博碩士論文 993206005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.133.159.224
姓名 陳玫君(Mei-chun Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 鈣鈦礦型觸媒之製備與其應用於分解NO之探討
(Perovskite-type oxides prepared as the catalyst for NO decomposition)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以檸檬酸溶膠凝膠法(sol-gel)製備La2NiO4、LaSrNiO4、La0.7Ce0.3SrNiO4等Pervskite oxide型觸媒,並觀察三者分解NO效能之差異。此外,亦利用非熱電漿放電技術,針對鍛燒後之La0.7Ce0.3SrNiO4觸媒進行N2或Air電漿處理,以瞭解電漿處理對於觸媒效能之影響,並針對電漿處理前後的觸媒進行相關物性分析。實驗結果顯示,La0.7Ce0.3SrNiO4觸媒具最佳NO分解率。操作參數方面,固定NO濃度1000ppm、反應溫度600-900℃、空間流速8000h-1。在無氧、900℃的條件下、,以氮氣作為載氣之NO分解率高於氬氣,所得結果分別為99.90%和49.89%;在900℃、氧氣濃度1%時,以氮氣和氬氣作為載氣之NO分解率略為下降,分別為99.12%和44.97%,表示觸媒在此含氧量下活性抑制的情形輕微,但提高含氧量至3%及6%時,NO分解率低於40%。非熱電漿改質觸媒方面,其操作參數為:氣體流量1000sccm、空間流速1241 h-1、施加電壓16.5kV、放電頻率100Hz、氣體種類為N2及Air。未經電漿改質的La0.7Ce0.3SrNiO4觸媒在900℃、氧氣濃度0%和1%時之NO分解率雖高於經電漿處理之觸媒,但提高氧氣濃度後,發現經電漿改質後的觸媒之NO分解率並未像電漿改質的觸媒急速下降,N2電漿及Air電漿觸媒在氧氣濃度3%及6%時之NO分解率分別為36.45%、17.81%及28.55%、12.27%;未經電漿改質觸媒在氧氣濃度在3%及6%時之NO分解率分別為24.66%及6.54%,顯示在較高含氧量下,電漿改質後之觸媒對氧氣有較高之容忍力。
摘要(英) Perovskite-type oxides including La2NiO4, LaSrNiO4, and La0.7Ce0.3SrNiO4 were prepared by the citric acid complexation and used as catalysts for direct decomposition of NO. Moreover, non-thermal plasma technology was applied after calcinations of La0.7Ce0.3SrNiO4. In this study, i.e., citric acid complexation (without plasma treatment), N2-plasma-treated, and air-plasma-treated catalysts were tested for NO decomposition to understand the effect of plasma treatment on the catalytic performance. The catalysts before and after plasma treatment were characterized, respectively, to discern the effects. The activities of La2NiO4, LaSrNiO4, and La0.7Ce0.3SrNiO4 for NO decomposition were tested and the results indicate that in the same experimental parameters, La0.7Ce0.3SrNiO4 catalyst is of the highest NO decomposition with Ar, with the efficiency up to 49.89%. The inlet NO concentration was controlled at 1000 ppm, and the reaction temperature ranged from 600℃ to 900 ℃, while the space velocity was fixed at 8,000h-1. The influences of oxygen content and water vapor content on NO decomposition were also explored. In the absence of O2, NO decomposition achieved is much higher as N2 is used as carrier gas compared with Ar. With 1% oxygen content in the gas stream, NO decomposition decreased slightly to 99.12% and 44.97%, respectively, as N2 and Ar are used as the carrier gases. The results indicate that the activation of catalyst was slightly suppressed with 1% O2 content. On the other hand, NO decomposition decreases rapidly as the oxygen content is increased to 3% and 6%.
Non-thermal plasma is applied to modify the performance of perovskite-type oxides catalyst. The operating parameters are as following:gas flow rate is 1000 sccm, space velocity is 1241 h-1, the applied voltage is 16.5kV, and the discharge frequency is 100 Hz with either nitrogen or air as carieer gas. At 900℃, NO decomposition achieved with La0.7Ce0.3SrNiO4 catalyst before plasma treatment as N2 is used as carrier gas is much higher than that the catalyst after plasma treatment in the presence of 0% or 1% O2, however, as the oxygen content is increased to 3% and 6%, the La0.7Ce0.3SrNiO4 catalyst before plasma treatment activity is significantly decreased to 24.66% and 6.54%, respectively, as N2 is used as the carrier gas. The results lower than the La0.7Ce0.3SrNiO4 catalyst after plasma treatment with N2 as the carrier gas. As the oxygen content is increased to 3% and 6%, the N2-plasma-treatment catalyst activity is 36.45% and 17.81%, respectively, and air-plasma-treatment catalyst activity is 28.55% and 12.27%, respectively. The results indicate that the the catalysts after plasma treatment possess strong tolerance in the presence of 3% and 6% oxygen content.
關鍵字(中) ★ Pervskite oxides 型觸媒
★ NO分解
★ 電漿處理觸媒
★ 非熱電漿
關鍵字(英) ★ non-thermal plasma
★ plasma treatment catalyst
★ perovskite-type oxides catalyst
★ NO decomposition
論文目次 摘要.......................................................I
Abstract.................................................VII
表目錄.....................................................X
第一章 前言................................................1
1-1 研究緣起...............................................1
1-2 研究目的與內容.........................................2
第二章 文獻回顧............................................3
2-1 氮氧化物的特性、來源與危害.............................3
2-1-1 氮氧化物的基本特性...................................3
2-1-2 氮氧化物的來源.......................................5
2-1-3 氮氧化物對健康與環境造成的衝擊.......................5
2-2 氮氧化物生成機制.......................................8
2-3 氮氧化物控制技術.......................................9
2-3-1 燃燒前處理(Pre-Combustion Ttreatment).............9
2-3-2 燃燒程序修正(Combustion Modification).............10
2-3-3 燃燒後處理(Post-Combustion Removal)..............10
2-3-3-1 溼式法(Flue Gas Denitrification, FGDN)..........12
2-3-3-2 乾式法............................................12
2-4 Perovskite oxide型觸媒催化分解氮氧化物................19
2-4-1 Perovskite oxide型觸媒簡介..........................19
2-4-2 Perovskite oxide型觸媒製備方法......................21
2-4-3 部分取代A-site陽離子的影響..........................22
2-4-4 活性位的結構與反應機制..............................25
2-5 電漿..................................................32
2-5-1 電漿生成原理........................................32
2-5-2 電漿產生方式........................................36
2-5-3 電漿放電對於觸媒表面物化特性之影響..................40
第三章 研究方法與設備.....................................43
3-1 研究流程與架構........................................43
3-2 觸媒製備..............................................44
3-2-1 傳統檸檬酸法........................................44
3-2-2 空氣電漿處理與氮氣電漿處理..........................46
3-3 實驗設備..............................................49
3-3-1 氣體供應與試藥......................................51
3-3-2 實驗參數控制系統....................................51
3-3-3 反應器..............................................53
3-3-4 電力供應設備........................................54
3-3-5 反應物與產物分析設備................................55
3-4 研究方法..............................................55
3-4-1 NO分解實驗..........................................55
3-4-2 數據計算............................................57
3.5 儀器原理及操作條件....................................57
第四章 結果與討論.........................................61
4-1 以氬氣為載氣對NO分解效率之影響........................61
4-2 以氮氣為載氣對NO分解效率之影響........................63
4-2-1 氧氣含量對NO分解效率之影響..........................66
4-2-2 水氣含量對NO分解效率之影響..........................67
4-3 觸媒之基本特性分析結果................................71
4-3-1 BET氮氣吸脫附測試...................................71
4-3-2 LV-SEM分析..........................................72
4-3-3 SEM-EDS觸媒元素組成.................................73
4-3-4 XRD晶相分析.........................................74
4-3-5 O2-TPD..............................................77
4-4 介電質放電實驗........................................79
4-4-1 電漿處理後之觸媒對NO分解效率之影響..................79
4-4-2 氧氣含量對NO分解效率之影響..........................80
4-5 電漿處理後之觸媒基本特性分析結果......................82
4-5-1 BET氮氣吸脫附測試...................................82
4-5-2 LV-SEM分析..........................................83
4-5-3 XRD晶相分析.........................................84
4-5-4 O2-TPD..............................................87
第五章 結論與建議.........................................88
5-1 結論..................................................88
5-2 建議..................................................89
參考文獻..................................................90
參考文獻 Alifanti, M., Auer, R., Kirchnerova, J. Thyrion, F., Grange, P. and Delmon, B., “Activity in methane combustion and sensitivity to sulfur poisoning of La1−xCexMn1−yCoyO3 perovskite oxides,”Applied Catalysis B : Environmental, Vol. 41, pp. 71-81 (2003).
Belessi, V. C., Costa, C. N., Bakas, T. V., Anastasiadou, T., Pomonis, P. J. and Efstathiou, A. M., “Catalytic behavior of La-Sr-Ce-Fe-O mixed oxidic/perovskitic systems for the NO plus CO and NO+CH4+O-2 (lean-NOx) reactions,” Catalysis Today, Vol. 59, pp. 347-363 (2000).
Bosch, H. and Janssen, F., “Formation and control of nitrogen oxides,” Catalysis Today, Vol. 2, pp. 369-379 (1988).
Boyle, J., Russell, A., Yao, S. C., Zhou, Q., Ekmann, J., Fu, Y. and Mathur, M., “Reduction of nitrogen oxide from post-combustion gases utilizing molecular radical specials,” Fuel, Vol. 72, pp. 1419-1427 (1993).
Chapman, B., “Glow discharge processes,” A Wiley-Interscience Publication, pp. 297-342 (1980).
Chen, M. H., Chu, W., Dai, X. Y. and Zhang, X. W., “New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene,” Catalysis Today, Vol. 89, pp. 201-204 (2004).
Cho, S. M., “Properly apply selective catalytic reduction for NOx removal,” Chemical Engineering Progress, pp. 39-45 (1994).
Chan K.S., Ma J., Jaenicke S., Chuah G.K., Lee J.Y., “Catalytic carbon monoxide oxidation over strontium, cerium and copper-substituted lanthanum manganates and cobaltates,” Applied Catalysis A : General, Vol. 107, pp.201-227 (1994).
Ding, W., Chen, Y., and Fu, X., “Influence of surface composition of perovskite-type complex oxides on methane oxidative coupling,” Applied Catalysis A : General, Vol. 104, pp. 61-75 (1993).
Doshi, R., Alcock, C. B., Gunasekaran, N. and Carberry, J. J., “Carbon monoxide and methane oxidation properties of oxide solid solution catalysts,” Journal of Catalysis, Vol. 140, pp. 557-563 (1993).
Ferri D. and Forni L. “Methane combustion on some perovskite-like mixed oxides,” Applied Catalysis B : Environmental, Vol. 16, pp. 119-126 (1998).
Goldschmidt, V. M., “Geochemical distribution principles,” Shrifter Nofke Videnskaps-Akadmi Oslo I (1926).
Hao, J., Liu, Z., Fu, L. and Zhu, T., “Study of Ag/La0.6Ce0.4CoO3 catalysts for direct decomposition and reduction of nitrogen oxides with propene in the presence of oxygen,” Applied Catalysis B : Environmental, Vol. 44, pp. 355-370 (2003).
Huang, Z., Peng, X., Lin, H., and Shangguan, W., “A highly efficient and porous catalyst for simultaneous removal of NOx and diesel soot,” Catalysis Communications, Vol. 8, pp. 157-161 (2007).
Ishihara, T., Ando, M., Sada, K., Takiishi, K., Yamada, K., Nishiguchi, H. and Takita, Y., “Direct decomposition of NO into N2 and O2 over La (Ba) Mn (In) O3 perovskite oxide,” Journal of Catalysis, Vol. 220, pp. 104-114 (2003).
Kim, H. H., “Nonthermal plasma processing for air-pollution control : A historical review, current issues and future prospects,” Plasma Processes and Polymers, Vol. 1, pp. 91-110 (2004).
Kirchnerova, J., Alifanti, M. and Delmon, B., “Evidence of phase cooperation in the LaCoO3-CeO2-Co3O4 catalytic system in relation to activity in methane combustion,” Applied Catalysis A : general, Vol. 231, pp. 65-80 (2002).
Klvana, D., Tofan, C., Kirchnerova, J. “Direct decomposition of nitric oxide over perovskite-type catalysts part I : Activity when no oxygen is added to the feed,” Applied Catalysis. A : General, Vol. 223, pp. 275-286 (2002).
Leanza, R., Rossetti, I., Fabbrini, L., Oliva, C. and Forni, L., “Perovskite catalysts for the catalytic ameless combustion of methane preparation by ame-hydrolysis and characterization by TPD–TPR-MS and EPR,” Applied Catalysis B : Environmental, Vol. 28, pp. 55 (2000).
Li, Z. H., Tian, S. X., Wang, H. T. and Tian, H. B., “Plasma treatment of Ni catalyst via a corona discharge,” Journal of Molecular Catalysis A : Chemical, Vol. 211, pp. 149-153 (2004).
Li, Z., Ma, Z., Gao, X., Yuan, X., Zhang, L. and Zhu, Y., “Simultaneous catalytic removal of NOx and diesel soot particulates over La2−xAxNi1−yByO4 perovskite-type oxides,” Catalysis Communications, Vol. 12, pp. 817-821 (2011).
Lindstedt, R. P., Lockwood, F. C. and Selim, M. A., “Detailed kinetic modelling of chemistry and temperature effect on ammonia oxidation,” Combustion Science Technology, Vol. 99, pp. 253-276 (1994).
Liu, C. J.; Vissokov, G. P.; Jang, B. W.L., “Catalyst preparation using plasma technologies,” Catalysis Today, Vol. 72, pp. 173-184 (2002).
Liu, X. Z., Wang, J. G., Liu, C. J., He, F. and Eliasson, B., “Partial oxidation of methane to syngas over Ni-Fe/Al2O3 catalyst with plasma enhanced activity,” Reaction Kinetics and Catalysis Letters, Vol. 79, pp. 69-76 (2003).
Lee, H. M., Juan, L.K., Chen, H.-L., Chang, M.B., Chen, S.H., Li, H.Y., Tzeng, C.C., “Plasma-treated catalyst for methanol synthesis from syngas,” IEEE Transactions on plasma science. (2009/05). (revision)
Miller, J. A. and Browman, C. T., “Mechanism and modeling of nitrogen chemistry in combustion,” Progress in Energy and Combustion Science, Vol. 15, pp. 287-338 (1989).
Mitsuharu, K., “Film deposition by plasma techniques,” Springer-Verlag Berlin Heidelberg, pp. 11-48 (1992).
Miyamoto, A., Kobayashi, K., Inomata, M. and Murakami, Y., “Nitrogen-15 tracer investigation of the mechanism of the reaction of NO with NH3 on vanadium oxide catalysts,” Industrial Engineering Chemistry Research, Vol. 86, pp. 2945-2950 (1982).
Nehra, V., Kumar, A., and Dwivedi, H. K., “Atmospheric non-thermal plasma source,” International Journal of Engineering, Vol. 2, pp.53-68 (2008).
Otakar, S., “Industrial separators for gas cleaning,” Wiley-Interscience Publication, pp. 360-379 (1979).
Pârvulescu, V. I., Grange, P., and Delmon, B., “Catalytic removal of NO,” Catalysis Today, Vol. 46, pp. 233-316 (1998).
Pechini, M., “Method of preparing lead and alkaline earth titanates and niobates andcoating method using the same to form a capacitor,” U.S. Patent 3, Vol. 330, pp. 697 (1967) .
Radtke, F. and Baiker, A., “Formation of undesired by-products in de-NOx catalysis by hydrocarbons,” Catalysis Today, Vol. 26, pp. 159-167 (1995).
Raizer, Y. P., Allen, J. E. and Kisin, V. I., “Gas discharge physics,” Springer-Verlag Berlin Heidelberg, pp. 8-33 (1991).
Shen, S. T., and Weng, H. S., “Comparative study of catalytic reduction of nitric oxide with carbon monoxide over the La1-xSrxBO3 (B = Mn, Fe, Co and Ni) catalysts,” Industrial and Engineering Chemistry Research, Vol. 37, pp. 2654 -2661 (1998).
Savikhin S., Zhu Y., Blankenship R. E., et al. “ Ultrafast energy transfer in chlorosomes from the green photosynthetic bacterium chloroflexus aurantiacus,” The Journal of Physical Chemistry, Vol. 100 , pp.3 320-3 322 (1996).
Teraoka, Y., Harada, T. and Kagawa, S., “Reaction mechanism of direct decomposition of nitric oxide over Co- and Mn-based perovskite-type oxides,” Journal of Chemistry Society., Vol. 94, pp. 1887-1891 (1998).
Thomas A., Zhu J., “Perovskite-type mixed oxides as catalytic material for NO removal,” Applied Catalysis B : Environmental, Vol. 92, pp. 225-233 (2009).
U.S. EPA, “NOx : How nitrogen oxides affect the way we live and breathe,” Report EPA-456/F-98-005, Office of Air Quality and Standard, Research Triangle Park, NC 27711 (1998).
Van Doorn, R. H. E., Kruidhof, H., Nijmeijer, A., Winnubst, L. and Burggraaf, A. J., “Preparation of La0.3Sr0.7CoO3-δ perovskite by thermal decomposition of metal-EDTA complexes,” Journal of Material Chemistry, Vol.8, pp. 2109 -2112 (1999).
Vandooren, J., Brian, J. and Tiggelen, V. “Comparison of experimental and calculate structure of an ammonia-nitric oxide flame importance of the NH2 + NO reaction,” Combustion and Flame, Vol. 98, pp. 402-401 (1994).
Voorhoeve, R. J. H., “Perovskite-related oxides as oxidation-reduction catalysts,” Advanced Material in Catalysis, pp. 129-180 (1977).
Wood, S. C., “Select the right NOx control technology,” Chemical Engineering Progress, pp. 32-38 (1994)
Wu, Y. Zhao, Z. and Yang, X,.“Comparative study of nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO,” Applied Catalysis B : Environmental, Vol. 8, pp. 281-297 (1996).
Yan, Z., Wang, K., Qian, L., Zhang, L. and Liu, H. “Simultaneous removal of NOx and soot particulates over La0.7Ag0.3MnO3 perovskite oxide catalysts,” Catalysis Today, Vol. 158, pp. 423-426 (2010).
Yang, X., Zhu, J., Xiao, D., Li, J. and Wu, Y., “Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1−xCexSrNiO4 (0≤x≤0.3),” Journal of Molecular Catalysis A : Chemical, Vol. 234, pp. 99-105 (2005).
Yang W. D., Chang Y. H., Huang S. H., “Influence of molar ratio of citric acid to metal ions on preparation of La0.67Sr0.33MnO3 materials via polymerizable complex process,” Journal of the European Ceramic Society, Vol. 25, pp. 3611-3618 (2005).
Yang, X., Zhu, J., Xiao, D., Li, J. and Wu, Y., “Kinetics and mechanism of NO decomposition over La0.4Sr0.6Mn0.8Ni0.2O3 perovskite-type oxides,” Journal of Molecular Catalysis A : Chemical, Vol. 236, pp. 182-186 (2005).
Yang, X., Zhu, J., Xiao, D., Li, J. and Wei, K. “Effect of Ce and MgO on NO decomposition over La1-x–Cex–Sr–Ni–O/MgO,” Catalysis Communications, Vol. 7, pp. 432-435 (2006).
Yang X., Zhu J., Xu X. and Wei K., “Active site structure of NO decomposition on Perovskite(-like) oxides:An investigation from experiment and density functional theory,” The Journal of Physical Chemistry, Vol. 111 , pp.1487-1490 (2007).
Yang, X., Zhao, B., and Wang, R., “Simultaneous catalytic removal of NOx and diesel soot particulates over La1-xCexNiO3 perovskite oxide catalysts,” Catalysis Communications, Vol. 10, pp. 1029-1033 (2009).
Yokoi, Y. and Uchida, H., “Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO : Correlation between cluster model calculations and temperature-programmed desorption experiments,” Catalysis Today, Vol. 42, pp. 167-174 (1998).
Yokomichi, Y., Nakayama, T., Okada, O., Yokoi, Y., Takahashi, I., Uchida, H., Ishikawa, H., Yamaguchi, R., Matsui, H. and Yamabe, T., “Fundamental-study on rhe NOx direct decomposition catalysts,” Catalysis Today, Vol. 29, pp. 155-160 (1996).
Zhao, Z., Yang, X. G. and Wu, Y., “Comparative study of nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO,” Applied Catalysis B : Environmental, Vol. 8, pp. 281-297 (1996).
Zhao, Z., Liu, J., Xu, C. and Duan, A., “Simultaneous removal of NOx and diesel soot over nanometer Ln-Na-Cu-O perovskite-like complex oxide catalysts,” Applied Catalysis B : Environmental, Vol. 78, pp. 61-72 (2008).
Zhao, B., Wang, R. and Yang, X., “Simultaneous catalytic removal of NOx and diesel soot particulates over La1-xCexNiO3 perovskite oxide catalysts,” Catalysis Communications, Vol. 10, pp. 1029-1033 (2009).
Zhu, Y. R., Li, Z. H., Zhou, Y. H., Lv, J. and Wang, H. T., “Plasma treatment of Ni and Pt catalysts for partial oxidation of methane,” Reaction Kinetics and Catalysis Letters, Vol. 87, pp. 33-41 (2006).
Zhu, J. J., Yang, X. G., Xu, X. L. and Wei, K. M., “Effect of strontium substitution on the activity of La2-xSrxNiO4 (x=0.0-1.2) in NO decomposition,” Science in China Series B : Chemisry, Vol.50, pp. 41-46 (2007).
Zhu, Y. J., Wang, D., Yuan, F. L., Zhang, G. and Fu, H. G., “Direct NO decomposition over La2-xBaxNiO4 catalysts containing BaCO3 phase,” Applied Catalysis B : Environmental, Vol. 82, pp. 255-263 (2008).
Zou, J. J., Liu, C. J. and Zhang, Y. P., “Control of the metal-support interface of NiO-loaded photocatalysis via cold plasma treatment,” Langmuir, Vol. 22, pp. 2334-2339 (2006).
蘇崇毅,「蜂巢狀波洛斯凱特型觸媒用於合成氣燃燒之研究」,國立成功大學化學工程研究所,臺南,台灣,2007。
空氣汙染防治專責人員教材,「氣狀汙染物防治」,環境保護署環境 護人員訓練所,2011年。
張君正、張木彬,「氮氧化物生成機制與控制技術」,工業污染防治,第13卷,第2期,1994年。
王睿、吳丹、趙大傳、于慧、趙海霞,「現NOx吸附分解的雜多化合物催化新體系研究」,現代化工,第26卷,第2期,2006年。
楊士朝,「以低溫電漿去除氮氧化物之可行性研究」,國立中央大學環境工程研究所,碩士論文,中壢,1998。
沈孝宗,「以波洛斯凱特型觸媒催化NO還原反應之比較研究」,國立成功大學化學工程研究所,臺南,台灣,1998年。
赤崎正則、村岡克紀、渡邊征夫、狫原建治,「電漿工學的基礎」,復文書局,9-44頁,1990年。
高正雄,「電漿化學」,復漢出版社,台南,1991年。
指導教授 張木彬(Moo-been Chang) 審核日期 2012-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明