博碩士論文 993206002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:54.161.118.57
姓名 蕭宇廷(Yu-ting Xiao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 淨水污泥餅作為吸附材料處理含磷廢水之研究
(Using water treatment plant sludge cake as adsorbent for the treatment of phosphate containing wastewater)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在利用淨水污泥餅吸附廢水中的磷,藉以評估淨水污泥餅之再利用性。實驗中以平鎮淨水場之淨水污泥餅做為吸附材料,並以人工含磷廢水及光電業實廠含磷廢水為對象,探討磷的吸附行為。研究中先採用人工含磷廢水進行等溫吸附和吸附動力實驗,探討各種操作條件對淨水污泥餅之磷吸附容量與吸附平衡時間的影響;再以批次反應槽和連續流管柱操作方式,實際應用淨水污泥餅去除光電業實廠廢水中的磷,驗證淨水污泥餅處理實廠廢水中磷之可行性。
等溫吸附實驗結果顯示,在反應溫度25 ℃、初始pH值為2.5、初始磷濃度200 mg P/L,最大吸附容量(qm)為37.88 mg P/g。Freundlich、Langmuir和B.E.T.等溫吸附模式皆可模擬本研究之實驗結果,其中Freundlich吸附模式較合適於描述淨水污泥餅對磷之吸附行為。吸附動力實驗結果顯示,當吸附劑量提升、初始pH值為酸性及初始磷濃度低時,吸附反應速率快,吸附平衡時間約為6小時。淨水污泥餅吸附磷,為一吸熱反應。反應速率與各操作因子的關係,符合假二階動力模式。由反應後溶液pH值變化可以推論,淨水污泥餅表面氫氧官能基置換水中磷酸鹽為除磷之主要反應機制。
淨水污泥餅處理光電業實廠廢水之試驗結果發現,在反應時間6小時的批次反應操作中,淨水污泥餅直接處理酸性鋁蝕刻清洗製程廢水,磷的去除率可達80 %,而直接處理中性pH值之ROR廢水,其去除率僅為25 %;當調整ROR廢水pH值與鋁蝕刻清洗製程廢水相同時(pH=2.42),磷去除率亦可由25 %提升至80 %。在連續流管柱反應器中,流速為0.51 cm/min,設定磷貫穿點濃度為4 mg P/L,管柱於處理鋁蝕刻清洗製程廢水和ROR廢水,分別可操作3100和60分鐘。
摘要(英) This study evaluated the feasibility of reusing water treatment plant sludge cake for the adsorption of phosphate in wastewater. The adsorbent material was obtained from Ping-Jan water treatment plant and the adsorption behaviors for synthetic wastewater as well as the photoelectric industry wastewater containing phosphate were studied in the experiment. Isothermal adsorption and adsorption kinetic tests were carried out for the adsorption of phosphate in synthetic wastewater in order to investigate the effect of various operation conditions on the adsorption capacity and equilibrium time. Then batch reactor and continuous flow column tests were conducted to confirm the feasibility of using sludge cake for removing phosphate from photoelectric industry wastewater.
The results of isothermal adsorption test showed that the maximum adsorption capacity (qm) was 37.88 mg P/g when temperature was 25 ℃, initial pH value was 2.5 and initial phosphate concentration was 200 mg P/L. Freundlich, Langmuir and B.E.T. isotherm models described well the same experimental isotherm data. However, Freundlich equation demonstrated the best fit among the three models. The results of adsorption kinetic tests reveled that the adsorption rate was increased with the increase of adsorbent dosage, the decrease of initial pH value, and the decrease of initial phosphate concentration. In general, the adsorption equilibrium time was about 6 hrs. In addition, the adsorption of phosphate onto sludge cake was a process of endothermic reaction. The phosphate adsorption kinetic data can also be well fitted by Pseudo-Second-Order Model. During the adsorption process, the decrease of phosphate concentration accompanied with the increase of pH value in solution demonstrated that phosphate replaced OH functional group on the surface of sludge cake, which indicates that ligand exchange is the dominating mechanism for phosphate removal.
The results of batch operation using sludge cake as adsorbent to treat phosphate containing wastewater in photoelectric industry indicated that 80% of phosphate removal from low pH value of aluminum etching cleaning process wastewater was obtained in 6 hrs. However, only about 25 % of P removal efficiency was reached in treating the neutral pH value of ROR wastewater. When adjusting the pH value of ROR wastewater to the same level as aluminum etching cleaning process wastewater (pH=2.42), the P removal efficiency could also increased from 25 to 80 %. The results of continuous flow column tests, carried out at flow velocity of 0.51 cm/min and breakthrough phosphate concentration of 4 mg P/L, reveled that column reactor could operate for 3100 and 60 min in removing P from aluminum etching cleaning process wastewater and ROR wastewater, respectively.
關鍵字(中) ★ 淨水污泥餅
★ 含磷廢水
★ 吸附
★ 光電業
關鍵字(英) ★ water treatment plant sludge cake
★ phosphate containing wastewater
★ adsorption
★ photoelectric industry
論文目次 摘要 I
Abstract II
致謝 IV
目錄 V
圖目錄 VII
表目錄 XI
第一章 前言 1
1-1研究緣起 1
1-2研究目的與內容 2
第二章 文獻回顧 5
2-1含磷廢水 5
2-1-1含磷廢水來源 5
2-1-2磷的水化學 7
2-1-3磷在水體造成的問題及管制現況 9
2-1-4光電產業廢水組成特性-以TFT-LCD為例 10
2-2除磷方法與原理 16
2-2-1化學沉澱法 16
2-2-2生物處理法 16
2-2-3吸附法 17
2-3淨水污泥作為吸附材料之應用 22
2-3-1淨水污泥吸附特性 22
2-3-2影響吸附行為的因子 26
2-3-3淨水污泥作為吸附材料之研究現況 29
第三章 實驗方法、材料與設備 34
3-1研究流程 34
3-2研究材料與藥品 35
3-2-1研究材料來源 35
3-2-2實驗藥品 37
3-3研究設備與儀器 38
3-3-1主要實驗設備 38
3-3-2主要分析儀器及分析方法 40
3-4研究方法 41
3-4-1淨水污泥基本特性分析 41
3-4-2吸附實驗 44
第四章 結果與討論 52
4-1淨水污泥餅基本特性分析 52
4-1-1淨水污泥餅的物理特性 52
4-1-2淨水污泥餅的化學特性 54
4-2淨水污泥餅吸附磷的容量及速率探討 57
4-2-1等溫吸附實驗 57
4-2-2吸附動力實驗 86
4-3淨水污泥餅處理光電業實廠廢水 105
4-3-1初步試驗 105
4-3-2批次試驗 111
4-3-3管柱試驗 122
4-3-4綜合評估 132
第五章 結論與建議 139
5-1 結論 139
5-2 建議 141
參考文獻 142
附錄一 A-1
附錄二 B-1
參考文獻 1. Arias, M., J. Da Silva-Carballal, L. Garcia-Rio, J. Mejuto, and A. Nunez,“Retention of phosphorus by iRORn and aluminum-oxides-coated quartz particles”, J. Colloid Interface Sci, 295, pp. 65-70, (2006).
2. Ayala, J., F. Blanco, P. Garcia, P. RORdriguez, and J. Sancho,“Asturian fly ash as a heavy metals removal material”, Fuel, 77, pp. 1147-54, (1998).
3. Babatunde, A. O., and Y. Q. Zhao,“Constructive AppRORaches Toward Water Treatment Works Sludge Management: An International Review of Beneficial Reuses”, Critical Reviews in EnviRORnmental Science and Technology, 37, pp. 129-164, (2007).
4. Babatunde, A. O., Y. Q. Zhao, Y. Yang, and P. Kearney,“Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate”, Chemical Engineering Journal, 136, pp. 108-115, (2008).
5. Borggaard, O. K., B. Raben-Lange, A. L. Gimsing, and B. W. StRORbel,“Influence of humic substances on phosphate adsorption by aluminium and iRORn oxides.”, Geoderma, 127, pp. 270-279, (2005).
6. Chang, I. L., C. P. Chu, and D. J. Lee,“ElectRORkinetic effects on expression characteristics of clay slurries”, EnviRORnmental Science and Health, 32, pp. 1591-1604, (1997).
7. Cheung, K. C., and T. H. Venkitachalam,“ImpRORving phosphate removal of sand in filtration system using alkaline fly ash”, Chemosphere, 41, pp. 243-249, (2000).
8. Chubar, N. I., V. A. Kanibolotskyy, V. V. Strelko, G. G. Gallios, V. F. Samanidou, T. O. Shaposhnikova, V. G. Milgrandt, and I. Z. Zhuravlev,“Adsorption of phosphate ions on novel inorganic ion exchangers”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 255, pp. 55-63, (2005).
9. Cordell, D., J.-O. Drangert, and S. White,“The story of phosphorus: Global food security and food for thought”, Global EnviRORnmental Change, 19, pp. 292-305, (2009).
10. Dayton, E. A., and N. T. Basta,“A method for determining the phosphorus sorption capacity and amorphous aluminum of aluminum-based drinking water treatment residuals”, J. EnviRORn Qual, 34, pp. 1112-8, (2005).
11. Dayton, E. A., N. T. Basta, C. A. Jakober, and J. A. Hattey,“Using treatment residuals to reduce phosphorus in agricultural runoff”, J. American Water Works Association, 95, pp. 151-158, (2003).
12. de-Bashan, L. E., and Y. Bashan,“Recent advances in removing phosphorus fRORm wastewater and its future use as fertilizer (1997-2003)”, Water Research., 38, pp. 4222-46, (2004).
13. Elliott, H. A., and C. P. Huang,“Factors Affecting the Adsorption of Complexed Heavy Metal on HydRORus Al2O3”, Water Science and Technology, 17, pp. 1017-28, (1984).
14. Georgantas, D. A., V. M. Matsis, and H. P. GrigoRORpoulou,“Soluble phosphorus removal thRORugh adsorption on spent alum sludge”, EnviRORnmental Technology, 27, pp. 1081-8, (2006).
15. Guan, X. H., G. H. Chen, and C. Shang,“Re-use of water treatment works sludge to enhance particulate pollutant removal fRORm sewage”, Water Research, 39, pp. 3433-40, (2005).
16. Gupta, V. K., and I. Ali,“Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc fRORm wastewater”, Separation and Purification Technology, 18, pp. 131-140, (2000).
17. Ippolito, J. A., K. A. Barbarick, and H. A. Elliott,“Drinking Water Treatment Residuals: A Review of Recent Uses”, J. of EnviRORnment Quality, 40, pp. 1-12, (2011).
18. Ippolito, J. A., K. A. Barbarick, D. M. Heil, J. P. Chandler, and E. F. Redente,“Phosphorus retention mechanisms of a water treatment residual”, J. of EnviRORnment Quality, 32, pp. 1857-64, (2003).
19. Jellali, S., M. A. Wahab, R. B. Hassine, A. H. Hamzaoui, and L. Bousselmi,“Adsorption characteristics of phosphorus fRORm aqueous solutions onto phosphate mine wastes”, Chemical Engineering Journal, 169, pp. 157-165, (2011).
20. Kim, J. G., J. H. Kim, H. S. Moon, C. M. Chon, and J. S. Ahn,“Removal capacity of water plant alum sludge for phosphorus in aqueous solutions”, Chemical Speciation and Bioavailability, 14, pp. 67-73, (2002).
21. Kostura, B., H. Kulveitova, and J. Lesko,“Blast furnace slags as sorbents of phosphate fRORm water solutions”, Water Research, 39, pp. 1795-802, (2005).
22. Li, C.-W., J.-L. Lin, S.-F. Kang, and C.-L. Liang,“Acidification and alkalization of textile chemical sludge: volume/solid reduction, dewaterability, and Al(III) recovery”, Separation and Purification Technology, 42, pp. 31-37, (2005).
23. Lopez, E., B. Soto, M. Arias, A. Nunez, D. Rubinos, and M. T. Barral,“Adsorbent PRORperties of Red Mud and Its Use For Wastewater Treatment.”, Water Res., 32 ,No. 4, pp. 1314-22, (1998).
24. Makris, K. C., W. G. Harris, G. A. O’Connor, T. A. Obreza, and H. A. Elliott,“Physicochemical pRORperties related to long-term phosphorus retention by drinking-water treatment residuals”, EnviRORmental Technology, 39, pp. 4280-89, (2005).
25. Makris, K. C.,D. Sarkar, and R. Datta, “Evaluating a drinking-water by pRORduct as a noval sorbent for arsenic”, Chemosphere, 64, pp. 730-741, (2006a).
26. Makris, K. C.,D. Sarkar, and R. Datta, “Aluminum-based drinking-water treatment residuals:A novel sorbent for perchlorate removal”, EnviRORnmental Pollution, 14, pp. 9-12, (2006b).
27. Manahan, Stanley E., EnviRORnmental Chemistry, Lewis Punlishers, Boca Raton,FL. (1994).
28. Ping, N., B. Hans-J¨org, L. Bing, L. Xiwu, and Z. Yong,“Phosphate removal fRORm wastewater by model-La(III) zeolite adsorbents”, Water Research, 30, pp. 3275-3276, (2008).
29. Razali, M., Y. Zhao, and M. Bruen,“Effectiveness of a drinking-water treatment sludge in removing different phosphorus species fRORm aqueous solution”, Separation and Purification Technology, 55, pp. 300-306, (2007).
30. Richard Sedlak, Phosphorus and NitRORgen Removal fRORm Municipal Wastewater-Principles and Practice, Lewis Publishers, (1991).
31. Sanyal, S. K., and S. K. De Datta,“Chemistry of phosphorus transformations in soil.”, Advances in Soil Sciences, 16, pp. 1-94,(1991).
32. Sawyer, C. N., P. L. McCarty, G. F. Parkin, 蕭蘊華、傅崇德譯, 環境工程化學下冊, 滄海出版社,(1995)。
33. Spark, D.L., Kinetics of Soil Chemical PRORcesses., Academic Press, San Diego, CA, (1989).
34. Stumm, W., and J. J. Morgan, Aquatic chemistry, Wiley Interscience (1981).
34. Tanada, S., M. Kabayama, N. Kawasaki, T. Sakiyama, T. Nakamura, M. Araki, and T. Tamura,“Removal of phosphate by aluminum oxide hydRORxide”, J. Colloid Interface Science, 257, pp. 135-140, (2003).
36. Tie, J., L. Zhao, and H. Guo,“Phosphorus Adsorption by Dewatered and Activated Alum Sludge”, International Conference on Intelligent Computation Technology and Automation(ICICTA), 2, pp. 836-840, (2011).
37. Toshiaki, N., and T. Kanazawa,“Adsorption of metalions fRORm solution onto apiezoelectricquartzcrystal”, Analytica Chimica Acta, 245, pp. P.71-76,(1991).
38. Vladimir, C.,“Characterization and applications of red mud fRORm bauxite pRORcessing”, Mineral Resource Management, 23, pp. 29-38, (2007).
39. Wei, X., R. C. J. ViadeROR, and S. Bhojappa,“Phosphorus removal by acid mine drainage sludge fRORm secondary effluents of municipal wastewater treatment plants”, Water Research, 42, pp. 3275-84, (2008).
40. Wu, D., B. Zhang, C. Li, Z. Zhang, and H. Kong,“Simultaneous removal of ammonium and phosphate by zeolite synthesized fRORm fly ash as influenced by salt treatment”, J. Colloid Interface Science, 304, pp. 300-6, (2006).
41. Xiong, J. B., and Q. Mahmood,“Adsorptive removal of phosphate fRORm aqueous media by peat”, Desalination, 259, pp. 59-64, (2010).
42. Yang, Y., D. Tomlinson, S. Kennedy, and Y. Q. Zhao,“Dewatered alum sludge: a potential adsorbent for phosphorus removal”, Water Science & Technology, 54, pp. 207-213, (2006a).
43. Yang, Y., Y. Zhao, A. Babatunde, L. Wang, Y. Ren, and Y. Han,“Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge”, Separation and Purification Technology, 51, pp. 193-200, (2006b).
44. Yang, Y., Y. Q. Zhao, and P. Kearney,“Influence of ageing on the structure and phosphate adsorption capacity of dewatered alum sludge”, Chemical Engineering Journal, 145, pp. 276-284, (2008).
45. Zeng, L., X. Li, and J. Liu,“Adsorptive removal of phosphate fRORm aqueous solutions using iRORn oxide tailings”, Water Research, 38, pp. 1318-26, (2004).
46. Zhao, Y. Q., A. O. Babatunde, X. H. Zhao, and W. C. Li,“Development of alum sludge-based constructed wetland: An innovative and cost effective system for wastewater treatment”, J. of EnviRORnmental Science and Health, Part A, 44, pp. 827-832, (2009).
47. Zhou, Y. F., and R. J. Haynes,“Removal of Pb(II), Cr(III) and Cr(VI) fRORm Aqueous Solutions Using Alum-Derived Water Treatment Sludge”, Water Air and Soil Pollution, 215, pp. 631-643, (2011).
48. 朱敬平、鍾裕仁、許國恩、劉怡君、江家菱、王郁萱、烏春梅、吳碩傳,「產業廢水污染調查及管制措施研議計畫第二年」, 計畫編號:EPA-99-G104-02-215,財團法人中興工程顧問社,(2010)。
49. 呂佳成,「利用沉澱微過濾程序回收光電業廢水中磷酸鹽」,國立台灣科技大學,化學工程學系,碩士論文,(2009)。
50. 李芳胤、陳士賢,土壤分析實驗手冊,新文京開發出版股份有限公司,台北市,(2007)。
51. 杜建德,「TFT-LCD環保運作概述」,(2005)。
52. 吳志超、魏名軍,「以淨水污泥去除水中砷之研究」,計畫編號:NSC99-2221-E-035-106,逢甲大學,(2005)。
53. 林志鴻,「淨水污泥再利用於水泥生料之研究」, 國立中央大學,環境工程研究所,碩士論文,(2010)。
54. 林東燦,「污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究」,國立中央大學,環境工程研究所,碩士論文,(2006)。
55. 林哲昌、鍾裕仁、朱敬平、許國恩、烏春梅、吳碩傳,「高科技產業廢水水質特性分析及管制標準探討計畫」,計畫編號:EPA-96-G104-02-222,財團法人中興工程顧問社,(2008)。
56. 林敬智,「下水污泥灰渣應用於銅離子去除之初步探討」,國立中央大學,環境工程研究所,碩士論文,(1999)。
57. 洪珮瑜,「淨水污泥及其燒結體對銅、鉛離子之吸附反應」,國立台灣大學,環境工程學研究所,碩士論文,(2001)。
58. 洪啟昌,「次磷酸溶液處理方法之研究-化學混凝法、吸附法、氧化法」,國立成功大學,化學工程研究所,碩士論文,(2005)。
59. 胡文華、吳慧芳、徐明、吳峰,「聚合氯化鋁污泥對磷的吸附動力學及熱力學」,中國環境工程學報,第5卷,第10期,(2011)。
60. 胡南澤,點土成金污泥蛻變環保綠建材--自來水淨水污泥再利用成輕質骨材,2011年9月29日,取自http://www.moea.gov.tw/Mns/populace/news/News.aspx?kind=1&menu_id=40&news_id=23035。
61. 夏聰惠、駱尚廉、林正芳,「非結晶性氧化鐵對Cr(VI)之吸附研究」, 中國土木水利工程學刊,第三卷,pp. P.88-96,(1991)。
62. 財團法人中華顧問工程司,「科學工業園區相關產業污水處理方法及回收潛勢探討(第二年)」,(2004)。
63. 財團法人台灣綠色生產力基金會,「利用鋁蝕刻廢液(廢磷酸)產製焚化飛灰處理藥劑先期評估計畫」,(2010)。
64. 高瑛紜、劉蘭萍、王義基,「液晶面板製造業廢棄物資源化現況評析」,綠基會通訊第十三期,(2008)。
65. 張鈞維,「以淨水污泥及鐵氧化物吸附劑去除水庫水體含磷之研究」,國立成功大學,環境工程研究所,碩士論文,(2006)。
66. 張維欽、陳堯森、郭人豪、蘇玫心、曾淳錚、江世民,「廢棄鋁鹽污泥再利用吸附廢水中磷酸鹽之研究」,台灣環境資源永續發展研討會論文集,台灣環境資源永續發展協會,pp.26-37,(2005)。
67. 陳珮蓉,「利用酸氧化前後奈米碳管吸附磷苯二甲酸酯類之特性研究」,國立中央大學,環境工程研究所,碩士論文,(2010)。
68. 彭文良,「酸化鹼化對淨水場污泥減量與脫水性之影響」,淡江大學,水資源及環境工程學系,碩士論文,(2009)。
69. 黃昭貴,「以鐵被覆廢觸媒吸附砷及鉻之研究」,國立台灣科技大學,化學工程研究所,碩士論文,(1995)。
70. 黃昭貴,「含磷污泥與鋁鹽污泥之共調理脫水」,國立台灣科技大學,化學工程學系,碩士論文,(2005)。
71. 黃聖皓,「淨水場酸化污泥脫水特性探討」,逢甲大學,環境工程與科學研究所,碩士論文,(2005)。
72. 廖威智,「薄膜電晶體液晶顯示器(TFT-LCD)製程有機廢水處理與回收再利用之研究」,國立交通大學,環境工程研究所,碩士論文,(2003)。
73. 劉志仁,「水庫優養化對水質影響及水質處理研究」,國立台灣大學,環境工程研究所,博士論文,(1996)。
74. 劉信宏,「酸化對鋁鹽污泥脫水特性影響之探討」,逢甲大學,環境工程與科學研究所,碩士論文,(2007)。
75. 鄭仲凱,「氫氧化鐵吸附水中砷之動力與平衡研究」,國立成功大學,環境工程學系,碩士論文,(2003)。
76. 楊宜掄、楊豐榮、吳靜玫、余菀婷、周群剴、高詩茹、施亦涵,「半導體業研磨廢水及光電業廢水水質特性分析及管制標準探討計畫」,計畫編號:EPA-95-G104-02-231,鋒騰科技有限公司,(2006)。
77. 駱尚廉、鄭宏德、林正芳、李達源,「氧化鐵覆膜濾料對重金屬吸附之研究」,中國土木水利工程學刊,第六卷,pp. P.101-110,(1994)。
78. 謝寅雲,「淨水污泥/工業廢水污泥之燒結資源化研究」,國立台灣大學,環境工程研究所,碩士論文,(2011)。
指導教授 曾迪華(Dyi-hwa Tseng) 審核日期 2012-11-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明