博碩士論文 993204062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.118.164.151
姓名 吳珊瑀(Shan-Yu Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以即時中子繞射量測鎳基合金之應變速率效應
(Strain-rate-effect on the Lattice-strain Evolution in Polycrystalline Nickel Alloy)
相關論文
★ 使用繞射技術研究環境溫度效應對碳碳複材的影響★ 使用即時中子繞射方式分析疲勞裂縫生長之殘餘應變及應力變化
★ 使用同步輻射X光與分子動力模擬研究鋯基非晶質合金複合材料之塑性形變機制★ 使用同步輻射X光掃描研究鎳鋁合金的微量鐵元素添加對機械性能之影響
★ 熱處理對鋁銅合金析出相演變及機械性質影響之研究★ 使用分子模擬研究鎳基奈米析出強化合金的塑性變形
★ 以即時中子繞射研究鎳基合金Inconel 617 高溫疲勞行為★ 利用小角度中子及X光散射研究聚乙烯二醇化人類副甲狀腺素荷爾蒙(1-34)於溶液之結構
★ 聚(偏氟乙烯-三氟乙烯)薄膜的結構解析與感光壓電性質之研究★ 以聚(偏氟乙烯-三氟乙烯)為基底之單軸/同軸靜電紡絲奈米纖維受張力變形下機械性質與微觀結構之相關性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用 Inconel 617 鎳基合金來探討應變速率效應。Inconel 617是第四代先進核反應系統的熱交換器候選材料之一。這個實驗在美國橡樹嶺國家實驗室進行,利用VULCAN在高能量的spallation中子源和搭配新開發動態讀取軟體來建立一個連續即時量測的環境。一般來說,楊氏模數會隨應變速率增快而增加。此實驗發現不同微觀模數會隨應變速率改變。在微觀下,{111}晶面的模數和巨觀的模數改變趨勢相反。我們搭配分子模擬及電子穿透顯微鏡來比較觀測到的應變速率效應。
摘要(英) Inconel 617 is a structural-material candidate for the intermediate heat exchanger used in the Generation IV Reactor Power Plant. It is important to investigate its strain rate effect. We use both the high-flux neutrons at the Spallation Neutron Source and the novel data acquisition with reduction technique at the VULCAN Engineering Diffractometer to create in-situ experimental environment. Upon different strain rates, a change in the lattice modulus was discovered. In general, the greater Young’s moduli are typically in proportional to the bulk strain rate. The trend of the lattice-modulus transition is opposite to the changes of bulk modulus as a function of the strain rates. We also apply molecular dynamics (MD) simulation and transmission electron microscopy (TEM) to compare the measured strain rate effect.
關鍵字(中) ★ 及時中子繞射
★ 應變效應
★ 楊氏模數
★ 拉伸試驗
關鍵字(英) ★ Young’’s modulus
★ strain rate effect
★ in-situ neutron diffraction
★ tensile test
論文目次 Abstract iii
摘要 iv
致謝 v
Chapter 1 Introduction & Literature Review 1
1.1. Mechanical Property 1
1.1.1. Stress-Strain Curve 1
1.1.2. Microstructure 3
1.1.3. Strain Rate Effect 4
1.2. In-situ Neutron Diffraction 6
1.2.1. Concepts of Diffraction 6
1.2.2. Neutron Source 7
1.2.3. Time-of-flight (TOF) 8
1.2.4. In-situ Loading 8
1.3. Motivation 9
1.4. Flow Chart of the Thesis 14
Chapter 2 Material & Experiments & Simulation 15
2.1 Material 15
2.2 Molecular Dynamic (MD) Simulation 17
2.3 In-situ Neutron Diffraction 18
2.4 Transmission Electron Microscopy 21
Chapter 3 Results 22
3.1 Tensile Tests 22
3.2 TEM Examination 22
3.3 Molecular dynamic (MD) simulation 24
3.4 Neutron-Data Analyses 25
3.4.1 Peak intensity evolution 26
3.4.2 Lattice strain calculation 27
3.4.3 Peak width evolution 27
Chapter 4 Discussion 56
Chapter 5 Conclusions 59
Reference 61
參考文獻 1. Lagos, M.J., et al., Mechanical Deformation of Nanoscale Metal Rods: When Size and Shape Matter. Physical Review Letters, 2011. 106(5): p. 055501.
2. http://pages.uoregon.edu/struct/courseware/461/461_lectures/461_lecture24/461_lecture24.html.
3. Dieter, G., Mechanical Metallurgy. 1976: McGraw-Hill.
4. Haasen, P., Physical Metallurgy. 1996: Cambridge University Press.
5. Kuhlmann-Wilsdorf, D., The theory of dislocation-based crystal plasticity. Philosophical Magazine A, 1999. 79: p. 955-1008.
6. Hertzberg, R.W., Deformation and fracture mechanics of engineering materials. 1983: Wiley.
7. Shi, X.Q., et al., Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy. Journal of Electronic Packaging, 1999. 121(3): p. 179-185.
8. Koh, S.J.A., et al., Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Physical Review B, 2005. 72(8): p. 085414.
9. Li, Y.S., et al., Effect of the Zener–Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Materialia, 2009. 57(3): p. 761-772.
10. Clausen, B., D. Brown, and I. Noyan, Engineering Applications of Time-of-Flight Neutron Diffraction. JOM Journal of the Minerals, Metals and Materials Society, 2012. 64(1): p. 117-126.
11. Jeong, J.S., et al., In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels. Acta Materialia, 2012. 60(5): p. 2290-2299.
12. Abernathy, D.L., et al., Design and operation of the wide angular-range chopper spectrometer ARCS at the Spallation Neutron Source. Review of Scientific Instruments, 2012. 83(1): p. 015114.
13. Lenci, S. and E. Eisen. Large Scale Production of 805-MHz Pulsed Klystrons for the Spallation Neutron Source Project. in Particle Accelerator Conference, 2005. PAC 2005. Proceedings of the. 2005.
14. http://neutrons.ornl.gov/vulcan, http://neutrons.ornl.gov/vulcan.
15. Wang, X.-L., The application of neutron diffraction to engineering problems. JOM Journal of the Minerals, Metals and Materials Society, 2006. 58(3): p. 52-57.
16. Huang, E.W., et al., Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2008. 39A(13): p. 3079-3088.
17. Clausen, B., et al., Lattice strain evolution during uniaxial tensile loading of stainless steel. Materials Science and Engineering: A, 1999. 259(1): p. 17-24.
18. http://neutrons.ornl.gov/facilities/SNS/history/why-build.shtml.
19. Reed, R.C., The Superalloys. 2006: Cambridge University Press.
20. Choudhury, I.A. and M.A. El-Baradie, Machinability of nickel-base super alloys: a general review. Journal of Materials Processing Technology, 1998. 77(1–3): p. 278-284.
21. Rahman, M.S., et al., Characterization of high temperature deformation behavior of INCONEL 617. Mechanics of Materials, 2009. 41(3): p. 261-270.
22. Bartholomae, C., Material Selection for Long Term Application in Heat Exchangers in High Temperature Reactors. 2010.
23. Sharma, S.K., et al., Oxidation and creep failure of alloy 617 foils at high temperature. Journal of Nuclear Materials, 2008. 378(2): p. 144-152.
24. Ikeda, H., et al., Strain Rate Induced Amorphization in Metallic Nanowires. Physical Review Letters, 1999. 82(14): p. 2900-2903.
25. Plimpton, S., Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comp Phys, 1995. 117: p. 1-19.
26. Zhou, X.W., R.A. Johnson, and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B, 2004. 69(14): p. 144113.
27. An, K., et al., NRSF2 load frame: design, control, and testing§. Journal of Neutron Research, 2007. 15(3-4): p. 207-213.
28. An, K., et al., First In Situ Lattice Strains Measurements Under Load at VULCAN. Metallurgical and Materials Transactions A, 2011. 42(1): p. 95-99.
29. Kuhlmann-Wilsdorf, D., A new theory of work hardening. Transactions of Metallurgical Society of AIME, 1962. . 224: p. 1047-1062.
30. Huang, E.W., et al., Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading. International Journal of Plasticity, 2008. 24(8): p. 1440-1456.
31. H, M., Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metallurgica, 1983. 31(9): p. 1367-1379.
32. Barabash, R., X-ray and neutron scattering by different dislocation ensembles. Materials Science and Engineering: A, 2001. 309–310(0): p. 49-54.
33. Balzar, D., et al., Size-strain line-broadening analysis of the ceria round-robin sample. Journal of Applied Crystallography, 2004. 37(6): p. 911-924.
34. Chen, W., et al., Deformation-Induced Grain Refinement and Amorphization in Ti-10V-2Fe-3Al Alloy. Metallurgical and Materials Transactions A, 2012. 43(1): p. 316-326.
35. Von Dreele, R.B., General structure analysis system. Los Alamos National Laboratory Report, 2004. LAUR 86-748: p. 160-165.
36. Ungar, T., I. Groma, and M. Wilkens, Asymmetric X-ray line broadening of plastically deformed crystals. II. Evaluation procedure and application to [001]-Cu crystals. Journal of Applied Crystallography, 1989. 22(1): p. 26-34.
37. Groma, I., X-ray line broadening due to an inhomogeneous dislocation distribution. Physical Review B, 1998. 57(13): p. 7535-7542.
38. Biermann, H., et al., Local variations of lattice parameter and long-range internal stresses during cyclic deformation of polycrystalline copper. Acta Metallurgica et Materialia, 1993. 41(9): p. 2743-2753.
39. Borbely, A., J.H. Driver, and T. Ungar, An X-ray method for the determination of stored energies in texture components of deformed metals; application to cold worked ultra high purity iron. Acta Materialia, 2000. 48(8): p. 2005-2016.
40. Will, G., Powder Diffraction: The Rietveld Method And the Two-Stage Method To Determine And Refine Crystal Structures From Powder Diffraction Data. 2006: Springer.
41. Barabash, R.I. and P. Klimanek, X-ray scattering by crystals with local lattice rotation fields. Journal of Applied Crystallography, 1999. 32(6): p. 1050-1059.
42. Krivoglaz, M.A., THEORY OF X-RAY AND THERMAL-NEUTRON SCATTERING BY REAL CRYSTALS. 1969. Medium: X; Size: Pages: 422.
43. Krivoglaz, M.A., X-ray and neutron diffraction in nonideal crystals. 1996: Springer.
44. Gharghouri, M.A., et al., Study of the mechanical properties of Mg-7.7at.% Al by in-situ neutron diffraction. Philosophical Magazine A, 1999. 79(7): p. 1671-1695.
45. Wenk, H.-R. and S. Grigull, Synchrotron texture analysis with area detectors. Journal of Applied Crystallography, 2003. 36(4): p. 1040-1049.
46. Levine, L.E., et al., X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper. Nat Mater, 2006. 5(8): p. 619-622.
47. Wang, F., et al., Shock-induced breaking in the gold nanowire with the influence of defects and strain rates. Nanoscale, 2011. 3(4): p. 1624-1631.
48. Agnew, S.R., D.W. Brown, and C.N. Tome, Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction. Acta Materialia, 2006. 54(18): p. 4841-4852.
指導教授 黃爾文(E-Wen Huang) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明