博碩士論文 993206008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:54.211.135.32
姓名 童保舜(Bao-shun Tong)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 電漿驅動器臭氧生成之研究
(Investigation on Ozone Formation with Plasma Actuator)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去有關電漿驅動器之研究多著重於電極表面之空氣動力特性,尚未針對電漿驅動器於運作時產生之臭氧濃度做探討,本研究利用電漿驅動器在不同參數下產生之臭氧濃度做深入之了解,討論操作參數改變對於臭氧濃度所造成之影響。並以數值模式模擬不同之操作參數產生之臭氧濃度,找出電漿驅動器中控制臭氧濃度之重要因子,以期充分掌握電漿驅動器之臭氧生成特性。
  由本研究結果得知,以純氧為工作氣體時臭氧濃度會是以空氣為工作氣體時之2.5倍;而放電功率、施加電壓與供電頻率之上升皆會使臭氧濃度上升;驅動器之幾何外形(如:電極構造、電極長度)亦會造成臭氧濃度明顯之改變;折合電場在約160 Td時臭氧濃度為最高值,不管折合電場增加或減少臭氧濃度皆會下降;溫度效應則是當溫度越高時,臭氧濃度會越低。
  由最適化條件來看,在兼顧電漿驅動器效能與臭氧濃度之參數為介電質為KaptonR,頻率為1 kHz,施加電壓為16 kV,電極長度為80 mm,電極構造為6-3-6,所生成之臭氧濃度為119 ppm。
  能源效率之計算結果顯示當頻率上升時,能源效率會有下降之趨勢,而又以施加電壓為19kV時下降趨勢最為明顯,且電漿驅動器之能源效率在同型反應器中為最小值,亦即在實際應用時會生成最少之臭氧,可降低對環境之危害。
摘要(英) In recent years, several studies have focused on the actuator changed the effect of aerodynamic characteristics, but without any research focused on ozone formation that plasma actuator generated. This study is focused on the characteristics of ozone formation with DBD plasma actuator and investigated with experimental tests and numerical model. Experimental results indicate that discharge power, frequency, electrode configuration, dielectric and applied voltage would affect ozone formation significantly. Numerical results show that discharge power, reduced field and temperature are factors affecting ozone formation with plasma actuator. In this study also conduct the energy efficiency of plasma actuator, it shows that plasma actuator has the minimum energy efficiency compared with the same type reactors.
關鍵字(中) ★ 能源效率
★ 最適化條件
★ 數值模式
★ 臭氧
★ 電漿驅動器
關鍵字(英) ★ ozone formation
★ numerical model
★ energy efficiency
★ Plasma actuator
論文目次 摘要                     i
Abstract           ii
誌謝                iii
目錄                v
圖目錄                viii
表目錄                x
第一章 前言                1
 1.1 研究緣起                1
 1.2 研究目的                2
第二章 文獻回顧                3
 2.1 電漿                3
  2.1.1 電漿反應           5
  2.1.2 折合電場           6
  2.1.3 G-value           7
  2.1.4 電漿應用           8
  2.1.5 非熱電漿種類           8
 2.2 臭氧                15
  2.2.1 臭氧基本性質           15
  2.2.2 臭氧的危害性           16
  2.2.3 臭氧在空氣中的衰減      17
  2.2.4 臭氧在生活中應用           17
  2.2.5 參數影響           18
  2.2.6 臭氧在DBD系統中主要生成與破壞機制 21
 2.3 電漿驅動器                24
  2.3.1 基本原理           24
  2.3.2 介電質放電 電漿驅動器      25
  2.3.3 電暈放電電漿驅動器      27
  2.3.4 近來電漿驅動器之研究      28
 2.4 數值模式                29
第三章 實驗方法                34
 3.1 實驗設備                34
  3.1.1 實驗配置           34
  3.1.2 氣體                35
  3.1.3 電漿驅動器           35
  3.1.4 高壓電力供應系統           36
  3.1.5 偵測系統           38
 3.2 數值模式                40
  3.2.1 資料輸入           42
  3.2.2 Boltzmann方程式求解工具      43
  3.2.3 理論崩潰電壓與放電功率之計算 48
  3.2.4 反應式與速率常數資料庫      49
  3.2.5 反應途徑分析           51
  3.2.6 反應方程式           52
第四章 結果與討論           53
 4.1 實驗結果                53
  4.1.1 放電情形           54
  4.1.2 波型                54
  4.1.3 工作氣體對於臭氧濃度之影響      55
  4.1.4 頻率對於臭氧濃度之影響      57
  4.1.5 施加電壓對於臭氧濃度之影響      59
  4.1.6 電極幾何外形對於臭氧濃度之影響 61
  4.1.7 放電功率對於臭氧濃度之影響      63
  4.1.8 介電質對於臭氧濃度之影響      65
 4.2 數值模式                67
  4.2.1 工作氣體對於臭氧濃度之影響      67
  4.2.2 折合電場對於臭氧濃度之影響      68
  4.2.3 氣體溫度對於臭氧濃度之影響      70
 4.3 最佳化條件探討           72
 4.4 電漿驅動器之能源效率           75
第五章 結論與建議           77
 5.1 結論                77
 5.2 建議                78
參考文獻                79
附錄一 數值模擬中使用之反應式及速率常數 91
參考文獻 1. Abdel-Salam M., Mizuno A. and Shimizu K., (1997), “Ozone Generaiton as Influenced by Gas Flow in Corona Reactors.”, Journal of Physics D: Applied Physics, Vol(30), pp.864-870.
2. Alekseev G. Y., Levchenko A. V., Bityurin V. A., (1993), “Flue Gas Cleaning by Pulse Vorona, Part II Chemical Kinetics and Heat and Mass Transfer in NO/SO2 Removal.”, Research Report IVTAN-ANRA #93/2, Moscow.
3. Artana G., D’ Adamo J., Leger L., Moreau E. and Touchard G., (2002), “Flow Control with Electrohydrodynamic Actuators.”, AIAA Journal , Vol(40), pp.1773-1779.
4. Atkinson R. and Lloyd A.C., (1984) ,”Evaluation of Kinetic and Mechanistic Data for Modeling of Photochemical Smog.”, Journal of Physical and Chemical Reference Data, Vol(13), No. 2, pp.315-444.
5. Atkinson R., (1985), ”Kinetics and Mechanisms of the Gas-Phase Reactions of the Hydroxyl Radical with Organic Compounds under Atmospheric Conditions.”, Chemical Reviews, Vol(85), pp.69-201.
6. Atkinson R., Aschmann S. M., Pitts J. N. and Winer A. M., (1984), “Gas-Phase Reaction of NO2 with Alkenes and Dialkenes.”, International Journal of Chemical Kinetics, Vol(16), No. 6, pp.697-706.
7. Atkinson R., Baulch D. L., Cox R. A., Hampson Jr. R. F., Kerr J. A. and Troe J., (1992), ”Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement IV.”, Journal of Physical and Chemical Reference Data, Vol(21), No. 6, pp. 1125-1568.
8. Atkinson R., Baulch D. L., Cox R. A., Hampson Jr. R. F., Kerr J. A., Rossi M. J. and Troe J., (1999), “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry, Organic Species: Supplement VII.”, Journal of Physical and Chemical Reference Data, Vol(28), No. 2, pp.191-393.
9. Atkinson R., Baulch D. L., Cox R. A., Hampson Jr. R. F., Kerr J. A., Rossi M. J., and Troe J. (2000), “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement VIII, Halogen Species Evaluation for Atmospheric Chemistry.”, Journal of Physical and Chemical Reference Data, Vol(29), No. 2, pp.167-266.
10. Atkinson R., Baulch D. L., Cox R. A., Hampson, Jr. R. F., Kerr J. A., Rossi M. J. and Troe J. (1997), “Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Supplement VI.”, Journal of Physical and Chemical Reference Data, Vol(26), No. 2, pp.1329-1499.
11. Bert Brunekree and Stephen T Holgate, (2002), ”Air Pollution and Health.”, The Lancet, Vol(360), pp.1233-1242
12. Board on Energy and Environmental System, (2010), “Technologies and Approaches to Reducing Fuel Consumption of Medium and Heavy-Duty Vehicles.”, National Research Council and the National Highway Traffic Safety Administration, Washington D.C., USA, pp.162-231.
13. Chalmers I., Zanella L., and MacGregor S. J., (1995), “Ozone Syhthesis in Oxygen in a Dielectric Barrier Free Configuration,” 10th IEEE international Pulsed Power Conference, Albuquerque, pp.1249-1254
14. Chang J. S., (1991), “Corona Discharge Procesess.”, IEEE Transactionon on Plasma Sceicne, Vol(19), No. 6, pp.1152-1166.
15. Chang J. S., Looy P. C., Nagai K., Yoshioka T., Aoki S. and Maezawa A., (1996), ”Preliminary Pilot Plant Tests of a Corona Discharge-Electron Beam Hybrid Combustion Flue Gas Cleaning System.”, IEEE Transactions on Industry Applications, Vol(32), No. 1, pp.131-136.
16. Chang M. B., Wu S. J., (1997), “Experimental Study on Ozone Synthesis via Dielectric Barrier Discharges.”, Ozone-Science & Engineering, Vol(19), pp.241-254.
17. Chang M.B. and Chen H. L., (2009), “Investigation on Performance Enhancement of Nonthermal Plasma with the Assistance of Numerical Simulation.” 6th Asia-Pacific International Symposium on the Basics and Applications of Plasma Technology, Hsinchu, Taiwan (Dec. 14-16, 2009).
18. Chapman B., (1980), “Glow Discharge Processes”, Wiley-Interscience Publication, Canada, ISBN: 978-0-471-07828-9, 432 pages.
19. Chen H. L., Lee H. M., and Chang M. B., (2006), “Enhancement of energy yield for ozone production via packed-bed reactors.”, Ozone-Science & Engineering, vol. 28, no. 2, pp. 111–118.
20. Chirokov A., Gutsol A., and Fridman A., (2005), “Atmospheric Pressure Plasma of Dielectric Barrier Discharges.”, Pure and Applied Chemistry, Vol(77), No. 2, pp. 487-495.
21. Cieplak T., Yamabe C., Ihara S., Satoh S., Pawlat J., Cieplak J., and Pollo I., (2000), “Ozone generation using plate rotating electrode ozonizer-effect of electrode rotation and discharge analysis method.”, Ozone-Science & Engineering 22:563–574.
22. Croke T. C., Enloe C. L. and Wilkinson S. P., (2010), “Dielectric Barrier Discharge Plasma Actuators for Flow Control.”, Annual Review of Fluid Mechanics, Vol(42), pp.505-534.
23. Deng S., Cheng C., Ni G., Meng Y. and Chen H., “Bacillus Subtilis Devitalization Mechanism of Atmohphere Pressure Jet.”, Current Applied Physics, Vol(10), pp.1164-1168.
24. Dong B. J. ,Magnier P., Hong D. and Hureau J., (2008a) , “Action of a Pulsed DBD Actuator on a Slow Jet”, Journal of Electrostatics, Vol(66), pp.369-374.
25. Dong B., Bauchire J. M., Pouvesle J. M., Magnier P. and Hong D., (2008b), “Experimental Study of a DBD Surface Discharge for the Active Control of Subsonic Airflow”, Journal of Physics D: Applied Physics, Vol(41), No.155201.
26. Durscher R. and Roy S., (2010), “Novel Multi-Barrier Plasma Actuators for Increased Thrust,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA 2010-965, Orlando, Florida.
27. Egli W. and Eliasson B., (1987), “Monte Carlo Simulation of Runaway Electrons in O2/N2 Mixture.”, Helvetica Physica Acta, Vol(60), No. 2, pp.241-247.
28. Egli W. and Eliasson B., (1989), ”Numerical Calculation of Electrical Breakdown in Oxygen in a Dielectric Barrier Discharge.”, Helvetica Physica Acta, Vol(62), No. 2/3, pp. 302-305.
29. Eliasson B. and Kogelschatz U., (1986) , ”N2O Formation in Ozonizers.”,” Journal of Chemical Physics, Vol(83), No. 4, pp.279-282.
30. Eliasson B. and Kogelschatz U., (1991a), “Nonequilibrium Volume Plasma Chemical Processing.”, IEEE Transactions on Industry Applications, Vol(19), No. 6, pp.1063-1077.
31. Eliasson B. and Kogelschatz U.,(1991b), “Modeling and Applications of Silent Discharge Plasmas”, IEEE Transactions Plasma Science, Vol(19), No. 2, pp.303~323.
32. Eliasson B. and Straessler S., (1983), “Calculation of the Charge and Radius of Breakdown Channels in Gases at Atmospheric Pressure.”, Bulletin of the American Physical Society, Vol(28), pp.183.
33. Eliasson B., Hirth M. and Kogelschatz U., (1987), ”Ozone Synthesis from Oxygen in Dielectric Barrier Discharges.”, Journal of Physics D: Applied Physics, Vol(20), pp. 1421.
34. Eliasson B., Kogelschatz U. and Baessler P., (1984), “Dissociation of O2 in N2/O2 Mixtures.”, Journal of Physics B: Atomic, Molecular and Optical Physics, Vol(17), No. 22, pp.797-801.
35. Enloe C., McLaughlin T., Font G., (2006), “Parameterization of Temporal Structure in the Single-Dielectric-Barrier Aerodynamic Plasma Actuator,” AIAA Journal, Vol(44), No. 6, pp.1127-1136
36. Enloe C., McLaughlin T., VanDyken R., Kachner K., Jumper E. and Corke T., (2004), “Mechanisms and Responses of a Single Dielectric Barrier Plasma Actuator: Plasma Morphology,” AIAA Journal, Vol. 42, No. 3, pp.589-594
37. Enloe C., McLaughlin T., Gregory J., Medina R. and Miller, W., (2008) “Surface Potential and Electric Field Structure in the Aerodynamic Plasma Actuator,” 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-1103, Reno, Nevada.
38. Thomas F., Corke T., Iqbal M., Kozlov A., Schatzman D., (2009), “Optimization of Dielectric Barrier Discharge Plasma Actuators for Active Aerodynamic Flow Control,” AIAA Journal, Vol(47), No. 9, pp.2169-2178
39. Frank N.W., Miller G.A. and Reed D.A., (1987), “Operating and Testing a Combined SO2 and NOX Removal Facility.”, Environmental Progress, Vol(6), No. 3, pp.177-182.
40. Garamoon A. A., Elakshar F. F., Nossair A. M. and Kotp E. F., (2002), “Experimental Study of Ozone Synthesis.”, Plasma Sources Science Technology, Vol(11), pp.254~259.
41. Ito T., Noumura T. and Ehara Y., (1999), “Frequency Acceleration of NOX Reduction Rate on Superimposing Discharge Mode”, Musashi Institute of Technology, 1-28-1.
42. Kawano S. and Misaka T., (2005), “Numerical Analysis of Microdischarge Oxygen Plasma and Prediction of Ozone Production Efficiency.”, JSME International Journal. Series B, Fluids and thermal, Vol(48), pp.448-455.
43. Kim H. H., Prieto G., Takahima K., Katsura S. and Mizuno, (2002), “A Performance Evaluation of Discharge Plasma Process for Gaseous Pollutant Removal.”, Journal of Electrostatics, Vol(55), pp.25-41.
44. Kitayama J. and Kuzumoto M., (1999), “Analysis of Ozone Generation from Air in Silent Discaharge.”, Journal of Physics D: Applied Physics,, Vol(32), pp. 3032-3040.
45. Kogoma M. and Okazaki S., (1994), “Raising of Ozone Formation Efficiency in a Homogeneous Glow Discharge Plasma at Atmospheric Pressure.”, Journal of Physics D: Applied Physics, Vol(27), No. 9, pp.1985–1987.
46. Lee H. M. and Chang M. B., (2005), “Influences of Reactor Geometry on Ozone Production with Dielectric Barrier Discharges: Experimental and Simulation Studies.”, Journal of Advanced Oxidation Technologies, Vol(8), pp.158-166.
47. Lee H. M., Chang M. B. and Wei T. C., (2004), “Kinetic Modeling of Ozone Generation via Dielectric Barrier Discharges.”, Ozone Science & Engineering, Vol(6), pp.551-562.
48. Leger L., Moreau E. and Touchard G., (2002), “Effect of a DC Corona Electrical Discharge on the Airflow along a Flat Plate,” IEEE Transactions on Industry Application, Vol(38), pp.1478-1485.
49. Leger L., Moreau E., Artana G. and Touchard G., (2001), “Influence of a DC Corona Discharge on The Airflow Along an Inclined Flat Plate,” Journal of Electrostatics, Vol(51), pp.300-306.
50. Lieberman M. A. and Lichtenberg A. J., (1994), “Principle of Plasma Discharges and Material Processing.”, John Wiley & Sons. Inc, ISBN: 978-0-471-72001-0, 757 pages.
51. Massines F., Gherardi N., Naude N. and Segur P., (2009), ” Recent Advances in the Understanding of Homogeneous Dielectric Barrier Discharges.”, The European Physical Journal Applied Physics, Vol(47), No. 2, pp.1-10.
52. McCallen R., Browand F., Hammache M., Leonard A., Brady M., Salari K., Rutledge W., Ross J., Storms B. and Heineck J. T., (1999), “Progress in Reducing Aerodynamic Drag for Higher Efficiency of Heavy Duty Trucks (Class 7-8)”, SAE Technical Papers,1999-01-2238,Washington D.C.,USA.
53. Mitsuharu K., (1992), “Film Deposition by Plasma Techniques.”, ISBN 3-540-54057, Springer-Verlag Berlin Heidelberg, New York, 224 pages.
54. Moreau E., (2007), “Airflow Control by Non-thermal Plasma Actuators,” Journal of Physics, Vol(40), pp.605-636.
55. Moreau E., Leger L. and Touchard G., (2006), “Effect of a DC Surface-Corona Discharge on a Flat Plate Boundary Layer for Air Flow Velocity up to 25m/s,” Journal of Electrostatics, Vol(64), pp.215-225.
56. Morgan N. N., (2009), “Atmospheric Pressure Dielectric Barrier Discharge Chemical and Biological Applications.”, International Journal of the Physical Sciences, Vol(4), pp.885-892.
57. Nomoto Y., Ohkubo T., Kanazawa S. and Adachi T., (1995), ”Improvement of ozone yield by a silent-surface hybrid discharge ozonizer.”, IEEE Trans. Ind. Appl. 31(6):1458–1462.
58. Okazaki K. and Nozaki T., (2002), “Ultrashort Pulsed Barrier Discharges and Applications.”, Pure and Applied Chemistry, Vol(74), No. 3, pp.447–452.
59. Opaits D., Neretti G., Zaidi S., Shneider M., Miles R., Likhanskii A. and Macheret S., (2008), “DBD Plasma Actuators Driven by a Combination of Low Frequency Bias Voltage and Nanosecond Pulses.”, 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-1372, Reno, Nevada.
60. Orlov D. M., (2006), “Modelling and Dimulation of Dingle Dielectric Barrier Discharge Plasma Actuators.”, PhD thesis, University of Notre Dame.
61. Otakar S., (1979), “Industrial Separators for Gas Cleaning.”, A Wiley- Interscience Publication, ISBN: 978-0444998088, 396 pages.
62. Peers E., Zhaokai M., Huangb X., (2010), ”A numerical Model of Plasma Effects in Flow Control”, Physics Letters A, Vol(374), pp.1501-1504.
63. Pek’arek S., (2012), “Experimental study of surface dielectric barrier discharge in air and its ozone production.”, Journal of Physics D: Applied Physics, Vol(45), No. 075201.
64. Penetrante B. M., Hsiao M. C., Merritt B. T., Vogtlin G. E. and Wallman P. H., (1995), “Comparison of Electrical Discharge Techniques for Nonthermal Plasma Processings of NO in N2.”, IEEE Transaction on Plasma Science, Vol(23), pp.679-687.
65. Post M. L. and Corke T. C.,(2004), “Separation Control on High Angle of Attack Airfoil Using Plasma Actuators.”, AIAA Journal, Vol(42), No. 11, pp.2177-2184.
66. Raizer Y. P., Allen J. E. and Kisin V. I., (1991), “Gas Dsicharge Physics”, Springer-Verlag Berlin Heidelberg Present, Texas, ISBN: 3-540-19462-2, 449 pages.
67. Rip R.G. and Netzer A., (1982), “Handbook of Ozone Technology and Application.”, ISBN: 978-0250405770, 325 pages.
68. Roth J. R. and Sherman D. M., (1998), “Boundary Layer Flow Control With a One Atmosphere Uniform Glow Discharge Surface Plasma,” AIAA 36th Aerospace Sciences Meeting and Exhibit.
69. Samaranayake W. J. M., Miyahara Y., Narmihira S. and Katsuke S., (2001), “Ozone Generation in Dry Air Using Pulsed Discharges with and without a Solid Dielectric Layer.”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol(8), No. 4, pp.687-697
70. Stanfield S., Menart J. and DeJoseph C., (2010), “Spatially Resolved Optical Emission Spectroscopy Measurements within a Single Microdischarge of a Dielectric Barrier Discharge,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA 2010-962, Orlando, Florida
71. Stanfield S., Menart J., DeJoseph C., Kimmel R., Hayes J., (2009), “Rotational and Vibrational Temperature Distributions for a Dielectric Barrier Discharge in Air,” AIAA Journal, Vol. 47, No. 5, 1107-1115
72. Seinfeld J. H., (1986) , “Atmospheric Chemistry and Physics of Air Pollution.”, John Wiley & Sons, New York, ISBN: 978-0471828570, 768 pages.
73. Sosa R., D’Adamo J. and Artana G., (2009), ”Circular Cylinder Drag Reduction by Three-Electrode Plasma Actuators “, Journal of Physics: Conference Series, Vol(166), No.012015.
74. Takaki K., Hatanaka Y., Arima K., Mukaigawa S., and Fujiwara T., (2008), “Influence of electrode configuration on ozone synthesis and microdischarge property in dielectric barrier discharge reactor.” Vacuum, vol. 83, no. 1, pp. 128–132.
75. Thomas F. O., Kozlov A. and Corke T. C., (2006), “Plasma Actuators for Bluff Body Flow Control,” AIAA Meeting paper, pp. 2845.
76. Thomas F., Corke T., Iqbal M., Kozlov A. and Shatzman D., (2009), “Optimization of SDBD Plasma Actuators for Active Aerodynamic Flow Control.”, AIAA Journal, In press
77. Weber W. J., (1972), ”Physichemical Process for Water Quality Control”, John Wiley & Sons, New York, ISBN: 978-0471924357, 672 pages.
78. 李灝銘,(2001),「以低溫電漿去除揮發性有機物之研究」,國立中央大學環境工程研究所博士論文。
79. 李卓翰,(2008),「電漿致動器於三角翼上之應用」,國立成功大學航空太空工程學系碩士論文。
80. 高正雄,(1991),「電漿化學」,復漢出版社,台南市。
81. 行政院環保署空氣品質監測網,(2012),http://taqm.epa.gov.tw。
82. 徐文媛、楊希彤,(2001),「臭氧殺菌、除臭雙效合一」,長春月刊,民國九十年七月號,頁102-104、106-108。
83. 陳信良,(2009),「數值模式輔助非熱電漿技術效能改善之研究」,國立中央大學環境工程學研究所博士論文。
84. 張木彬、賴汝賢、李灝銘、陳信良,(2003),「新式高效能臭氧產生機之開發研究」,國科會補助提升產業技術及人才培與研究計畫成果完整報告。
85. 曾春風、郭央諶、葉浚豪、謝雅婷、廖柏州,(2009),「在鈦為中間層之碳化鎢基材以陰極電弧電漿沉積類鑽碳膜之研究」,中國材料科學學會2009年年會論文。
指導教授 張木彬(Moo-been Chang) 審核日期 2012-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明