………..………………………………………………..…ⅳ
圖目錄 ……………………………………………………………………..………..ⅵ
表目錄 ………………………………………………………………………………ⅷ
第一章 序論 …………………………………………………………………………1
1-1 前言 ………………………………………………………………………...2
1-2 三大熱電效應 ……………………………………………………………...2
1-2-1 Seebeck effect ………………………………...………………………3
1-2-2 Peliter effect …………………………………………..………………3
1-2-3 Thomson effect ……………………………………………………….4
1-3 熱電材料之熱電優值 ……………………………………………………...4
1-4 熱電材料之介紹 …………………………………………………………...7
1-4-1 碲化鉍(Bi2Te3)系熱電材料 ………………………………………...7
1-5 熱電模組銲點之界面反應 ………………………………………………...8
1-6 研究動機 …………………………………………………………………...9
第二章 文獻回顧 …………………………………………………………………..10
2-1 界面反應 ………………………………………………………………….10
2-1-1 銲料與熱電材料之界面反應 …………………………………….11
2-1-2 擴散阻障層與熱電材料之界面反應 …………………………….15
2-2 無電鍍鎳磷及鈷磷 ……………………………………………………….19
2-2-1 無電鍍原理 ……………………………………………………….19
2-2-2 無電鍍液之組成及功用 ………………………………………….20
2-2-3 無電鍍鎳的微結構 ……………………………………………….22
2-3 銲料與擴散阻障層之界面反應 ………………………………………….22
2-3-1 鎳磷與銲料之界面反應 ………………………………………….23
2-3-2 鈷與銲料之界面反應 …………………………………………….25
2-4 研究目的 ………………………………………………………………….31
第三章 實驗方法 ……………………………………………………..……………32
3-1 材料製備 ……………………………………………………….…………32
3-1-1 碲基材 ………..……………………………………………….……32
3-1-2 銲料…………….…………………………………………………...33
3-2 無電鍍鎳磷…………………………………………………………...……33
3-3 無電鍍鈷磷……………………………………………………………...…33
3-3-1 無電鍍鈷磷前處理 …………………………………………….…33
3-3-2 無電鍍鈷磷層製備 ……………………………………………….34
3-4 Sn/Ni-P/Te擴散偶 ………………………………………………...………35
3-5 Sn/Ni-P/Co-P/Te擴散偶 ………………………………………………..…36
3-6 界面反應……………………………………………………………...……36
3-7 試片分析 ……………………………………………………………….…36
3-7-1 掃描式電子顯微鏡 (SEM) ………………………………….……37
3-7-2 電子微探分析儀 (EPMA) ……………………………………..…37
3-7-3 X-ray繞射儀 (XRD)……………………………………………...38
第四章 實驗結果與討論 ………………………………………………………..…39
4-1 純錫銲料與Ni-P/Te基材界面反應 ……………………………...………39
4-1-1 NiTe介金屬化合物活化能 …………………………………..……39
4-1-2 元素分析 …….………………………………………………….…44
4-1-3 Sn/Ni-P界面之介金屬化合物 ………………………………….…46
4-1-4 Ni-P/Te界面之介金屬化合物 ………………………………….…48
4-1-5 Sn/Ni-P與Ni-P/Te之Ni3P厚度分析 …………………………...…49
4-1-6 Sn/Ni-P與Ni-P/Te之columnar voids ………………………...……51
4-1-7 Sn/Ni-P與Ni-P/Te之擴散通量 …………………………...………54
4-2 純錫銲料與Ni-P/Co-P/Te基材界面反應 ……………………………..…55
4-2-1 Co-P/Te之元素分析 ……….………………………………………56
4-2-2 Co-P阻障層退火前後之界面及XRD分析………………………..61
4-2-3 Sn/Ni-P/Co-P/Te不同退火條件之表面型態………………………62
4-2-4 NiTe與CoTe2之Gibbs free energy比較…………….…………..…64
第五章 結論 ………………………………………………………………………..67
參考文獻 ……………………………………………………………………………69
參考文獻 1. G.J. Snyder and E.S. Toberer, “Complex thermoelectric materials” , Nat. Mater. 7, 105-114 (2008).
2. S.W. Chen and C.N. Chiu, “Unusual cruciform pattern interfacial reactions in Sn/Te couples”, Scr. Mater. 56, 97-99 (2007).
3. C.N. Liao and C.H. Lee, “Suppression of vigorous liquid Sn/Te reactions by Sn–Cu solder alloys”, J. Mater. Res. 23, 12, 3303-3308 (2008).
4. C.N. Liao and Y.C. Huang, “Effect of Ag addition in Sn on growth of SnTe compound during reaction between molten solder and tellurium”, J. Mater. Res. 25, 2, 391-395 (2010).
5. C.N. Chiu, C.H. Wang, and S.W. Chen, “Interfacial Reactions in the Sn-Bi/Te Couples”, J. Electron. Mater. 37, 1, 40-44 (2007).
6. C.H. Lee, W.T. Chen, and C.N. Liao, “Effect of antimony on vigorous interfacial reaction of Sn–Sb/Te couples”, J. Alloys Compd. 509, 5142-5146 (2011).
7. O.D. Iyore, T.H. Lee, R.P. Gupta, J.B. White, H.N. Alshareef, M.J. Kim, and B.E. Gnade, “Interface characterization of nickel contacts to bulk bismuth tellurium selenide”, Surf. Interface Anal. 41, 440-444 (2009).
8. T.Y. Lin, C.N. Liao, and A.T. Wu, “Evaluation of Diffusion Barrier Between Lead-Free Solder Systems and Thermoelectric Materials”, J. Electron. Mater. 41, 1, 153-158 (2012).
9. H. Wada, K. Takahashi, and T. Nishizaka, “Electroless nickel plating to Bi-Te sintered alloy and its properties”, J. Mater. Sci. Lett. 9, 810-812 (1990).
10. W.P Lin, D.E. Wesolowski, C.C. Lee, “Barrier /bonding Layers on Bismuth Telluride (Bi2Te3) for High Temperature Thermoelectric Modules”, J Mater Sci: Mater Electron, 22, 1313-1320 (2011).
11. R.P. Gupta, O.D. Iyore, K. Xiong, J.B. White, K. Cho, H.N. Alshareef, and B.E. Gnade, “Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices”, Electrochem. Solid-State Lett. 12, 10, H395-H397 (2009).
12. K.H. Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, and P.M. Kavimani, “An Overall Aspect of Electroless Ni-P Depositions-A Review Article”, Metall. Mater. Trans. A, 37A, 6, 1917-1926 (2006).
13. H. Okamoto, “Ni-P (Nickel-Phosphorus)”, Jounal of Phase Equilibria and Diffusion, 31, 2, 200-201 (2010).
14. A. Kumar and Z. Chen, “Interdependent Intermetallic Compound Growth
in an Electroless Ni-P/Sn-3.5Ag Reaction Couple”, J. Electron. Mater. 40, 2, 213-223 (2011).
15. C.H. Wang and S.W. Chen, “Sn/Co solid/solid interfacial reactions”, ntermetallics. 16, 524-530 (2008).
16. L. Magagnin, V. Sirtori, S. Seregni, A. Origo, and P.L. Cavalloti, “Electroless Co–P for diffusion barrier in Pb-free soldering”, Electrochimica Acta, 50, 4621–4625 (2005).
17. H.C. Pan and T.E. Hsieh, “Diffusion Barrier Characteristics of Electroless Co(W,P) Thin Films to Lead-Free SnAgCu Solder”, J. Electrochem. Soc. 158, 11, P123-129 (2011).
18. Y.C. Lin, K.J. Wang, and J.G. Duh, “Detailed Phase Evolution of a Phosphorous-Rich Layer and Formation of the Ni-Sn-P Compound in Sn-Ag-Cu/Electroplated Ni-P Solder Joints”, J. Electron. Mater. 39, 3, 283-294 (2010).
19. K.K. Kelley, in Contributions to the Data on Theoretical Metallurgy: X, High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for Inorganic Compounds, Vol. 476 (Ed.: B. o. M. United States Department of the interior), United States Department of the interior, Bureau of Mines: U.S. Government Printing Office, Washington (1949).
20. P. Nash, H. Choo, and R.B. Schwarz, “Thermodynamic calculation of phase equilibria in the Ti–Co and Ni–Sn systems”, J. Mater. Sci. 33, 4929-4936 (1998).
21. K. C. Mills, “Heat Capacity of Nickel and Cobalt Tellurides”, J. Chem. Soc. Faraday Trans.1, 70, 2224-2231 (1974).
22. W. Zhang, M. Clauss, and F. Schwager, “Growth Behavior of Meta-Stable NiSn3
Intermetallic Compound and Its Potential Influence on the Reliability of Electronic Components”, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 8, 1259-1268 (2011).
23. M. Ettenberg, K.L. Komarek, and E. Miller, “Thermodynamic Properties of Nickel-Tellurium Alloys”, J. Solid State Chem. 1, 583-592 (1970).
24. 林麗娟, “X光繞射原理及其應用”, 工業材料86期, 100-109 (1994).
指導教授 吳子嘉(Albert T. Wu) 審核日期 2012-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明