博碩士論文 993206003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.209.80.87
姓名 巫學蒼(Hsueh-Tsang Wu)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
(Aerosol characteristics at Son La Height in Vietnam in 2012 and aerosol source apportionment at Mountain Lulin in Taiwan from 2003 to 2012)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文2012年分別在越南山羅高地(以下簡稱山羅)及台灣鹿林山大氣背景監測站(以下簡稱鹿林山)進行氣膠觀測,探討2012年山羅和鹿林山氣膠化學特性、分辨2003-2012年間鹿林山生質燃燒 (Biomass Burning, BB)與非生質燃燒 (Non-Biomass Burning, NBB)氣膠化學特性差異、瞭解生質燃燒煙團從中南半島傳輸至鹿林山的氣膠成分比例變化、並使用PMF受體模式 (Positive Matrix Factorizatio, US EPA, 2008)解析鹿林山氣膠污染來源。
研究結果顯示2012年山羅PM10氣膠受PM2.5氣膠主導,以Hysplit模式(Draxler and Rolph, 2010)追溯氣團來源可分為來自中南半島和中國南方,當氣流來自中南半島PM2.5氣膠質量濃度和K+、碳成分及有機成分比例大於來自中國南方,顯示此時氣膠成分受生質燃燒活動影響大;但當氣流來自中國南方,SO42-與NH4+佔PM2.5氣膠質量比例較高,表示受到人為污染源影響較大。
近十年鹿林山氣膠觀測資料顯示出,BB的PM2.5氣膠質量濃度、碳成分比例、K+、NO3-、Levoglucosan、OC3、EC1-OP明顯高於NBB,除了表示BB煙團傳輸的現象會造成PM2.5氣膠質量濃度上升外,也凸顯了BB菸團氣膠指標物種的特徵;相反地,BB水溶性離子比例反而低於NBB,這表示NBB的氣膠受到人為污染源影響較BB大。
在過去,接近BB發生源氣膠特性的探討很少,本研究比較2010年泰國清邁、2011-2012年越南山羅省以及2010-2012年BB期間鹿林山PM2.5氣膠觀測數據,結果顯示近生質燃燒源和受BB煙團影響下風處鹿林山PM2.5氣膠K+、OC3、EC1-OP及Levoglucosan等BB氣膠特徵指標物比例變化較其他成分穩定,確認這些物種為BB氣膠特徵。另外,BB期間鹿林山PM2.5 NO3-比例較清邁與山羅高,顯示NO3-可能來自於NOx的長程傳輸轉化。
PMF解析出鹿林山BB PM2.5污染來源共有6個主要污染源類型,依高低序分別為BB mixing secondary aerosol (28.7 %)、BB mixing soil dust (25.4 %)、BB (17.6 %)、BB _ dicarboxylates (12.0 %)、Diesel emissions (10.0 %)、Sea salt (6.2 %)。PMF來源推估指出受到BB煙團氣流影響的PM2.5質量濃度共有83.7 %是BB類型,這個結果表示PMF污染源解析的正確性和說明了BB煙團經盛行西風長程傳送時,可能會夾帶或混合其他氣流到達下風處的鹿林山。在NBB期間各污染源以二次氣膠貢獻PM2.5質量濃度最多,共有70.6 %,氣流多半源自於海洋(包含太平洋與南中國海),也有少許氣流混合海洋及人為一次污染物是來自於中國大陸沿岸並透過低層大氣傳輸至鹿林山。
總結來說,山羅近BB污染源氣膠多為PM2.5,當氣流來自中南半島,PM2.5氣膠受生質燃燒活動影響較大,但當氣流來自中國南方, PM2.5氣膠受人為污染源影響較大。鹿林山十年氣膠觀測資料指出,生質燃燒煙團經長程傳輸會混合少量其他污染來源;當不受生質燃燒影響時,氣流主要含有二次氣膠,但傳輸過程可能混合少量海洋及人為一次污染物。
摘要(英) This work collected armospheric aerosols at Son La, Vietnam and Mt. Lulin Atmospheric Background Site (LABS), Taiwan, respectively. The objectives of this study were to survey Son La and LABS aerosol characteristics, distinguish aerosol chemistry between biomass burning (BB) and non-biomass burning (NBB) periods from 2003-2012, realize the changes of aerosol composition proportion for BB plume transported from Indochina and LABS, and utilize Positive Matrix Factorization (PMF) (US EPA, 2008) for resolving aerosol source contribution at LABS.
The results show that PM2.5 dominates PM10 at Son La in 2012. The airmasses were traced back from Indochina and South China by using Hysplit model (Draxler and Rolph, 2010). PM2.5 mass concentration, K+, carbonaceous content, and organic aerosol proportion were greater than that from South China when the airmasses were from Indochina. This implies that aerosol composition is influenced much by BB activities. In contrast, SO42- and NH4+ were higher in PM2.5 mass fractions to indicate the greater influence from anthropogenic sources.
The results from ten years’s observation at LABS show that PM2.5 mass concentration, K+, NO3-, Levoglucosan, OC3, and EC1-OP were obviously greater than that of NBB. This phenomenum not only demonstrates the increase of M2.5 mass concentration but also stands out aerosol tracer characterstics from BB plume. On the other hand, the proportion of aerosol water-soluble ions from BB plume was lower than NBB plume, which indicates NBB aerosol is influenced more by anthrpogenic sources.
In the past, near-source BB aerosol characteristics were less studied. This work compares PM2.5 observation data from Chiang Mai, Thailand in 2010, Son La in 2011-2012, and LABS in 2010-2012 to show that the variations of BB aerosol tracers such as PM2.5 K+, OC3, EC1-OP, and Levoglucosan were more stable than the other species for near-source BB aerosol and downstream LABS aerosol affected by BB plume. In addition, the proportion of NO3- in LABS PM2.5 during BB period was higher than that of Chiang Mai and Son La, which implies NO3- is transformed from long-range transport.
The source contributions of LABS PM2.5 resolved from PMF shows that six major pollution types from high to low are BB mixing secondary aerosol (28.7 %), BB mixing soil dust (25.4 %), BB (17.6 %), BB _ dicarboxylates (12.0 %), Diesel emissions (10.0 %), and Sea salt (6.2 %). PMF source apportionment indicates 83.7% of PM2.5 mass concentration is contributed from BB for the airmasses under the influence of BB plume. This confirms the correctness of PMF source apportionment and accounts for BB plume mixing with other airmasses during transport to reach downstream LABS under the prevailing west wind. In contrast, secondary aerosol contributed more than other sources to PM2.5 to account for 70.6% during NBB period. In addition, the airmasses were mostly originated from ocean (including Pacific Ocean and South China Sea) but some mixed with marine and anthropogenic primary pollutants were transported from costline of China mainland through lower atmosphere to LABS.
In summary, PM2.5 is abundant for near-BB source Son La aerosol. Moreover, PM2.5 is influenced more by BB activities when the air masses were from Indochina and anthropogenic sources affect PM2.5 more for air masses from South China. Ten years’s LABS aerosol observation data indicate that BB plume could mix with less other sources during long-range transport and NBB airmasses mainly contain secondary aerosol but might have mixed with marine and anthropogenic primary pollutants.
關鍵字(中) ★ 生質燃燒氣膠
★ 高山氣膠
★ 生質燃燒氣膠特徵物種
★ 氣膠污染來源解析
關鍵字(英) ★ Biomass burning aerosol
★ High elevation aerosol
★ Aerosol tracers from biomass burning
★ Aerosol source apportionment
論文目次 致謝 VII
目錄 VIII
圖目錄 XI
表目錄 XVI
第一章、前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章、文獻回顧 3
2.1 亞洲與東南亞生質燃燒概況 3
2.1.1 亞洲與東南亞生質燃燒 4
2.1.2 亞洲大氣污染物傳輸至台灣的機制 11
2.2 生質燃燒氣膠化學特性 13
2.2.1 氣膠碳成分 13
2.2.2 氣膠水溶性無機離子 17
2.2.3 大氣膠有機物來源與特性 20
2.3 生質燃燒材料與化學特徵物種比值之特性 29
2.3.1 不同生質燃燒材料特性 29
2.3.2 不同生質燃燒源示蹤劑 34
2.3.3 生質燃燒化學特徵物種比值特性 37
2.4 大氣污染源受體模式介紹 42
2.4.1 大氣微粒來源與傳輸 42
2.4.2 污染源與解析模式 46
2.4.3 源解析工具(模式) 49
2.4.5 多元受體模式運作概述 53
2.4.6 PMF受體模式概述 55
2.4.7 Unmix受體模式概述 58
2.4.8 常見的PM2.5中重要物種型態 60
2.4.9 美國源解析相關研究 65
2.5 PM2.5與人體健康影響 71
第三章、研究方法 74
3.1 研究架構 74
3.2 採樣地點與採樣週期 75
3.2.1 越南山羅省採樣點 76
3.2.2 鹿林山大氣背景測站 80
3.3 採樣方法與採樣器 84
3.3.1 採樣儀器 84
3.3.2 採樣濾紙選擇與前處理程序 88
3.4 樣本分析方法 91
3.4.1 氣膠質量濃度分析 91
3.4.2 氣膠水溶性離子分析 92
3.4.3 氣膠碳成分分析 94
3.4.4 氣膠有機成分分析-單醣無水化合物 97
3.4.5 氣膠有機成分分析-二元酸 99
3.4.6 氣膠水可溶有機碳分析 101
3.4.7 腐植質氣膠含量分析 102
3.5 Positive Matrix Factorization (PMF) 104
3.5.1 PMF模式介紹 104
3.5.2 PMF預處理程序 105
3.5.3 EPA PMF v3.0.2.1軟體操作介紹 108
3.6 氣膠中和探討-【NH4+】meas /【NH4+】calc計算方式 112
3.7 判別生質燃燒方法 112
3.7.1 美國太空總署(NASA)自然災害網 113
3.7.2 全球火災監測中心(GFMC) 113
3.7.3 氣流軌跡模式(NOAA HYSPLIT) 114
3.7.4 Seven-SEAS資料庫 114
3.7.5 逆推軌跡分類 115
第四章、結果與討論 119
4.1 越南山羅生質燃燒源區氣膠特性 119
4.1.1 PM10-2.5及PM2.5氣膠質量濃度與氣象資料 119
4.1.2 PM10-2.5及PM2.5氣膠水溶性離子濃度 123
4.1.3 PM10-2.5及PM2.5氣膠碳成分濃度 125
4.1.4 PM2.5氣膠有機成分濃度 128
4.2 鹿林山手動觀測期間氣膠成分特性 131
4.2.1 PM10-2.5及PM2.5氣膠質量濃度 131
4.2.2 PM10-2.5及PM2.5氣膠水溶性離子濃度 134
4.2.3 PM10-2.5及PM2.5氣膠碳成分濃度 136
4.2.4 PM2.5氣膠有機成分濃度 139
4.3 近十年鹿林山手動觀測期間氣膠成分特性 142
4.3.1 PM2.5氣膠質量濃度 145
4.3.2 PM2.5氣膠水溶性離子濃度 149
4.3.3 PM2.5氣膠碳成分濃度 153
4.3.4 PM2.5氣膠有機成分濃度 160
4.4鹿林山氣流來源類型與氣膠特性差異 170
4.4.1 鹿林山各氣流來源類型PM2.5氣膠組成比例 170
4.4.2 鹿林山各氣流來源類型PM2.5氣膠特性差異 176
4.4.3 鹿林山各氣流來源類型PM2.5氣膠中和與結合型態 194
4.5 生質燃燒長程傳輸PM2.5氣膠成分比例變化 200
4.6 越南山羅高地PM2.5氣膠來源推估 205
4.6.1 越南山羅高地PM2.5氣膠中和與結合型態 205
4.6.2 越南山羅省PM2.5氣膠來源推估 208
4.7 以PMF解析鹿林山PM2.5氣膠污染源 215
4.7.1 鹿林山生質燃燒類型氣流(BB)PM2.5氣膠源解析 215
4.7.2 鹿林山非生質燃燒類型氣流(NBB)PM2.5氣膠源解析 227
4.7.3 不同氣流來源的PM2.5氣膠對PMF源解析差異 238
第五章、 結論與建議 244
5.1 結論 244
5.2 建議 248
第六章、參考文獻 249
附錄一2012年3月至4月越南山羅觀測期間逆推軌跡圖 270
附錄二2011年8月-2012年4月鹿林山觀測期間逆推軌跡圖 274
附錄三2012年3月-2012年4月越南山羅觀測期間風花圖 280
附錄四 口試委員意見與答覆 283
參考文獻 Abas, B., Rahman, M.R., Omar, N.A., Maah, N.YM.J., Abu-Samah, M.J., Oros, A., Otto, D.R.A., Simoneit, B.R.T., 2004. Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia. Atmospheric Environment 38, 4223-4241.
Abbt-Braun, G., Lankes, U., Frimmel, F.H., 2004. Structural characterization of aquatic humic substances - The need for a multiple method approach, Aquatic Science 66, 151–170.
Ackermann-Librich, U., Leuenberger, Ph., Schwartz, J., Schindler, Ch., Sapaldia-term, 1997. Lung function and long term exposure to airpollutants in Switzerland. Journal of Respiratory and Critical Care Medicine 155, 122-129.
Aggarwal, S., Kawamura, K., 2008. Molecular distributions and stable carbon isotopic compositions of dicarboxylic acids and related compounds in aerosols from Sapporo, Japan: implications for photochemical aging during long-range atmospheric transport. Journal of Geophysical Research-Atmospheres 113, D14301, doi:10.1029/ 2007JD009365.
Aggarwal, S., Kawamura, K., 2009. Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: Implication for aging of water-soluble organic fraction. Atmospheric Environment 43, 2532-2540.
Allen, J.O., Mayo, P.R., Hughes, L.S., Salmon, L.G., Cass, G.R., 2001. Emissions of size-segregated aerosols from on-road vehicles in the Caldecott tunnel. Environmental Science and Technology 35, 4189–4197.
Andera, M.O., Atlas, E.., Cachier, H., Cofer Ⅲ, W.R., Harris, G.W., Helas, G., Koppmann, R., Lacaus, J.P, Ward, D.E., 1996a. Trace gas and aerosol emissions from savanna fires. Biomass burning and Global Change, Vol 1.
Andreae, M.O., Andreae, T.W., Annegam, H., Beer, J., Cachier, H., Le-Canut, P., Elbert, W., Maenhaut, W., Salma, I., Wienhold, F.G., Zenker, T., 1998. Airborne studies of aerosol emissions from savanna fires in southern Africa: 2. Aerosol chemical composition. Journal of Geophysical Research 103(D24), 32119-32128, doi:10.1029/98JD02280.
Andreae, M.O., Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles 15 (4), 955–966.
Arden, P.C.III, Dockery, D.W., 2006. Health Effects of Fine Particulate Air Pollution: Lines that Connect. ISSN 1047-3289 J. Air & Waste Manage. Assoc. 56:709–742.
Battye, W., 2002. “Compendium of existing back-trajectory analyses relating to US-Canadatrans-boundary impacts of fine particulate matter and regional haze.” Draft Report for U.S. Environmental Protection Agency, Contract No. 68-D-98-006, Work Assignment No. 5–07, September.
Bell, S.W., Hansell, R.A., Chow, J.C., Tsay, S.C., Hsu, N.C., Lin, N.H., Wang, S.H., Ji, Q., Li, C., Watson, J.G., Khlystov, A., 2012. Constraining aerosol optical models using ground-based, collocated particle size and mass measurements in variable air mass regimes during the 7-SEAS/Dongsha Experiment. Atmospheric Environment, in review.
Berresheim, H., Plass-Dulmer, C., Elste, T., Mihalopoulos, N., and Rohrer, F., 2003. OH in the coastal boundary layer of Crete during MINOS: Measurements and relationship with ozone photolysis, Atmospheric Chemistry and Physics 3, 639–649.
Bey, I., Jacob, D.J., Logan, J.A., Yantosca, R.M., 2001b. Asian chemical outflow to the Pacific in spring:Origins pathways, and budgets. Journal of Geophysical Research 106, 23,097–23,114.
Bhanuprasad, S.G., Venkataraman, C., Bhushan, M., 2008. Positive matrix factorization and trajectory modeling for source identification: A new look at Indian Ocean Experiment ship observations. Atmospheric Environment 42.4836–4852.
Blando, J.D., Turpin, B.J., 2000. Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility. Atmospheric Environment 34,1623–1632.
Bockhorn, H., 1994. Soot formation in Combustion. Chemical Physics, Vol 59.
Broday, D.M., Georgopoulos, P.G., 2001. Growth and Deposition of Hygroscopic Particulate Matter in the Human Lungs. Aerosol Science and Technology 34, 144–159 C.
Brook, R.D., Franklin. B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., 2004. Air pollution and cardiovascular disease: a statement for healthcare professionals from the Expert Panel on Population and Prevention Science of the American Heart Association. Circulation 109(21), 2655–2671.
Cachier, H., Bremond, M.P., Buat-Ménard, P., 1989. Carbonaceous aerosols from different tropical biomass burning sources. Nature 340, 371–373.
Cachier, H., Ducret, J., Br6mond, M.P., Youbu, V., Lacaux, J.P., Gaudichet, A., Baudet, J., 1991. Biomass burning aerosols in a savanna region of the Ivory Coast, in Global Biomass Burning, edited by J.S. Levine, pp.174–180.
Cachier, H., Jacob, J., Bremond, M., Lacaux, J., Gaudichet, A., Baudet, J., 1991. Bimoass burning in a savanna region of the Ivory Coast. Atmospheric Climatic and Biospheric Implication, 174-180.
Cadle, S.H., Mulawa, P.A., Hunsanger, E.C., Nelson, K.E., Ragazzi, R.A., Barrett, R., Gallagher, G.L., Lawson, D.R., Knapp, K.T., Snow, R., 1999. Composition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area. Environmental Science and Technology 33, 2328–2339.
Cao, J.J., Lee, S.C., Ho, K.F., Fung, K.K., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol and Air Quality Research 6, 106–122.
Cao, J.J.,Wu, F., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An, Z.S., Fung, K.K.,Watson, J.G., Zhu, C.S., Liu, S.X., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmospheric Chemistry and Physics 5, 3127–3137
Chang, D., Song, Y., 2010. Estimates of biomass burning emissions in tropical Asia based on satellite-derived data.
Chen, L.W.A., Doddridge, B.G., Dickerson, R.R., Chow, J.C., Henry, R.C., 2002. Origins of fine aerosol mass in Baltimore-Washington corridor: implications from observation, factor analysis, and ensemble air parcel back trajectories. Atmospheric Environment 36, 4541–4554.
Chow, J., Watson, J.G., Crow, D., Lowenthal, D., Merrifield, T., 2001. Comparison of IMPROVE and NIOSH carbon measurements, Aerosol Science Technology 34, 23–34.
Chow, J.C., Watson, J.G., Kuhns, H.D., Etyemezian, V., Lowenthal, D.H., Crow, D.J., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational (BRAVO) study. Chemosphere 54, 185–208.
Chow, J.C., Watson, J.G.. 2002. Review of PM2.5 and PM 10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model. Energy & Fuels 16, 222–260.
Christopher, D.E., Kimberly, E.B., 1996. Survey of fires in Southeast Asia and India during 1987. In: Levine, J.(Ed.), Global Biomass burning, vol.2. MIT Press, Cambridge, MA, pp.663–670.
Chuang, M.T., Chang, S.C., Lin, N.H., Wang, J.L., Sheu, G.R., Chang, Y.J., Lee, C.T., 2012. Aerosol chemical properties and related pollutants measured in Dongsha Island in the northern South China Sea during 7-SEAS/Dongsha Experiment. Atmospheric Environment, in review.
Chuang, M.T., Chiang, P.C., Chan, C.C., Wang, C.F., Chang, E.E., Lee, C.T., 2008. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Science of The Total Environment 399, 128–146.
Chuang, M.T., Chou, C.C.-K., Sopajareepom, K., Lin, N.H., Wang, J.L., Sheu, G.R., Chang, Y.J., Lee C.T., 2012. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment, in review.
Clegg, S.L., Brimblecombe, P., Wexler, A.S., 1998. A thermodynamic model of the system H+ - NH4+ - Na+ - SO42−- NO3− - Cl− - H2O at 298.15 K. Journal of Physics and Chemistry A 102, 2155-2171.
Cohen, D.D., Crawford, J., Stelcer, E., Bac, V.T., 2010. Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmospheric Environment 44, 320–328.
Coutant, B., Kelly, T., Ma, J., Scott, B., Wood, B., Main, H., 2002. Source apportionment analysis of air quality monitoring data: Phase 1 Final Report. Prepared for the Mid-Atlantic/Northeast Visibility Union and Midwest Regional Planning Organization by Battelle Memorial Institute and Sonoma Technology, Inc., May.
Coutant, B.W., Holloman, C.H., Swinton, K.E., Hafner, H.R., 2003. Eight-site source apportionment of PM 2.5 speciation trends data. Revised Draft Report for U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, Contract No. 68-D-02-061, Work Assignment No. 1-05, April 30.
Czoschke, N.M., Jang, M., 2006. Effect of acidity parameters on the formation of heterogeneous aerosol mass in the a-pinene ozone reaction system. Atmospheric Environment 40, 5629–5639.
Danalatos, D., Glavas, S., 1999. Gas phase nitric acid, ammonia and related particulate matter at a Mediterranean coastal site, Patras, Greece. Atmospheric Environment 33, 3417-3425.
Decesari, S., 2006. Characterization of the organic composition of aerosols from Rondonia Brazil, during the LBA-SMOCC 2002 experiment and its representation through model compounds. Atmospheric Chemistry and Physics 6, 375–402.
Decesari, S., Facchini, M.C., Matta, E., Lettini, F., Mircea, M., Fuzzi, S., Tagliavini, E., Putaud, J.P., 2001. Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy. Atmospheric Environment 35, 3691–3699.
Decesari, S., Facchini, M.C., Matta, E., Mircea, M., Fuzzi, S., Chughtai, A.R., Smith, D.M., 2002. Water soluble organic compounds formed by oxidation of soot. Atmospheric Environment 36, 1827–1832.
Dhammapala, R., Claiborn, C., Simpson, C., Jimenez, J., 2007. Emission factors from wheat and Kentucky bluegrass stubble burning: omparison of field and simulated burn experiments. Atmospheric Environment 41, 1512-1520.
Dockery, D.W., Pope Ⅲ., D.C.A., Xu, X., Sprengler, J.D., 1993. Anassociation between air pollution and mortality in six U.S. cities. New England Journal of Medicine 329, 1573-1579.
Draxler, R.R., Rolph, G.D., 2010. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD. http://ready.arl.noaa.gov/HYSPLIT.php.
Duan, F., Liu, X., Yu, T., Cachier, H., 2004. Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmospheric Environment 38, 1275-1282.
Fabian, P., Kohlpainter, M., Rollenbeck, R., 2005. Biomass burning in the Amazon-fertilizer for the mountaineous rain forest in Ecuador. Environmental Science Pollution Research 12 (5), 290 – 296
Facchini, M.C., Fuzzi, S., Zappoli, S., Andracchio, A., Gelencs´er, A., Kiss, G., Kriv´acsy, Z., M´esz´aros, E., Hansson, H.C., Alsberg, T., Zebuhr, Y., 1999. Partitioning of the organic aerosol component between fog droplets and interstitial air, Journal of Geophysical Research 26(D21), 821–26.
Ferek, R.J., Reid, J.S., Hobbs, P.V., Blake, D.R., Liousse, C., 1998. Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil, Journal of Geophysical Research 103, 32,107-32,118.
Fine, P.M., Cass, G.R., Simoneit, B.R.T., 2004. Chemical characterization of fine particle emissions from the wood stove combustion of prevalent United States tree species. Environmental Engineering Science 21, 705-721.
Fisseha, R., Dommen, J., Gaeggeler, K., Weingartner, E., Samburova, V., Kalberer, M., Baltensperger, U., 2006. Online gas and aerosol measurement of water soluble carboxylic acids in Zurich. Journal of Geophysical Research 111, D12316, doi:10.1029/2005JD006782.
Folkins, I., Chatfield, R., Baumgardner, D., Proffitt, M., 1997. Biomass burning and deep convection in southeastern Asia’ Results from ASHOE/MAESA.
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+-Ca2+-Mg2+-NH4+-Na+-SO42-- NO3--Cl--H2O aerosol. Atmospheric Chemistry and Physics 7, 4639–4659.
Fraser, M.P., Lakshmanan, K., 2000. Using levoglucosan as a molecular marker for the long-range transport of biomass combustion aerosols. Environmental Science and Technology 34, 4560-4564.
Friedli, H.R., Atlas, E., Stroud, V.R., Giovanni, L., Campos, T., Radke, L.F., 2001. Volatile organic trace gases emitted from North American wildfires. Global Biogeochemical Cycles 15(N2), 435– 452.
Fujita, E., Watson, J.G., Chow, J.C., Robinson, N.F., Richards, LW., Kumar, N., 1998. Northern fron range air quality study, vol ume C: source apportionment and simulation methods and evaluation, Reno, NV: Desert Research Institute, prepared for Colorado State University, Cooperative Institute for Research in the Atmosphere.
Gao, S., Hegg, D.A., Hobbs, P.V., Kirchstetter, T.W., Magi, B.I., Sadilek, M., 2003. Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution, Journal of Geophysical Research-Atmospheres 108, D13, 8491, doi:10.1029/2002JD002324.
Gao, S., Keywood, M., Ng, N.L., Surratt, J., Varutbangkul, V., Bahreini, R., Flagan, R.C., Seinfeld, J.H., 2004. Low-molecular-weight and oligomeric components in secondary organic aerosol from the ozonolysis of cycloalkenes and alphapinene. Journal of Physical Chemistry A 108, 10147-10164.
Gardner, S.Y., James, R.L., Costa, D.L., 2000. Oil fly ash-induced elevation of plasma fibrinogen levels in rats. Toxicological Sciences 56, 175-180.
Gaudichet, A., Echalar, F., Chatenet, B., Quisefit, J.P., Malingre, G., Cachier, H., Buat, P., Artaxo, P., Maenhaut, W., 1995. Trace elements in tropical African savanna biomass burning aerosols. Journal of Atmospheric chemistry 22, 19-39.
Gelencsér, A., 2004. Carbonaceous Aerosol. Atmospheric and Ocean ographic Sciences Library 30. Geophysical Research Letters 31(6), Springer1-4020-2886-5.
Goldberg, E.D., 1963. Chemistry } the oceans as a chemical systems. In: Hill, H.M. (Ed.), Composition of Sea Water, Comparative and Descriptive Oceanography, vol. 2 of The Sea. Wiley-Interscience, New York, pp. 3-25.
Graham, B., Falkovich, A.H., Rudich, Y., Maenhaut, W., Guyon, P., Andreae, M. O., 2004. Local and regional contributions to the atmospheric aerosol over Tel Aviv, Israel: a case study using elemental, ionic and organic tracers. Atmospheric Environment 38, 1593-1604.
Gray, H.A., Cass, G.R., Huntzicker, J.J., Heyerdahl, E.K., Rau, J.A., 1986. Characteristics of atmospheric organic and elemental carbon particle concentration in Los Angeles. Environmental Science and Technology 20, 580-589.
Hallet, J., Hudson, J.G., Rogers, C.F. Characterization of combustion aerosols for haze and cloud formation, Aerosol Science & Technology 10, 70-83, 1989.
Han, Y.M., Cao, J.J., Chow, J.C.,Watson, J.G., Fung, K., Jin, Z.D., Liu, S.X., An, Z.S., 2007. Evaluation of the thermal/optical reflectance method for discrimination between soot- and char-EC. Chemosphere 69, 569–574.
Hays, M.D., Geron, C.D., Linna, K.J., Smith, N.D., Schauer, J.J., 2002. Speciation of gas-phase and fine particle emissions from burning of foliar fuels, Environmental Science & Technology 36, 2281– 2295.
He, L.Y., Hu, M., Huang, X.F., Zhang, Y.H., Tang, X.Y., 2006. Seasonal pollution characteristics of organic compounds in atmospheric fine particles in Beijing. Science of the Total Environment 359, 167–176.
Heil, A., 2007. Indonesian forest and peat fires: emissions, air quality,and human health, Ph.D. thesis, Max Planck Inst. for Meteorol.,Hamburg, 142pp.
Heo, J.-B., Hopke, P.K., Yi, S.-M., 2009. Source apportionment of PM2.5 in Seoul, Korea. Atmospheric Chemistry Physics 9, 4957–4971.
Hien, P.D., Bac, V.T., Thinh, N.T.H., 2004. PMF receptor modelling of fine and coarse PM10 in air masses governing monsoon conditions in Hanoi, northern Vietnam. Atmospheric Environment 38, 189–201.
Hien, P.D., Binh, N.T., Truong, Y., Ngo, N.T., Sieu, L.N., 2001. Comparative receptor modelling study of TSP, PM2 and PM10-2 in Ho Chi Minh City. Atmospheric Environment 35, 2669-2678.
Hitzenberger, R., Berner, A., Dusek, U., Alabashi, R., 1997. Humidity dependent growth of size-segregated aerosol samples. Aerosol Science and Technology 27, 116-130.
Ho, K.F., Lee, S.C., Cao, J.J., Kawamura, K., Watanabe, T., Cheng, Y., Chow, J.C., 2006. Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban roadside area of Hong Kong. Atmospheric Environment 40, 3030–3040.
Hou, B., Zhuang, G., Zhang, R., Liu, T., Guo, Z., Chen, Y., 2011. The implication of carbonaceous aerosol to the formation of haze: Revealed from the characteristics and sources of OC/EC over a mega-city in China. Journal of Hazardous Materials 190, 529–536.
Hu, D., Bian, Q., Lau, A.K.H., Yu, J.Z., 2010. Source apportioning of primary and secondary organic carbon in summer PM2.5 in Hong Kong using positive matrix factorization of secondary and primary organic tracer data. Journal of Geophysical Research 115, d16204, doi:10.1029/2009JD012498.
Huang, S.L., Hsu, M.K., Chan, C.C., 2003. Effects of submicrometer particle compositionson cytokine production and lipid peroxidation of human bronchial epithelial cells. Environmental Health Perspectives 111, 478-82.
Huang, X.F., Hu, M., He, L.Y., Tang, X.Y., 2005. Chemical Characterization of water-soluble organic acids in PM2.5 in Beijing, China. Atmospheric Environment 39, 2819-2827.
Huang, X-F, Yu, J.Z., He, L-Y, Yuan, Z., 2006. Water-soluble organic carbon and oxalate in aerosols at a coastal urban site in China: Size distribution characteristics, sources, and formation mechanisms. Journal of Geophysical Research, vol. 111, d22212, doi:10.1029/2006jd007408.
Hyer, E.J., Chew, B.N., 2010. Aerosol transport model evaluation of an extreme smoke episode in Southeast Asia.
ICRP, International Commission on Radiological Protection. 1994. Human respiratory tract model for radiological protection. Publication 66, Annals of ICRP, Pergamon, London, UK.
Ito, A., Penner, J.E., 2004. Global estimates of biomass burning emissions based on satellite imagery for the year 2000, J. Geophysical Research-Atmospheres 109, D14S05, doi:10.1029/2003JD004423.
Jang, M., Lee S., Kamens, R.M., 2003. Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor. Atmospheric Environment 37, 2125–2138
Jang, M.S., Czoschke, N.M., Sangdon, L., Kamens, R.M., 2002. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science 298, 814-817.
Janos, P., 2003. Separation methods in the chemistry of humic substances, Journal of Chromatography 983, 1-18.
Jeong, C.‐H., McGuire, M.L., Herod, D., Dann, T., Dabek-Zlotorzynska, E., Wang, D., Ding, L., Celo, V., Mathieu, D., Evans G., 2011. Receptor model based identification of PM2.5 sources in Canadian cities.
Jimenez, J., Wu, C.-F., Claiborn, C., Gould, T., Simpson, C.D., Larson, T., Liu, S.L.-J., 2006. Agricultural burning smoke in eastern Washington part I: atmospheric characterization. Atmospheric Environment 40, 639–650.
Jordan, T.B., Seen, A.J., Jacobsen, G.E., 2006. Levoglucosan as an atmospheric tracer for woodsmoke. Atmospheric Environment 40, 5316-5321.
Kawamura, K., Kasukabe, H., 1996. Source and relation pathways of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one year of observations. Atomspheric Environment 30, 1709-1722.
Kawamura, K., Kasukabe, H., Barrie, L.A., 2010. Secondary formation of water‐soluble organic acids andα‐dicarbonyls and their contributions to total carbonand water‐soluble organic carbon: Photochemicalaging of organic aerosols in the Arctic spring. Journal of Geophysical Research 115, d21306, doi:10.1029/2010JD014299.
Kawamura, K., Sakaguchi, F., 1999. Molecular distributions of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501–3509.
Kim, E., and Hopke, P.K., 2003. Source Apportionment of Fine Particles at Washington, D.C. utilizing Temperature Resolved Carbon Fractions. Submitted to Journal of the Air Waste Management Association.
Kim, E., Hopke, P.K., 2004. Improving source identification of fine particles in a rural northeastern U.S. area utilizing temperature-resolved carbon fractions. Journal of Geophysical Research 109, d09204, doi:10.1029/2003JD004199.
Kim, E., Hopke, P.K., and Edgerton, E.S., 2002a. Source Identification of Atlanta Aerosol by Positive Matrix Factorization. Submitted to Journal of the Air Waste Management Association.
Kim, E., Hopke, P.K., and Edgerton, E.S., 2003a. Improving Source Identification of Atlanta Aerosol using Temperature Resolved Carbon Fractions in Positive Matrix Factorization. Submitted to Aerosol Science and Technology.
Kim, E., Hopke, P.K., and Edgerton, E.S., 2003b. Utilizing Hourly Wind Measurements as Independent Variables in Multilinear Receptor Model Studies of Atlanta aerosol. Submitted to Atmospheric Environment.
Kim, E., Hopke, P.K., Larson, T.V., and Covert, D.S., 2002b. Analysis of Ambient Particle Size Distributions using UNMIX and Positive Matrix Factorization. Submitted to Environmental Science & Technology.
Kim, E., Larson, T.V., Hopke, P.K., Slaughter, C., Sheppard, L.E., and Claiborn, C., 2002c. Source Identification of PM2.5 in an arid Northwest U.S. City by Positive Matrix Factorization. Submitted to Atmospheric Research.
Kim, J., Yoon, S. C., Jefferson, A., Kim, S. W., 2006. Aerosol hygroscopic properties during Asian dust, pollution, and biomass burning episodes at Gosan, Korea in April 2001. Atmospheric Environment 40, 1550–1560.
Kiss, G., Tombacz, E., Hansson, H.C., 2005. Surface Tension Effects of Humic-Like Substances in the Aqueous Extract of Tropospheric Fine Aerosol. Journal of Atmospheric Chemistry 50, 279–294.
Kiss, G., Varga, B., Galambos, I., Ganszky, I., 2002. Characterization of water soluble organic matter isolated from atmospheric fine aerosol, Journal of Geophysical Research 107(D21), doi:10.1029/2001JD000603.
Krecl, P., Larsson-Hedberg, E., Str¨om, J., Johansson, C., 2008. Contribution of residential wood combustion and other sources to hourly winter aerosol in Northern Sweden determined by positive matrix factorization. Atmospheric Chemistry Physics 8, 3639–3653.
Krivácsy, Z., Hoffer, A., Sárvári, Zs., Temesi, D., Baltensperger, U., Nyeki, S., Weingratner, E., Kleefeld, S., Jennings, S.G., 2001. Role of organic and blackcarbon in the chemical composition of atmospheric aerosol at Europeanbackground sites. Atmospheric Environment 35(36), 6231-6244.
Krivácsy, Z., Kiss, G., Varga, B., Galambos, I., Sárvári, Z., Gelencsér, A., Molnár, Á., Fuzzi, S., Facchini, M.C., Zappoli, S., Andracchio, A., Alsberg, T., Hansson, H.C., Persson, L., 2000. Study of humic like substances in fog and interstitial aerosol by size-exclusion chromatography and capillary electrophoresis.
Kumagai, K., Iijima, A., Shimoda, M., Saitoh, Y., Kozawa, K., Hagino, H., Sakamoto, K., 2010. Determination of Dicarboxylic Acids and Levoglucosan in Fine Particles in the Kanto Plain, Japan, for Source Apportionment of Organic Aerosols. Aerosol and Air Quality Research 10, 282-291.
Lee J.J., Engling, G., Lung, S.C.C., Lee, K.Y., 2008. Particle size characteristics of levoglucosan in ambient aerosolsfrom rice straw burning. Atmospheric Environment 42, 8300–8308.
Lee, C.T., Chuang, M.T., Lin, N.H., Wang, J.L., Sheu, G.R., Wang, S.H., Huang, H., Chen, H.W., Weng, G.H., Hsu, S.P., 2011. The enhancement of biosmoke from Southeast Asia on PM2.5 water-soluble ions during the transport over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lee, E., Chan, C.K., Paatero, P., 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong, Atmospheric Environment 33(19), 3201–3212.
Lee, J.H, Yoshida, Y, Turpin, B., Hopke, P.K., Poirot, R.L., Lioy, P.J., and Oxley, J.C., 2003a. Identification of sources contributing to the Mid-Atlantic regional aerosol. Submitted to Journal of the Air and Waste Management Association.
Lee, J.H., Hopke, P.K., Turner, J.R., 2006. Source identification of airborne PM2.5 at the St. Louis-Midwest Supersite. Journal of Geophysical Research 111, d10s10, doi:10.1029/2005JD006329.
Lee, P.K.H., Brook, J.R., Dabek-Zlotorzynska, E., and Mabury, S.A., 2003b. Identification of the major sources contributing to PM 2.5 observed in Toronto. Submitted to Environmental Science & Technology.
Levine, J.S., 1999. The 1997 fires in Kalimantan and Sumatra, Indonesia:Gaseous and particulate emissions, Geophysical Research Letters 26(7),815–818.
Lewis, C.W., Norris, G.A., Henry, R.C., and Conner, T.L., 2002. Source Apportionment of Phoenix PM2.5 Aerosol with the UNMIX Receptor Model. Journal of the Air and Waste Management Association.
Li, J., Posfai, M., Hobbs, P.V., Buseck, P.R., 2003. Individual aerosol particles from biomass burning in southern Africa:2.Compositions and aging of inorganic particles. Journal of Geophysical Research-Atmospheres 108, 8484, doi: 10.1029/2002JD002310.
Lin, C.Y., Hsu, H.-M., Lee, Y.-H., Kuo, C.-H., Sheng, Y.-F., Chu, D.A., 2009. A new transport mechanism of biomass burning from Indochina as identified by modeling studies. Atmospheric Chemistry Physics 9, 7901-7911.
Liu, H., Jacob, D.J., Bey, I., Yantosca, R.M., Duncan, B.N., 2000. Transport pathways for Asian pollution outflow over the Pacific: Interannual and season variations. Journal of Geophysical Research-Atmospheres 108, doi: 10.1029/2002JD003102.
Liu, W., Hopke, P.K., and VanCuren, R.A., 2003b. Origins of Fine Aerosol Mass in the Western United States Using Positive Matrix Factorization. Submitted to Journal of Geophysical Research.
Liu, W., Hopke, P.K., Han, Y., Yi, S.-M., Holsen, T.M., Cybart, S., Kozlowski, K., and Milligan, M., 2003a. Application of receptor modeling to atmospheric constituents at Potsdam and Stockton, NY. Submitted for publication.
Liu, W., Wang, Y., Russell, A., Edgerton, E.S., 2006. Enhanced source identification of southeast aerosols using temperature-resolved carbon fractions and gas phase components. Atmospheric Environment 40, S445–S466
Lobert, J.M., Scharffe, D.H., Hao, W.M., Kuhlbusch, T.A., Seuwen, R., Warnesk, P., Crutzen, P.J., 1991. Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds. In J.S Levine(ed.), Global Biomass Burning: Atmospheric, Climatic, and Biospheric Implications. MIT Press, Cambridge, Mass., pp.289-304.
Long, R.W., 2002. Measurement of PM2.5, including semi-volatile components, in the EPA EMPACT and STAR programs: Results from the Salt Lake City, Bountiful, and Lindon, Utah studies and implications for public awareness, health effects, and control strategies. Provo(Utah):Brigham Young University.
Lowenthal, D.H., Rahn, K.A., 1989. The relationship between secondary sulfate and primary regional signatures in northeastern aerosol and precipitation. Atmospheric Environment 23, 1511-1515.
Mansurov, Z.A., 2005. Soot formation in combustion processes (review) Combustion, Explosion, and Shock Waves, Vol. 41 , No. 6, pp. 727–744.
Martins, J.V., Artaxo, P., Liousse, C., Reid, J.S., Hobbs, P.V., Kaufman, Y.J., 1998. Effects of black carbon content, particle size, and mixing on light absorption by aerosols from biomass burning in Brazil. Journal of Geophysical Research, vol. 103, no. D4, pages 32,041-32,050.
Maykut, N.N., Lewtas, J., Kim, E., and Larson, T.V., 2003. Source apportionment of PM2.5 at an urban IMPROVE site in Seattle, WA. Submitted to Environmental Science &Technology.
Mayol-Bracero, O.L., Guyon, P., Graham, B., Roberts, G., Andreae, M.O., Decesari, S., Facchini, M.C., Fuzzi, S., Artaxo, P., 2002. Water-soluble organic compounds in biomass burning aerosols over Amazonia, 2. Apportionment of the chemical composition and importance of the polyacidic fraction. Journal of Geophysical Research 107 (D20), doi:10.1029/2001JD000522.
Mazurek, M.A., Cass, G.R., Simoneit, B.R.T., 1991. Biological input to visibility-reducing aerosol particles in the remote arid Southwestern United States. Environmental Science and Technology 25, 684–694.
Mazzoleni, L.R., Zielinska, B., Moosmu¨ller, H., 2007. Emissions oflevoglucosan, methoxy phenols, and organic acids from prescribed burns, laboratory combustion of wildland fuels, and residential wood combustion, Environmental Science & Technology 41, 2115– 2122.
Miyazaki, Y., Kondo, Y., Han, S., Koike, M., Kodama, D., Komazaki, Y., Tanimoto H., Matsueda, H., 2007. Chemical characteristics of water-soluble organic carbon in the Asian outflow. Journal of Geophysical Research, vol. 112, d22s30, doi:10.1029/2007JD009116.
Moon, K.J., Han, J.S., Ghim, Y.S., Kim, Y.J., 2008. Source apportionment of fine carbonaceous particles by positive matrix factorization at Gosan background site in East Asia. Environment International 34.654 – 664.
Na, K., Sawant, A.A., Song, C., Cocker III, D.R., 2004. Primary and secondary carbonaceous species in the atmosphere of Western Riverside County, California, Atmospheric Environment 38, 1345–1355.
Norbeck, J.M., Durbin, T.D., Truex, T.J., 1998. Measurement of primary particulate matter emissions from light-duty motor vehicles, Riverside, CA, University of California, College of Engineering, Center for Environmental Research and Technology, prepared for Coordinating Research Council, Inc. and South Coast Air Quality Management District.
Novakov, T., Andreae, M.O., Gabriel, R., Kirchstetter, T.W., Mayol-Bracero, .L., Ramanathan, V., 2000. Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels? Geophysical Research Letters, vol. 27, no. 24, pages 4061-4064.The World Fire Atlas (http://wfaadat.esrin.esa.int/)
Novakov, T., Bates, T.S., Quinn, P.K., 2000. Shipboard measurements of concentrations and properties of carbonaceous aerosols during ACE-2, Tellus 52B, 228-238
Nyeki, S., Baltensperger, U., Schwikowski, M., 1996. The diurnal variation of aerosol chemical composition during the 1995 summer campaign at the Jungfraujoch high-alpine station (3454m), Switzerland. Journal of Aerosol Science 27, 105-106.
O’Dowd, C.D., Smith, M.H., Consterdine, I.E. , Lowe, J.A., 1997. Marine aerosol, sea-salt, and the marine sulphur Cycle: a short review. Atmospheric Enuironmenr 31, No.1, pp.73-80.
Oberdorster, G., Finkelstein, J., Ferin, J., Godleski, J.J., Chang, L.Y., Gelein,R., Johnson, C., Crapo, J.D., 1996. Ultrafine particles as a potential environmental hazard. Studies with model particles. Chest 109, 68S-69S.
Oros, D.R., Abas, M.R., Omar, N.Y.M.J., Rahman, N.A., Simoneit, B.R.T., 2006. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 3. Grasses. Applied Geochemistry 21, 919-940.
Oros, D.R., Simoneit, B.R.T., 2001. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers. Applied Geochemistry 16, 1513-1544.
Oros, D.R., Simoneit, B.R.T., 2001. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 2. Decidoous trees. Applied Geochemistry 16, 1545-1565.
Otto, A., Gondokusumo, R., Simpson, M.J., 2006. Characterization and quantification of biomarkers from biomass burning at a recent wildfire site in Northern Alberta, Canada. Applied Geochemistry 21 (1), 166 e 183.
Page, S.E., 2002. The amount of carbon released from peat and forest fires inIndonesia during 1997. Nature 420 (6911), 61-65.
Park, S.S., Bae, M.S., Schauer, J.J., Kim, Y.J., Cho, S.Y., Kim, S.J., 2006. Molecular composition of PM2.5 organic aerosol measured at an urban site of Korea during the ACE-Asia campaign. Atmospheric Environment 40, 4182–4198.
Pathak, R.K., Wang T., Ho, K.F., Lee, S.C., 2011. Characteristics of summertime PM2.5 organic and elemental carbon in four major Chinese cities: Implications of high acidity for water-soluble organic carbon (WSOC). Atmospheric Environment 45, 318-325.
Pio, C.A., Legrand, M., Alves, C.A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., Gelencser, A., 2008. Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment 42, 7530-7543.
Poirot, R.L., Wishinski, P.R., Hopke, P.K., Polissar, A.V., 2001. Comparative application of multiple receptor methods to identify aerosol sources in northern Vermont. Environmental Science & Technology 35, 4622-4636.
Polissar, A.V., Hopke, P.K., Poirot, R.L., 2001. Atmospheric aerosol over Vermont: Chemical composition and sources. Environmental Science & Technology 35, 4604-4621.
Pope, C.A.3rd., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association 287, 1132-1141.
Radke, L.F., Hegg, D.A., Hobbs, P.V., Nance, J.D., Lyons, J.H., Laursen, K.K., Weiss, R.E., Riggan, P. J., Ward, D.E., 1991. Particulate and trace emissions from large biomass fires in NorthAmerica, in: Global Biomass Burning: Atmospheric, Climatic,and Biospheric Implications, edited by: Levine, J.S., pp.209–224, MIT Press, Cambridge, MA.
Rahn, K.A., Lowenthal, D.H., 1984. Elemental Tracers of Distant Regional Pollution Aerosols. Science 223, 132-139.
Ramadan, Z., Eickhout, B., Song, X.H., Buydens, L.M.C., Hopke, P.K.., 2003. Comparison of Positive Matrix Factorization and Multilinear Engine for the source apportionment of particulate pollutants. Chemometrics and Intelligent Laboratory Systems 66, 15-28.
Ramadan, Z., Song, X.H., and Hopke, P.K., 2000. Identification of sources of Phoenix aerosol by positive matrix factorization. Journal of the Air and Waste Management Association 50, 1308-1320.
Ray, J., McDow, S. R., 2005. Dicarboxylic acid concentration trends and sampling artifacts, Atmospheric Environment 39, 7906–7919.
Reid, J.S., 2004. Real-time monitoring of South American smoke particleemissions and transport using a coupled remote sensing/box-model approach. Geophysical Research Letters, vol. 31, l06107, doi:10.1029/2003gl018845.
Reid, J.S., 2009. Global monitoring and forecasting of biomass-burning smoke:description of and lessons from the Fire Locating and Modeling of Burning Emissions (FLAMBE) program. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2(3). doi:10.1109/JSTARS.2009.2027443.
Rinehart, L.R., Fujita, E.M., Chow, J.C., Magliano, K., Zielinska, B., 2006. Spatial distribution of PM2.5 associated organic compounds in central California. Atmospheric Environment 40, 290–303.
Rodhe, H., 1978. Budgets and turn-over times of atmospheric sulfur compounds. Atmospheric Environment 12, 671-680.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27A, 1309-1330.
Ryu, S.Y., Kwon, B.G., Kim, Y.J., Kim, H.H., Chun, K.J., 2006. Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju, Korea. Atmospheric Research 84, 362-373.
Saarikoski, S., Timonen, H., Saarnio, K., Aurela, M., J¨arvi, L., Keronen, P., Kerminen, V.M., Hillamo, R., 2008. Sources of organic carbon in fine particulate matter in northern European urban air. Atmospheric Chemistry and Physics 8, 6281–6295.
Santos, C.Y.M., Azevedo, D.D., Neto, F.R.D., 2004. Atmospheric distribution of organic compounds from urban areas near a coal-fired power station. Atmospheric Environment 38, 1247-1257.
Saxena, P., Hildemann, L.M., 1996. Water-soluble organic atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry 24, 57-109.
Saxena, P., Hildemann, L.M., 1996. Water-soluble organics in atmospheric particles: a critical review of the literature and application of thermodynamics to identify candidate compounds. Journal of Atmospheric Chemistry 24, 57e109. doi:10.1007/BF00053823.
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2001. Measurement of emissions from air pollution sources. 3. C1-C29 organic compounds from fireplace combustion of wood. Environmental Science & Technology 35, 1716-1728.
Schauer, J.J., Rogge, W.F., Hildemann, L.M., Mazurek, M.A., Cass, G.R., and Simoneit, B.R.T. 1996. Source apportionment of airborne particulate matter using organic compounds as tracers. Atmospheric Environment 30, 3837-3855.
Schmidl, C., Marr, I.L., Caseiro, A., Kotianova, P., Berner, A., Bauer, H., Kasper-Giebl, A., Puxbaum, H., 2008. Chemical characterisation of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmospheric Environment 42, 126-141.
Schroeter, J.D., Musante, C.J., Hwang, D., Burton, R., Guilmette, R., Martonen, T.B., 2001. Hygroscopic Growth and Deposition of Inhaled Secondary Cigarette Smoke in Human Nasal Pathways. Aerosol Science and Technology 34, 137-143.
Schwartz, J., 1994. Particulate air pollution and chronnic respiratory disease. Environmental Research 62:7-13.
Seaton, A., MacNee, W., Donaldson, K., Godden, D., 1995. Particulate air pollution and acute health effects. Lancet 345, 176-178.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. John Wiley, New York.
Sempe´re´, R., Kawamura, K., 2003. Trans-hemispheric contribution of C2 -C10 α, ω-dicarboxylic acids, and related polar compounds to water-soluble organic carbon in the western Pacific aerosols in relation to photochemical oxidation reactions. Global Biogeochemical Cycles, vol.17, no.2, 1069, doi:10.1029/2002gb001980.
Shimohara, T., Oishi, O., Utsunomiya, A., Mukai, H., Hatakeyama, S., Eun-Sun, J., Uno, I., Murano, K., 2001. Characterization of atmospheric air pollutants at two sites in northern Kyushu, Japan — chemical form, and chemical reaction. Atmospheric Environment 35, 667–681.
Simoneit, B.R.T., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles, Atmospheric Environment 33,173-182.
Simoneit, B.R.T., 2002. Biomass burning — a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129–162.
Simpson, I.J., Meinardi, S., Blake, D.R., Blake, N.J., Rowland, F.S., Atlas, E., Flocke, F., 2002. Abiomass burning source of C1–C4 alkyl nitrates. Geophysical Research Letter 29(24), 2168, doi:10.1029/2002GL016290.
Song, X.H., Polissar, A.V., and Hopke, P.K., 2001. Sources of fine particle composition in the northeastern US. Atmospheric Environment, 35, 5277-5286.
Sorooshian, A., Murphy, S.M., Hersey, S., Bahreini, R., Jonsson, H., Flagan, R.C., Seinfeld, J.H., 2010. Constraining the contribution of organic acids and AMS m/z 44 to the organic aerosol budget: On the importance of meteorology, aerosol hygroscopicity, and region. Geophysical Research Letters, vol. 37, L21807, doi:10.1029/2010GL044951.
Standley, L.J., Simoneit, B.R.T., 1990. Preliminary correlation of organic molecular tracers in residential wood smoke with the source of fuel. Atmospheric Environment 24B, 67-73.
Stanifor, T.J., Kunkel, S.L., Basha, M.A., Chensue, S.W., Lynch, III, J.P., Toews, G.B.,Westwick, J., Strieter, R.M., 1990. Interleukin-8 gene expression by pulmonary epithelial cell line. A model for cytokine networks in the lung. J ClinInvest 86, 1945-1953.
Streets, D. G., Yarber, K. F., Carmichael, G. R., 2003. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles 17, 1099, doi:10.1029/2003GB002040.
Stevenson, D.S., Johnson, C.E., Collins, W.J., Derwent, R.G., 2003. The tropospheric sulphur cycle and the role of volcanic SO2 Geological Society, London, Special Publications 213:295-305, doi:10.1144/GSL.SP.2003.213.01.18.
Strieter, R.M., Kunkel, S.L., Bone, R.C., 1993. Role of tumor necrosis factor-α in disease and inflammation. Critical Care Medicine 21, S447-463.
Sullivan, A.P., Holden, A.S., Patterson, L.A., McMeeking, G.R., Kreidenweis, S.M., Malm, W.C., Hao, W.M., Wold, C.E., Collett-Jr, J.L., 2008. A method for smoke marker measurements and its potential application for determining the contribution of biomass burning from wildfires and prescribed fires to ambient PM 2.5 organic carbon. Journal of Geophysical Research, vol. 113, d22302, DOI:10.1029/2008jd010216.
Surratt, J.D., Kroll, J.H., Kleindienst, T.E., Edney, E.O., Claeys, M., Sorooshian, A., Ng, N.L., Offenberg, J.H., Lewandowski, M., Jaoui, M., Flagan, R.C., Seinfeld, J.H., 2007a. Evidence for organosulfates in secondary organic aerosols. Environmental Science & Technology 41, 517-527.
Surratt, J.D., Lewandowski, M., Offenberg, J.H., Jaoui, M., Kleindienst, T.E., Edney, E.O., Seinfeld, J.H., 2007b. Effect of acidity on secondary organic aerosol formation from isoprene. Environmental Science & Technology 41, 5363e5369.
Szidat, S., Ruff, M., Wacker, L., Synal H.A., Hallquist, M., Shannigrahi, A.S., Yttri, K.E., Dye, C., Simpson, D., 2008. Fossil and non-fossil sources of organic carbon (OC) and elemental carbon (EC) in Goteborg, Sweden, Atmospheric Chemistry Physics Discussion 8, 16255–16289.
Taylor, D., 2010. Biomass burning, humans and climate change in Southeast Asia. Biodivers Conserv 19:1025–1042.
Thomas, W., 1998. Detection of biomass burning combustion products in Southeast Asia from backscatter data taken by the GOME spectrometer.
Turpin, B.J. and Huntzicker, J.J.,1995. Idnetification of secondary organic aerosol concentration during SCAQS. Atmospheric Environment 29, 3527-3544.
Turpin, B.J., Lim, H.J., 2001. Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Science and Technology 35, 602–610.
US Environmental Protection Agency, 1999. SPECIATE, Washington, DC: Technology Transfer Network-Clearinghouse for Inventories & Emissions Factors, available at: http://www.epa.gov/ttn/chief/software/speciate/index.html.
US Environmental Protection Agency, 2002. Health assessment document for diesel engine exhaust, Washington, DC: Office of Research and Development, report no. EPA/600/8-90/057.
US Environmental Protection Agency, 2008. EPA Positive Matrix Factorization (PMF) 3.0 Fundamentals & User Guide. U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460. EPA 600/R-08/108.
Vermote, E., Ellicott, E., Dubovik, O., Lapyonok, T., Chin, M., Giglio, L., Roberts, G.J., 2009. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. Journal Geophysical Research 114, D18205, doi:10.1029/2008JD011188.
Viana, M., Lopez, J.M., Querol, X., Alastuey, A., Garcia-Gacio, D., Blanco Heras, G., Lopez-Mahia, P., Pineiro-Iglesias, M., Sanz, M.J., Sanz, F., Chi, X., Maenhaut, W., 2008. Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmospheric Environment 42, 1941–1957.
Vignati, E., Facchini, M.C., Rinaldi, M., Scannell, C., Ceburnis, D., Sciare, J., Kanakidou, M., Myriokefalitakis, S., Dentener, F., O’Dowd, C.D., 2010. Global scale emission and distribution of sea-spray aerosol:Sea-salt and organic enrichment. Atmospheric Environment 44, 670-677.
Wai, K-M, Tanner, P.A., 2004. Wind-dependent sea salt aerosol in a Western Pacific coastal area. Atmospheric Environment 38.1167-1171.
Wan, E.C.H., Yu, J.Z., 2007. Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion electrospray mass spectrometry. Environmental Science & Technology 41, 2459–2466.
Wang, G., Niu, S., Liu, C., Wang, L., 2002. Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China. Atmospheric Environment 36, 1941–1950.
Wang, Q.Q., Shao, M., Liu, Y., Kuster, W., Goldan, P., Li, X.H., Liu, Y.A., Lu, S.H., 2007. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases. Atmospheric Environment 41, 8380–8390.
Wang, S.H., Tsay, S.C., Lin, N.H., Hsu, N.C., Bell, S.W., LI, C., Ji, Q., Jeong, M.J., Hansell, R.A., Welton, E.J., Holben, B.N., Sheu, G.R., Chu, Y.C., Chang, S.C., Liu, J.J., Chiang, W.L., 2011. First detailed observations of long-range transported dust over the northern South China Sea. Atmospheric Environment 45, 4804-4808.
Ward, T.J., Hamilton, R.F., Dixon, R.W., Paulsen, M., Simpson, C.D., 2006a. Characterization and evaluation of smoke tracers in PM: results from the 2003 Montana wildfire season. Atmospheric Environment 40, 7005–7017.
Watson, J.G., Antony Chen, L.-W., Chow, J.C., Doraiswamy, P., Lowenthal, D.H., 2008. Source Apportionment: Findings from the U.S. Supersites Program. Journal of the Air & Waste Management Association 58:265–288.
Watson, J.G., Chow, J.C., Chen, L.-W.A., 2005. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Quality Research 5, 65–102.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43, 1141–1151.
Wilson, R., Spengler, J.D., 1996. Particle in our air: Concentrations and health effects. Harvard University Press, New York.
Wishinski, P.R., and Poirot, R.L.,1986. Source/receptor relationships for a number of factors contributing to summertime variation in light extinction in northern Vermont. In Transactions APCA Spec. Conf. on Visibility Protection: Research and Policy Aspects, P.S. Bhardwaja, Ed., Jackson Hole, Wyoming, pp 807-822.
Yao, X., Fang, M., Chan, C.K., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment 38, 963-970.
Yao, X.H., Fang M., Chan, C.K., 2002. Size distributions and formation of dicarboxylic acids in atmospheric particles. Atmospheric Environment 36, 2099-2107.
Yu, J.Z., Xu, J.X., Yang, J., 2002. Charring characteristics of atmospheric organic particulate matter in thermal analysis, Environment Science & Technology., 36, 754–761.
Zhang, Q., Worsnop, D.R., Canagaratna, M.R., Jimenez, J.L., 2005. Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols. Atmospheric Chemistry and Physics 5, 3289-3311.
Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang, W., Maenhaut, W., Liu, X., 2008. Identification and estimation of the biomass burning contributionto Beijing aerosol using levoglucosan as a molecular marker. Atmospheric Environment 42, 7013-7021.
Zhang, X., Hecobian, A., Zheng, M., Frank, N. H., and Weber, R.J., 2010. Biomass burning impact on PM2.5 over the southeastern US during 2007: integrating chemically speciated FRM filter mea-surements, MODIS fire counts and PMF analysis, Atmospheric Chemistry and Physics 10, 6839–6853, doi:10.5194/acp-10-6839.
Zhang, X., Liu, J., Parker, E.T., Hayes, P.L., Jimenez, J.L., Gouw, J.A., Flynn, J.H., Grossberg, N., Lefer, B.L., Weber, R.J., 2012. On the gas-particle partitioning of soluble organic aerosol in two urban atmospheres with contrasting emissions:1. Bulk water-soluble organic carbon. Journal of Geophysical Research 117, D00v16, doi:10.1029/2012JD017908.
Zhang, X., Liu, Z., Hecobian, A., Zheng, M., Frank, N.H., Edgerton, E.S., Weber, R.J., 2012. Spatial and seasonal variations of fine particle water-soluble organic carbon (WSOC) over the southeastern United States: implications for secondary organic aerosol formation. Atmospheric Chemistry and Physics 12, 6593–6607.
Zhang, Y.X., Shao, M., Zhang, Y.H., Zeng, L.M., He, L.Y., Zhu, B., Wei, Y.J., Zhu, X.L., 2007. Source profiles of particulate organic matters emitted from cereal straw burnings. Journal of Environmental Sciences-China 19,167–175.
Zhang, Y., Schauer, J.J., Zhang, Y., Zeng, L., Wei, Y., Liu, Y. and Hao, M., 2008. Characteristics of Particulate Carbon Emissions from Real-World Chinese Coal Combustion. Environ. Sci. Technol., 42, 5068–5073.
Zheng, M., Cass, G.R., Schauer, J.J., and Edgerton, E.S., 2002. Source apportionment of PM2.5 in the southeastern United States using solvent-extractable organic compounds as tracers. Environmental Science & Technology 36, 2361-2371.
Zhu, C.S., Chen, C.C., Cao, J.J., Tsai, C.J., Chou, C.C.K, Liu, S.C., Roam, G.D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2688–2673.
張士昱,2002。易潮解無機氣膠含水特性之研究。國立中央大學環境工程研究所博士論文。
秦若鈺,2004。大氣常有機物及有機/無機混合氣膠含水特行之研究。國立中央大學環境工程研究所碩士論文。
張佑嘉,2011。中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文。
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性。國立中央大學環境工程研究所碩士論文。
黃希爾,2004。東亞生質燃燒對台灣高山氣膠特性的影響。國立中央大學環境工程研究所碩士論文。
侯雅馨,2008。大氣氣膠腐植質含量分析及氣膠成分對氣膠含水量影響的研究。國立中央大學環境工程研究所碩士論文。
黃秋華,2009。台灣北部地區大氣氣膠有機酸特性。國立中央大學環境工程研究所碩士論文。
指導教授 李崇德(Chung-Te Lee) 審核日期 2013-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明