博碩士論文 993204063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.235.105.97
姓名 林耀星(Yao-hsing Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
(Fabrication of Site- and Size-controllable Periodic Arrays 2D Well-ordered Si Nanostructures by Plasma Modified Nanosphere Lithography and Chemical Wet Etching Processes)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究
★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究★ 新穎太陽能電池基板表面粗糙化結構之研究
★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究
★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究成功地利用奈米球微影術結合氣體電漿表面改質及非等向性鹼性溶液蝕刻技術在不同晶面指向之矽單晶基材上製備出密度、尺寸及形狀均可控制之規則有序排列矽基奈米結構陣列,並以SEM、AFM、TEM、SAED、EDS、XPS、UV-Vis及C.A.有系統地進行表面形貌、晶體結構、成分組成分析鑑定及光學和表面性質之量測。
在規則有序矽晶奈米孔洞陣列之製備方面,本研究利用氧氣電漿以反應性離子蝕刻方式調變出PS球奈米模板之球徑大小,並同時以經氧氣電漿處理後於矽晶基材上所生成非晶氧化矽層作為蝕刻遮罩,調變氫氧化鉀蝕刻時間後,成功地於各式矽單晶基材上製備出形狀、尺寸及位置皆可調變之矽晶奈米孔洞陣列。
另一方面本研究也結合奈米球微影術、氣體電漿表面改質或金屬矽化反應和選擇性化學蝕刻製程成功在(001)、(110)、(111)矽晶基材上製備出大面積,尺寸及高度皆可調變之規則有序矽晶奈米錐陣列。
經一系列不同尺寸矽晶奈米孔洞及奈米錐陣列試片之水滴接觸角量測發現,表面具有奈米結構陣列之矽晶試片其接觸角呈現不同程度之疏水特性,此現象可用Cassie Model來解釋。此外,以紫外光-可見光光譜分析可發現矽晶表面有奈米結構陣列時矽晶基材具有光捕捉效應,可大幅降低光之反射率。
摘要(英) The present study has demonstrated the successful fabrication of density-, size- and shape-controllable Si nanostructure arrays on Si substrates of different orientation by using plasma modified nanosphere lithography and anisotropic wet etching process. The morphologies, crystal structures, compositions, optical and surface properties of the Si nanostructure arrays produced have been systematically investigated by SEM, AFM, TEM, SAED, EDS, XPS, UV-Vis and contact angle analyses.
For the fabrication of periodic Si nanohole arrays, we take advantage of O2 plasma RIE treatment, which allows us simultaneously to adjust the diameter of PS nanospheres template and to form a passivation a-SiOx layer on Si serving as the etching mask. The shapes, sizes and positions of Si nanoholes that formed on Si substrates could be tuned by adjusting the diameters of the colloidal nanospheres and the KOH etching time. On the other hand, by combining the plasma modified nanosphere lithography, selective chemical etching process or metal silicide formation, large-area, size- and height-tunable Si nanocone arrays were also successfully fabricated on (001), (110) and (111)Si substrates in this study. From the water contact angle measurements, the surface of HF-treated Si nanohole and nanocone arrays exhibited hydrophobic characteristics. The hydrophobic behavior of Si nanostructures could be explained by the Cassie model. Furthermore, UV-Vis spectroscopic measurements revealed that the nanostructured Si surfaces exhibit strong antireflection properties.The enhanced antireflection properties can be attributed to the light trapping effect resulting from the nanostructure-arrayed Si surfaces.
關鍵字(中) ★ 溼式蝕刻
★ 矽晶孔洞
★ 矽晶錐
★ 電漿處理
★ 奈米球微影術
關鍵字(英) ★ plasma treatment
★ nanosphere lithography
★ wet etching
★ silicon holes
★ silicon cones
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xiv
第一章 簡介 1
1-1 前言 1
1-2 矽晶微奈米結構陣列模板製備 3
1-2-1 微影技術 3
1-2-2 蝕刻製程 6
1-3 矽晶微奈米孔洞陣列模板在太陽能電池應用及其製程 8
1-4 矽晶微奈米錐陣列模板在場發射性質應用及其製程 10
1-5 微奈米球微影術 10
1-5-1 微奈米球微影術的發展 11
1-5-2 微奈米球自組裝技術 11
1-5-3 微奈米球微影術製備奈米結構 12
1-6 微奈米球微影術製備矽晶微奈米孔洞有序陣列 13
1-7 微奈米球微影術製備矽晶微奈米錐有序陣列 14
1-8 半導體製程中電漿表面改質行為及應用 15
1-9 研究動機 17
第二章 實驗步驟及儀器設備 19
2-1 實驗步驟 19
2-1-1 矽晶基材使用前處理 19
2-1-2 自組裝製備微奈米球陣列 20
2-1-3 以反應性離子蝕刻調變微奈米球模板之直徑 21
2-1-4 不同晶向之矽晶基材上製備規則有序矽微奈米孔洞陣列 21
2-1-5 在預置規則圖案之Si(001)基材上製備規則有序矽微奈米孔洞陣列 21
2-1-6 在Si(001)基材上製備規則有序微奈米錐陣列 22
2-1-7 在Si(110)、Si(111)基材上製備規則有序微奈米錐陣列 22
2-2 試片分析 23
2-2-1 掃描式電子顯微鏡(SEM) 23
2-2-2 原子力顯微鏡(AFM) 23
2-2-3 穿透式電子顯微鏡(TEM) 24
2-2-4 高解析穿透式電子顯微鏡(HR-TEM)與X光能量散佈光譜儀(EDS) 24
2-2-5 X-Ray光電子能譜儀(XPS) 24
2-2-6 影像式接觸角量測儀 25
2-2-7 紫外光-可見光光譜儀 25
第三章 結果與討論 26
3-1 單層微奈米球模板之製備 26
3-2 利用氧氣電漿蝕刻法調控微奈米球球徑之製程 27
3-3 矽晶基板經氧氣電漿處理後之遮罩結構及成份分析鑑定 28
3-4 微奈米球微影術結合氧氣電漿製備不同矽晶圓方向微奈米孔洞有序陣列及其蝕刻動力學探討 31
3-4-1 矽晶微奈米孔洞陣列外觀形貌觀察 31
3-4-2 接觸角量測分析表面潤濕性質 33
3-4-3 紫外光-可見光光譜儀量測分析 34
3-5預製圖案之(001)矽晶基材上製備微奈米孔洞陣列 35
3-5-1 利用氧氣電漿進行預置圖案之(001)矽晶基材與微奈米球模板製備 35
3-5-2 矽晶微奈米孔洞陣列於預置圖案(001)矽晶基材之外觀形貌觀察 35
3-6 微奈米球微影術結合氧氣電漿製備不同矽晶圓方向微奈米錐有序陣列及其蝕刻動力學探討 36
3-6-1 矽晶微奈米錐陣列外觀形貌觀察 37
3-6-2 接觸角量測分析表面潤濕性質 39
3-6-3 紫外光-可見光光譜儀量測分析 40
第四章 結論與未來展望 41
4-1 結論 41
4-2 未來展望 42
4-2-1 (110)及(111)矽晶基材上製備大面積矽晶微奈米環陣列 42
4-2-2 製備大面積有序排列之金屬矽化物微奈米錐陣列 43
參考文獻 44
參考文獻 [1] A. Goetzeger and C. Hebling, “Photovoltaic Materials, Past, Present, Future,” Sol. Energy Mater. Sol. Cells 62 (2000) 1-19.
[2] K. L. Chopra, P. D. Paulson and V. Dutta, “Thin-film Solar Cells: an Overview,” Progress in Photovoltaics 12 (2004) 69–92.
[3] M. A. Green, K. Emery, D. L. King, S. Igari, and W. Warta, “Solar Cell Efficiency Tables (version 39),”Progress in Photovoltaics:Research and Applications 20 (2012) 12-20.
[4] W. H. Southwell, “Pyramid-array Surface-relief Structures Producing Antireflection Index Matching on Optical Surfaces,” J. Opt. Soc. Am. A 8 (1991) 549.
[5] Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss and G. M. Whitesides, “Complex Optical Surfaces Formed by Replica Molding against Elastomeric Masters,” Science 273 (1996) 347-349.
[6] S. Y. Chou, P. R. Krauss and P. J. Renstrom, “Imprint Lithography with 25-nanometer Resolution,” Science 272 (1996)85-87.
[7] Y. N. Xia and G. M. Whitesides, “Soft Lithography,” Annu. Rev. Mater. Sci. 28 (1998)153-184.
[8] D. M. Eigler, and E. K. Schweizer, “Positioning Single Atoms with a Scanning Tunneling Microscope,” Nature 344 (1990) 524-526.
[9] R. D. Piner, J. Zhu, F. Xu, S. Hong and C. A. Mirkin, “ "Dip-pen" Nanolithography,” Science 283 (1999) 661-663.
[10] D. Wouters and U. S. Schubert, “Nanolithography and Nanochemistry: Probe-related Patterning Techniques and Chemical Modification for Nanometer-sized Devices,” Angew. Chem. Int. Ed. 43 (2004) 2480-2495.
[11] G. M. Whitesides and P. E. Laibinis, “Wet Chemical Approaches to the Characterization of Organic-Surfaces—Self-assembled Monolayers, Wetting and the Physical Organic-chemistry of the Solid Liquid Interface,” Langmuir 6 (1990) 87-96.
[12] G. M. Whitesides, J. P. Mathias and C. T. Seto, “Molecular Self-assembly and Nanochemistry: a Chemical Strategy for the Synthesis of Nanostructures,” Science 254 (1991) 1312-1319.
[13] C. Acikgoz, M. A. Hempenius, J. Huskens and G. J. Vancso, “Polymers in Conventional and Alternative Lithography for the Fabrication of Nanostructures,” European Polymer 47 (2011) 2033-2052.
[14] M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis and H. A. Atwater, “Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications,” Nat. Mater. 9 (2010) 239-244
[15] Y. Kanamoria, K. Hane, H. Sai and H. Yugami, “100 nm Period Silicon Antireflection Structures Fabricated Using a Porous Alumina Membrane Mask,” Appl. Phys. Lett. 78 (2001) 142-143.
[16] M. J. Huang, C. R. Yang and Y. C. Chiou, “Fabrication of Nanoporous Antireflection Surfaces on Silicon, ” Sol. Energy Mater. Sol. 92 (2008) 1352-1357.
[17] J. T. Li, W. Lei, X. B. Zhang, B. P. Wang and L. Ba, “Field Emission of Vertically-aligned Carbon Nanotube Arrays Grown on Porous Silicon Substrate,” Solid State Electron. 48 (2004) 2147-2151.
[18] A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader and H. M. van Driel, “Large-scale Synthesis of a Silicon Photonic Crystal with a Complete Three-dimensional Bandgap near 1.5 Micrometres,” Nature 405 (2000) 437-440.
[19] Z. Y. Zhong, B. Gates, Y. N. Xia and D. Qin, “Soft Lithographic Approach to the Fabrication of Highly Ordered 2D Arrays of Magnetic Nanoparticles on the Surfaces of Silicon Substrates,” Langmuir 16 (2000) 10369-10375.
[20] J. T. Borenstein, H. Terai, K. R. King, E. J. Weinberg, M. R. Kaazempur-Mofrad and J. P. Vacanti, “Microfabrication Technology for Vascularized Tissue Engineering,” Biomed. Microdevices 4 (2002) 167-175.
[21] A. A. Tseng, K. Chen, C. D. Chen and K. J. Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development,” IEEE Trans. Electron. Packag. Manuf. 26 (2003) 141-149.
[22] J. F. Smyth, S. Schultz, D. Kern, H. Schmid and D. Yee, “Hysteresis of Submicron Permalloy Particulate Arrays,” J.Appl. Phys. 63 (1988) 4237-4239.
[23] P. B. Fischer and S. Y. Chou, “10 nm Electron Beam Lithography and Sub50 nm Overlay Using a Modified Scanning Electron Microscope,” Appl. Phys. Lett. 62 (1993) 2989-2991.
[24] S. M. Cherif, and J. F. Hennequin, “Submicron Structures in Thin Layers by Electron Beam Lithography and Ion Beam Sputtering,” J. Magn. Magn. Mater. 165 (1997) 504-507.
[25] J. I. Martın, Y. Jaccard, A. Hoffmann, J. Nogu!es, J. M. George, J. L. Vicent and I. K. Schuller, “Fabrication of Submicrometric Magnetic Structures by Electron-beam Lithography,” J. Appl. Phys. 84 (1998) 411-415.
[26] J. I. Martın, J. L. Vicent, J. V. Anguita and F. Briones, “Fabrication of Ordered Arrays of Permalloy Submicrometric Dots,” J. Magn. Magn. Mater. 203 (1999) 156-158.
[27] J. Wong, A. Scherer, M. Todorovic and S. Schultz, “Fabrication and Characterization of High Aspect Ratio Perpendicular Patterned Information Storage Media in an Al2O3/GaAs Substrate,” J. Appl. Phys. 85 (1999) 5489-5491.
[28] T. Taniyama, I. Nakatani, T. Namikawa and Y. Yamazaki, “Resistivity due to Domain Walls in Co Zigzag Wires,” Phys. Rev. Lett. 82 (1999) 2780-2783.
[29] R. P. Cowburn, “Property Variation with Shape in Magnetic Nanoelements,” J. Phys. D 33 (2000) R1-R16.
[30] K. Arshak, M. Mihov, A. Arshak, D. McDonagh, and D. Sutton, “Novel Dry-developed Focused Ion Beam Lithography Scheme for Nanostructure Applications,” Microelectron. Eng. 144 (2004) 73-74.
[31] Y. N. Xia, J. A. Rogers, K. E. Paul and G. M. Whitesides, “Unconventional Methods for Fabricating and Patterning Nanostructures,” Chem. Rev. 99 (1999) 1823-1848.
[32] S. R. J. Brueck, “Optical and Interferometric Lithography-Nanotechnology Enablers,” Proc. IEEE 93 (2005) 1704-1721.
[33] M. Totzeck, W. Ulrich, A. Gohnermeier and W. Kaiser, “Semiconductor Fabrication: Pushing Deep Ultraviolet Lithography to its Limits,” Nature Photon. 1 (2007) 629-631.
[34] G. M. Wallraff and W. D. Hinsberg,“Lithographic Imaging Techniques for the Formation of Nanoscopic Features,” Chem. Rev. 99 (1999) 1801-1821.
[35] H. I. Smith, M. L. Schattenberg, S. D. Hector, J. Ferrera, E. E. Moon, I. Y. Yang, M. Burkhardt, “X-ray Nanolithography: Extension to the Limits of the Lithographic Process,” Microelctron Engng 32 (1996) 143-158.
[36] F. Cerrina and C. Marrian, “A Path to Nanolithography,” MRS Bull 21 (1996) 56-62.
[37] M. Rolandi, C. F. Quate, and H. Dai, “A New Scanning Probe Lithography Scheme with a Novel Metal Resist,” Adv. Mater. 14 (2002) 191-194.
[38] T. Schaub, R. Wiesendanger and H. J. Güntherodt, “Comparative Study of Different Tip Materials for Surface Modification by the Scanning Tunneling Microscope,” Nanotechnology 3 (1996) 77-83.
[39] K. Bessho, Y. Iwasaki, and S. Hashimoto, “Fabricating Nanoscale Magnetic Mounds Using a Scanning Probe Microscope,” J. Appl. Phys. 79 (1996) 5057-5059.
[40] C. X. Guo and D. J. Thomson, “Material Transfer between Metallic Tips and Surface in the STM,” Ultramicroscopy 42 (1992) 1452-1458.
[41] S. Y. Chou, P. R. Kraus, W. Zhang, L. Guo and L. Zhuang, “Sub-10 nm Imprint Lithography and Applications,” J. Vac. Sci. Technol. B 15 (1997) 2897-2904.
[42] W. Wu, B. Cui, X. Y. Sun, W. Zhang, L. Zhuang, L. Kong and S. Y. Chou, “Large Area High Density Quantized Magnetic Disks Fabricated Using Nanoimprint Lithography,” J. Vac. Sci. Technol. B 16 (1998) 3825-3829.
[43] S. P. Li, A. Lebib, D. Peyrade, M. Natali and Y. Chen, “Microplow-row Lithography and Fabrication of Submicrometer Magnetic Structures,” Appl. Phys. Lett. 77 (2000) 2743-2745.
[44] S. Palacin, P. C. Hidber, J. P. Bourgoin, C. Miramond, C. Ferman and G. M. Whitesides, “Patterning with Magnetic Materials at the Micron Scale,” Chem. Mater. 8 (1996) 1316-1325.
[45] K.R. Williams, K. Gupta and M. Wasilik, “Etch Rates for Micromachining Processing - Part II,” J. Microelectromechanical S. 12 (2003) 761-778.
[46] H. Jansen, H. Gardeniers, M. Boer, M. Elwenspoek, and J. Fluitman, “A survey on the reactive ion etching of silicon in microtechnology,” J. Micromech. Microeng. 6 (1996) 14-28.
[47] G. T. A. Kovacs, N. I. Maluf and K. E. Petersen, “Bulk Micromachining of Silicon,” Proc. IEEE 86 (1998) 1536-1551.
[48] J. I. Martin, J. Nogues, K. Liu, J. L. Vicent and I. K. Schuller, “Ordered Magnetic Nanostructures Fabrication and Properties,” J. Magn. Magn. Mater. 256 (2003) 449-501.
[49] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer and U. Gösele, “Oxidation Rate Effect on the Direction of Metal-assisted Chemical and Electrochemical Etching of Silicon,” J. Phys. Chem. C 114 (2010) 10683-10690.
[50] V. Lehmann and H. Föll, “Formation Mechanism and Properties of Electrochemically Etched Trenches in n-Type Silicon,” J. Electrochem. Soc. 137 (1990) 653-659.
[51] P. Kleimann, J. Linnros, and R. Juhasz, “Formation of Three-dimensional Microstructures by Electrochemical Etching of Silicon,” Appl. Phys. Lett. 79 (2001) 1727-1729.
[52] P. Kleimann, X. Badel and J. Linnros, “Toward the Formation of Three-dimensional Nanostructures by Electrochemical Etching of Silicon,” Appl. Phys. Lett. 86 (2005) 183108.
[53] X. Li and P. W. Bohn, “Metal-assisted Chemical Etching in HF/H2O2 Produces Porous Silicon," Appl. Phys. Lett. 77 (2000) 2572-2574.
[54] K. Tsujino and M. Matsumura, “Helical Nanoholes Bored in Silicon by Wet Chemical Etching Using Platinum Nanoparticles as Catalyst,” Electrochem. Solid St. Lett. 8 (2005) C193-C195.
[55] Z. Huang, N. Geyer and P. Werner, “Metal-assisted Chemical Etching of Silicon: A Review,” Adv. Mater. 23 (2011) 285-308.
[56] A. F. Bogenschütz, W. Krusemark, K. H. Löcherer, and W. Mussinger, " Activation Energies in the Chemical Etching of Semiconductors in HNO3-HF-CH3COOH," J. Electrochem. Soc. 114 (1967) 970-973.
[57] P. Normand, K. Beltsios, A. Tserepi, K. Aidinis, D. Tsoukalas and C. Cardinaud, “A Masking Approach for Anisotropic Silicon Wet Etching,” Electrochem. Solid St. Lett. 4 (2001) G73-G76.
[58] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, “Coaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources,” Nature 449 (2007) 885-889.
[59] K. Q. Peng, X. Wang, L. Li, X. L. Wu and S. T. Lee, “High-performance Silicon Nanohole Solar Cells,” J. Am. Chem. Soc. 132 (2010) 6872-6873.
[60] V. Lehmann and U. Gosele, “Porous Silicon Formation: A Quantum Wire Effect,” Appl. Phys. Lett. 58 (1991) 856-858.
[61] V. Lehmann and U. Gösele, “Quantum Sponge Structures Grown via a Self-adjusting Etching Process,” Adv. Mater. 4 (1992) 114-116.
[62] V. Lehmann, “The Physics of Macropore Formation in Low Doped N-type Silicon,” Electrochem. Soc. 140 (1993) 2836-2843.
[63] K. Q. Peng, X. Wang, X. Wu, and S. T. Lee, “Fabrication and Photovoltaic Property of Ordered Macroporous Silicon,” Appl. Phys. Lett. 95 (2009) 143119.
[64] K. Peng, A. Lu, R. Zhang and S. T. Lee, “Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching,” Adv. Funct. Mater. 18 (2008) 3026-3035.
[65] C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, “Physical Properties of Thin Film Field Emission Cathodes with Molybdenum Cones,” J. Appl. Phys. 47 (1976) 5248-5263.
[66] K. Seeger and R. E. Palmer, “Fabrication of silicon cones and pillars using rough metal films as plasma etching masks,” Appl. Phys. Lett. 74 (1999) 1627-1629.
[67] Y. Chen, L. P. Guo and D. T. Shaw, “High-density silicon and silicon nitride cones,” J. Cryst. Growth 210 (2000) 527-531.
[68] D. H. Lowndes, J. D. Fowlkes and A. J. Pedraza, “Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6,” Appl. Surf. Sci. 154 (2000) 647-658.
[69] X. Y. Chen and Z. G. Liu, “Interaction between laser beam and target in pulsed laser deposition: laser fluence and ambient gas effects,” Appl. Phys. A 69 (1999) S523-S525.
[70] N. G. Shang, F. Y. Meng, F. C. K. Au, Q. Li, C. S. Lee, I. Bello and S. T. Lee, “Fabrication and field emission of high-density silicon cone arrays,” Adv. Mater. 14 (2002) 1308-1311.
[71] Y. Li, W. Cai and G. Duan, “Ordered Micro/Nanostructured Arrays Based on the Monolayer Colloidal Crystals,” Chem. Mater. 20 (2008) 615-624.
[72] Y. Li, N. Koshizakib and W. Cai, ” Periodic one-dimensional nanostructured arrays based on colloidal templates, applications and devices,” Coord. Chem. Rev. 255 (2011) 357-373.
[73] L. Li, T. Zhai, H. Zeng, X. Fang, Y. Bando and D. Golberg, “Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications,” J. Mater. Chem. 21 (2011) 40-56.
[74] S. Yang and Y. Lei, “Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications,” Nanoscale 3 (2011) 2768-2782.
[75] X. Z. Ye and L. M. Qi, ” Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications,” Nano Today 6 (2011) 608-631.
[76] H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[77] J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13 (1995) 1553-1558.
[78] C. L. Haynes and R. P. Van Duyne, “Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105 (2001) 5599-5611.
[79] S. M. Yang, S. G. Jang, D. G. Choi, S. Kim and H. K. Yu, “Nanomachining by Colloidal Lithography,” Small 2 (2006) 458-475.
[80] J. Zhang, Y. Li, X. Zhang and B. Yang, “Colloidal Self-Assembly Meets Nanofabrication: From Two-Dimensional Colloidal Crystals to Nanostructure Arrays,” Adv. Mater. 22 (2010) 4249-4269.
[81] J. Perrin, “Mouvement brownien et réalité moléculaire,”Ann. chim. et d. phys. 18 (1909) 5-104.
[82] N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8 (1992) 3183-3190.
[83] A. S. Dimitrov and K. Nagayama, “Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces,” Langmuir 12 (1996) 1303-1311.
[84] P. Jiang and M. J. McFarland, “Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating,” J. Am. Chem. Soc. 126 (2004) 13778-13786.
[85] M. Trau, D. A. Saville and I. A. Aksay, “Field-induced layering of colloidal crystals,” Science 272 (1996) 706-709.
[86] M. Bardosova, M. E. Pemble, I. M. Povey and R. H. Tredgold, “The Langmuir-Blodgett Approach to Making Colloidal Photonic Crystals from Silica Spheres,” Adv. Mater. 22 (2010) 3104-3124.
[87] J. Pacifico, D. Gomez and P. Mulvaney, “A Simple Route to Tunable Two-Dimensional Arrays of Quantum Dots,” Adv. Mater. 17 (2005) 415-418.
[88] J. Chen, W. Liao, X. Chen, T. Yang, S. E. Wark, D. Son, J. D. Batteas and P. S. Cremer, “Evaporation-Induced Assembly of Quantum Dots into Nanorings,” ACS Nano 3 (2009) 173-180.
[89] C. M. Zhou and D. Gall, “Surface patterning by nanosphere lithography for layer growth with ordered pores,” Thin Solid Films 516 (2007) 433-437.
[90] C. H. Sun, N. C. Linn and P. Jiang, “Templated Fabrication of Periodic Metallic Nanopyramid Arrays,” Chem Mater 19 (2007) 4551-4556.
[91] P. X. Chen, Y. L. Fan, and Z. Y. Zhong, “The fabrication and application of patterned Si(001) substrates with ordered pits via nanosphere lithography,” Nanotechnology 20 (2009) 095303.
[92] H. Asoh, K. Uchibori and S. Ono, “Anisotropic chemical etching of silicon through anodic oxide films formed on silicon coated with microspheres,” Semiconductor Science and Tech. 26 (2011) 102001.
[93] W. K. Choi, J. L. Thong, Y. Bai, P. Newaskar and P. Luo, “Effect of etchant concentration and defects on pyramid formation in TMAH etched silicon,” Bull. Mater. Sci. 22 (1999) 615-620.
[94] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumartel, “Anisotropic etching of crystalline silicon in alkaline solutions, I: Orientation dependence and behavior of passivation layers,” J. Electrochem. Soc. 137 (1990) 3612-3626.
[95] M. E. Dudley and K. W. Kolasinski, “Wet etching of pillar-covered silicon surfaces: Formation of crystallographically defined macropores,” J. Electrochem. Soc. 155 (2008) H164-H171.
[96] M. A. Gosálvez, K. Sato, A. S. Foster, R. M. Nieminen, and H. Tanaka, “An atomistic introduction to anisotropic etching,” J. Micromech. Microeng. 17 (2007) S1-S26.
[97] H. Seidel, L. Csepregi, A. Heuberger, and H. Baumartel, “Anisotropic etching of crystalline silicon in alkaline solutions, II: Influence of dopants,” J. Electrochem. Soc. 137 (1990) 3626-3632.
[98] K. E. Peterson, “Silicon as a mechanical material,” Proc IEEE 70 (1982) 420-457.
[99] K. E. Bean, “Anisotropic etching of silicon,” IEEE Trans. Electron Devices 25 (1978) 1185-1193.
[100] A. Vyatkin, V. Starkov, V. Tzeitlin, H. Presting, J. Konle and U. König, “Random and Ordered Macropore Formation in p-Type Silicon,” J. Electrochem. Soc. 149 (2002) G70-G76.
[101] H. Asoh, A. Oide and S. Ono, “Formation of microstructured silicon surfaces by electrochemical etching using colloidal crystal as mask,” Electrochem. Commun. 8 (2006) 1817-1820.
[102] L. Xu, W. Li, J. Xu, J. Zhou, L. C. Wu, X. G. Zhang, Z. Y. Ma and K. J. Chen, “Morphology control and electron field emission properties of high-ordered Si nanoarrays fabricated by modified nanosphere lithography,” Appl. Surf. Sci. 255 (2009) 5414-5417.
[103] H. B. Xu, N. Lu, D. P. Qi, L. G. Gao, J. Y. Hao, Y. D. Wang, and L. F. Chi, “Broadband antireflective Si nanopillar arrays produced by nanosphere lithography,” Microelectron. Eng. 86 (2009) 850-852.
[104] X. M. Zhang, J. H. Zhang, Z. Y. Ren, X. Li, X. Zhang, D. F. Zhu, T. Q. Wang, T. Tian and B.Yang, “Morphology and Wettability Control of Silicon Cone Arrays Using Colloidal Lithography,” Langmuir 25 (2009) 7375-7382.
[105] J. W. Yang, J. I. Sim, H. M. An and T. G. Kim, “Fabrication of Nanometer-scale Pillar Structures by Using Nanosphere Lithography,” J. Korean Phys. Soc. 58 (2011) 994-997.
[106] H. Park, D. Shin, G. Kang, S. Baek, K. Kim and W. J. Padilla, “Broadband Optical Antireflection Enhancement by Integrating Antireflective Nanoislands with Silicon Nanoconical-Frustum Arrays,” Adv. Mater. 23 (2011) 5796-5800.
[107] H. L. Chen, S. Y. Chuang, C. H. Lin and Y. H. Lin, “Using colloidal lithography to fabricate and optimize sub-wavelength pyramidal and honeycomb structures in solar cells,” Opt. Express 15 (2007) 14793-14803.
[108] C. M. Chan, T. M. Ko and H. Hiraoka, “Polymer surface modification by plasmas and photons,” Surf. Sci. Rep. 24 (1996) 3-56.
[109] J. L. Moruzzi, A. Kiermasz and W. Eccleston, “Plasma oxidation of silicon,” Plasma Phys. 24 (1982) 605-614.
[110] C. S. Lee, C. C. Chen, C. S. Hsu, S. Lee and R. K. Hsu, “Depth profiles and concentration percentages of SiO2 and SiOx induced by ion bombardment of a silicon (100) target,” J. Mater. Sci-Mater El. 19 (2008) 898-901.
[111] K. P. Han, C. Waldfried and S. Berry, “Study on silicon surface oxidation of post-implant resist cleaning,” Microelectron. Eng. 86 (2009) 155-159.
[112] I. Barycka and I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuators A48 (1995) 229-238.
指導教授 鄭紹良(Shao-liang Cheng) 審核日期 2012-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明