參考文獻 |
1. Rodriguez-Mozaz, S., et al., Biosensors for environmental applications: Future development trends. Pure and Applied Chemistry, 2004. 76(4): p. 723-752.
2. Hu, W.P., et al., Optimization of DNA-directed immobilization on mixed oligo(ethylene glycol) monolayers for immunodetection. Analytical Biochemistry, 2012. 423(1): p. 26-35.
3. Oh, S.J., et al., Surface modification for DNA and protein microarrays. Omics-a Journal of Integrative Biology, 2006. 10(3): p. 327-343.
4. Samoc, M., A. Samoc, and J.G. Grote, Complex nonlinear refractive index of DNA. Chemical Physics Letters, 2006. 431(1-3): p. 132-134.
5. Niu, S., G. Singh, and R.F. Saraf, Label-less fluorescence-based method to detect hybridization with applications to DNA micro-array. Biosens Bioelectron, 2007. 23(5): p. 714-720.
6. Nabok, A., et al., The study of genomic DNA adsorption and subsequent interactions using total internal reflection ellipsometry. Biosens Bioelectron, 2007. 23(3): p. 377-383.
7. Demirel, G., et al., A novel DNA biosensor based on ellipsometry. Surface Science, 2008. 602(4): p. 952-959.
8. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical, 1999. 54(1-2): p. 3-15.
9. Mavri, J., P. Raspor, and M. Franko, Application of chromogenic reagents in surface plasmon resonance (SPR). Biosens Bioelectron, 2007. 22(6): p. 1163-1167.
10. Feltis, B.N., et al., A hand-held surface plasmon resonance biosensor for the detection of ricin and other biological agents. Biosens Bioelectron, 2008. 23(7): p. 1131-1136.
11. Campbell, C.T. and G. Kim, SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials, 2007. 28(15): p. 2380-2392.
12. 劉仁材,"自組裝單層膜技術於光學式及電梳式生物感測器之應用研究研究",博士論文,國立中央大學化學與材料工程研究所,2010
13. Watson, J.D. and F.H.C. Crick, Molecular-Structure of Nucleic-Acids - a Structure for Deoxyribose Nucleic-Acid. Jama-Journal of the American Medical Association, 1993. 269(15): p. 1966-1967.
14. Kurreck, J., Antisense technologies - Improvement through novel chemical modifications. European Journal of Biochemistry, 2003. 270(8): p. 1628-1644.
15. Egholm, M., et al., Pna Hybridizes to Complementary Oligonucleotides Obeying the Watson-Crick Hydrogen-Bonding Rules. Nature, 1993. 365(6446): p. 566-568.
16. Tomac, S., et al., Ionic effects on the stability and conformation of peptide nucleic acid complexes. Journal of the American Chemical Society, 1996. 118(24): p. 5544-5552.
17. Nielsen, P.E., et al., Sequence-Selective Recognition of DNA by Strand Displacement with a Thymine-Substituted Polyamide. Science, 1991. 254(5037): p. 1497-1500.
18. Ananthanawat, C., et al., Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique. Biosens Bioelectron, 2010. 25(5): p. 1064-1069.
19. Rogers, K.R., Recent advances in biosensor techniques for environmental monitoring. Anal Chim Acta, 2006. 568(1-2): p. 222-231.
20. Huang, S.H., et al., Detection of serum uric acid using the optical polymeric enzyme biochip system. Biosens Bioelectron, 2004. 19(12): p. 1627-1633.
21. Poetz, O., et al., Protein microarrays: catching the proteome. Mechanisms of Ageing and Development, 2005. 126(1): p. 161-170.
22. Lee, J.O., et al., Aptamers as molecular recognition elements for electrical nanobiosensors. Analytical and Bioanalytical Chemistry, 2008. 390(4): p. 1023-1032.
23. Ozaki, H., et al., Biomolecular sensor based on fluorescence-labeled aptamer. Bioorganic & Medicinal Chemistry Letters, 2006. 16(16): p. 4381-4384.
24. McCauley, T.G., N. Hamaguchi, and M. Stanton, Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Analytical Biochemistry, 2003. 319(2): p. 244-250.
25. Bayrak, Y., Application of Langmuir isotherm to saturated fatty acid adsorption. Microporous and Mesoporous Materials, 2006. 87(3): p. 203-206.
26. Morgan, H. and D.M. Taylor, A Surface-Plasmon Resonance Immunosensor Based on the Streptavidin Biotin Complex. Biosens Bioelectron, 1992. 7(6): p. 405-410.
27. Boozer, C., et al., DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface plasmon resonance biosensor. Anal Chem, 2006. 78(5): p. 1515-1519.
28. Peterson, A.W., L.K. Wolf, and R.M. Georgiadis, Hybridization of mismatched or partially matched DNA at surfaces. Journal of the American Chemical Society, 2002. 124(49): p. 14601-14607.
29. Ladd, J., et al., DNA-directed protein immobilization on mixed self-assembled monolayers via a Streptavidin bridge. Langmuir, 2004. 20(19): p. 8090-8095.
30. Ritchie, R. H., Plasma Losses by Fast Electrons in Thin Films., Physical Review, 106, 874 (1957).
31. Powell, C. J., Swan, J. B., Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium., Physical Review, 118, 640 (1960).
32. Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection., Zeitschrift fur Physik A Hadrons and Nuclei, 216, 398 (1968).
33. Kretschmann, E., Raether, H., Radiative decay of non radiative surface plasmons excited by light., Zeitschrift Fur Naturforschung, 23A, 2135 (1968).
34. Liedberg, B., Nylander, C., Lunstrom, I., Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 4, 299 (1983).
35. Jonsson, U., Fagerstam, L., Ivarsson, B., Johnsson, B., Karlsson, R., Lundh, K., Lofas, S., Persson, B., Roos, H., Ronnberg, I., et al., Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology., Biotechniques, 11, 620 (1991).
36. 胡文品,表面電漿共振生物感測器簡介與應用,生物感測技術專刊,3-17.
37. 謝振傑,光纖生物感測器,物理雙月刊(廿八卷四期),2006 年8 月.
38. www.ntist.edu.tw/sensor/第五場主題演講.pdf.
39. 劉盈村,“光纖式表面電漿子共振生醫微感測器”,碩士論文,國立台灣大學醫學工程研究所,2001。
40. Piliarik, M., Homola, J., Surfae plasmon resonance biosensors for multianalyte detection.
41. Lott, G.A., et al., Conformation of self-assembled porphyrin dimers in liposome vesicles by phase-modulation 2D fluorescence spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(40): p. 16521-16526.
42. Su, Y.D., S.J. Chen, and T.L. Yeh, Common-path phase-shift interferometry surface plasmon resonance imaging system. Optics Letters, 2005. 30(12): p. 1488-1490.
43. Chen, W.Y., et al., A multispot DNA chip fabricated with mixed ssDNA/oligo (ethylene glycol) self-assembled monolayers for detecting the effect of secondary structures on hybridization by SPR imaging. Sensors and Actuators B-Chemical, 2007. 125(2): p. 607-614.
44. Piliarik, M., H. Vaisocherova, and J. Homola, Towards parallelized surface plasmon resonance sensor platform for sensitive detection of oligonucleotides. Sensors and Actuators B-Chemical, 2007. 121(1): p. 187-193.
45. Piliarik, M. and J. Homola, Self-referencing SPR imaging for most demanding high-throughput screening applications. Sensors and Actuators B-Chemical, 2008. 134(2): p. 353-355.
46. Beusink, J.B., et al., Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens Bioelectron, 2008. 23(6): p. 839-844.
47. Berger, C.E.H., et al., Surface plasmon resonance multisensing. Anal Chem, 1998. 70(4): p. 703-706.
48. Hide, M., et al., Real-time analysis of ligand-induced cell surface and intracellular reactions of living mast cells using a surface plasmon resonance-based biosensor. Analytical Biochemistry, 2002. 302(1): p. 28-37.
49. Yanase, Y., et al., The SPR signal in living cells reflects changes other than the area of adhesion and the formation of cell constructions. Biosens Bioelectron, 2007. 22(6): p. 1081-1086.
50. Yanase, Y., et al., Living cell positioning on the surface of gold film for SPR analysis. Biosens Bioelectron, 2007. 23(4): p. 562-567.
51. Fang, Y., et al., Resonant waveguide grating biosensor for living cell sensing. Biophysical Journal, 2006. 91(5): p. 1925-1940.
52. Rich, R.L. and D.G. Myszka, Advances in surface plasmon resonance biosensor analysis. Current Opinion in Biotechnology, 2000. 11(1): p. 54-61.
53. Cooper, M.A., Label-free screening of bio-molecular interactions. Analytical and Bioanalytical Chemistry, 2003. 377(5): p. 834-842.
54. Yanase, Y., et al., Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging. Biosens Bioelectron, 2010. 26(2): p. 674-681.
55. 黃莉雅,"利用表面電漿共振影像儀探討核酸共軛之蛋白質晶片最佳化研究",碩士論文,國立中央大學化學與材料工程研究所,2011
56. Curreli, M., et al., Real-Time, Label-Free Detection of Biological Entities Using Nanowire-Based FETs. Ieee Transactions on Nanotechnology, 2008. 7(6): p. 651-667.
57. Li, Z., et al., Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Letters, 2004. 4(2): p. 245-247.
58. Stern, E., et al., Importance of the debye screening length on nanowire field effect transistor sensors. Nano Letters, 2007. 7(11): p. 3405-3409.
59. Gao, Z.Q., et al., Silicon nanowire arrays for label-free detection of DNA. Anal Chem, 2007. 79(9): p. 3291-3297.
60. Kind, M. and C. Woll, Organic surfaces exposed by self-assembled organothiol monolayers: Preparation, characterization, and application. Progress in Surface Science, 2009. 84(7-8): p. 230-278.
61. Foster, A.S. and R.M. Nieminen, Adsorption of acetic and trifluoroacetic acid on the TiO2(110) surface. Journal of Chemical Physics, 2004. 121(18): p. 9039-9042.
62. Sagiv, J., Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. Journal of the American Chemical Society 1980, 102, 92-98.
63. Ulman, A., Formation and structure of self-assembled monolayers. Chemical Reviews, 1996. 96(4): p. 1533-1554.
64. Rusmini, F., Z.Y. Zhong, and J. Feijen, Protein immobilization strategies for protein biochips. Biomacromolecules, 2007. 8(6): p. 1775-1789.
65. Niemeyer, C.M., Semisynthetic DNA-Protein Conjugates for Biosensing and Nanofabrication. Angewandte Chemie-International Edition, 2010. 49(7): p. 1200-1216.
66. Chien, F.C., et al., An investigation into the influence of secondary structures on DNA hybridization using surface plasmon resonance biosensing. Chemical Physics Letters, 2004. 397(4-6): p. 429-434.
67. Steel, A.B., et al., Immobilization of nucleic acids at solid surfaces: Effect of oligonucleotide length on layer assembly. Biophysical Journal, 2000. 79(2): p. 975-981.
68. Qiang, F., et al., Enhanced systemic exposure of fexofenadine via the intranasal administration of chitosan-coated liposome. International Journal of Pharmaceutics, 2012. 430(1-2): p. 161-166.
69. Kelly, S.M., T.J. Jess, and N.C. Price, How to study proteins by circular dichroism. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2005. 1751(2): p. 119-139.
70. Gray, D.M., R.L. Ratliff, and M.R. Vaughan, Circular-Dichroism Spectroscopy of DNA. Methods in Enzymology, 1992. 211: p. 389-406.
71. Lin, K.C., et al., Characterization of the Interactions of Lysozyme with DNA by Surface Plasmon Resonance and Circular Dichroism Spectroscopy. Applied Biochemistry and Biotechnology, 2009. 158(3): p. 631-641.
72. Lin, P.H., et al., Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetry. Colloids and Surfaces B-Biointerfaces, 2011. 88(2): p. 552-558.
73. Nelson, K.E., et al., Surface characterization of mixed self-assembled monolayers designed for streptavidin immobilization. Langmuir, 2001. 17(9): p. 2807-2816.
74. Schreiber, F., Structure and growth of self-assembling monolayers. Progress in Surface Science, 2000. 65(5-8): p. 151-256.
75. Bunimovich, Y.L., et al., Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. Journal of the American Chemical Society, 2006. 128(50): p. 16323-16331.
76. Ananthanawat, C., et al., Thiolated pyrrolidinyl peptide nucleic acids for the detection of DNA hybridization using surface plasmon resonance. Biosens Bioelectron, 2009. 24(12): p. 3544-9.
77. Degefa, T.H. and J. Kwak, Electrochemical impedance sensing of DNA at PNA self assembled monolayer. Journal of Electroanalytical Chemistry, 2008. 612(1): p. 37-41.
78. Gong, P., et al., Molecular Mechanisms in Morpholino-DNA Surface Hybridization. Journal of the American Chemical Society, 2010. 132(28): p. 9663-9671.
79. Liu, Y., et al., Kinetic mechanisms in morpholino-DNA surface hybridization. Journal of the American Chemical Society, 2011. 133(30): p. 11588-96.
80. Piliarik, M., M. Bockova, and J. Homola, Surface plasmon resonance biosensor for parallelized detection of protein biomarkers in diluted blood plasma. Biosens Bioelectron, 2010. 26(4): p. 1656-1661.
81. Fernandez, F., et al., A label-free and portable multichannel surface plasmon resonance immunosensor for on site analysis of antibiotics in milk samples. Biosens Bioelectron, 2010. 26(4): p. 1231-1238.
82. Ladd, J., et al., Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Analytical and Bioanalytical Chemistry, 2009. 393(4): p. 1157-1163.
83. Peterson, A.W., R.J. Heaton, and R.M. Georgiadis, The effect of surface probe density on DNA hybridization. Nucleic Acids Research, 2001. 29(24): p. 5163-5168.
|