博碩士論文 993206009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:101 、訪客IP:54.174.43.27
姓名 簡筑伃(Chu-yu Chien)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 操作因子對薄膜生物反應器處理成效與溶解性微生物產物特性之探討
(Effects of operational factors on trentment efficiency and soluble microbial products in Membrane)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究建立一套薄膜生物反應器(Membrane bioreactor, MBR),以人工合成廢水為基質,比較不同污泥停留時間(sludge retention time, SRT) 10、20及40天,與不同進流COD濃度300、600及900 mg/L條件下,對MBR槽中水與出流水之水質處理成效、溶解性微生物產物(soluble microbial products, SMP)的生成與特性影響。
研究結果顯示,MBR對COD處理成效於SRT 20天最好,進流COD濃度於600 mg/L去除效果最差;SMP中的蛋白質及碳水化合物含量與蛋白質及碳水化合物比值(P/C)顯示,槽中生物質的利用以蛋白質為主,產生之SMP以碳水化合物為主,且碳水化合物較蛋白質易被薄膜阻擋而累積於槽中;由SCODSMP、DOCSMP佔SCOD及DOC的比例顯示在出流水中皆大於90%,表示DOC與SCOD的主要來源為SMP,此外,由槽中水至出流水SCODSMP、DOCSMP數值增加,表示其SMP屬於易通過薄膜的小分子,將其視為與基質代謝和微生物生長相關的SMP物質(Utilization-Associated Products, UAP);於EEM分析的SMP結果則是出流水小於槽中水,表示薄膜過濾槽中屬大分子之SMP物質,將其視為較大且難分解物質,屬與微生物衰減相關,直接由菌體產生的附帶細胞產物(Biomass-Associated Products, BAP)。
於SRT變化的結果發現,MBR槽中的水質處理成效隨SRT的增加有較好的效果,UV254、SCODSMP、DOCSMP、SCODSMP/SCOD及DOCSMP/DOC則隨SRT的增加有先增後減的趨勢,表示當SRT增加時,槽中因生物質的增長,對基質的分解利用率提升,釋出的雙鍵物質與SMP物質皆增加,當SRT達40天時,因過量的生物質增長,使槽中生物質碳源不足,因此使槽中部分生物質以容易分解之SMP為碳來源,使其濃度又有下降的趨勢;隨SRT的增加,槽中生物質對蛋白質的利用與碳水化合物的產率皆增加,因此使得蛋白質與碳水化合物的比值(P/C)隨之減少;分子量分佈情形則顯示SMP以UAP為主,且隨SRT增加,UAP及BAP的分子量分佈皆略為增加;於EEM分析可知,槽中水類SMP物質濃度隨SRT而增加,因槽中過量生物質的生長,逐漸有老化、死亡現象,使其類SMP濃度增加,且SMP物質種類於出流水中也隨之增加。
於進流COD濃度為300、600及900 mg/L變化下,MBR槽中與出流水的水質處理成效先降後升,且在基質充足的條件下,槽中生物質的增加,生長代謝的作用加劇,使SCODSMP、DOCSMP有增加的情形;蛋白質的利用則是於進流COD濃度為600 mg/L時達上限,使得蛋白質的變化於進流COD濃度為300、600 mg/L時,無明顯變化,且逐漸分解部分的碳水化合物,使其值於進流COD濃度為900 mg/L時有下降的現象;於分子量分佈的情形顯示,SMP以UAP物質為主,當進流COD濃度達900 mg/L時,SMP中BAP與UAP所佔的比例相當,且隨進流COD濃度增加,UAP及BAP的分子量分佈範圍也皆略為增加;於EEM分析可知,槽中水類SMP物質濃度,因槽中生物質生長迅速,且在基質充足的情況下,生物質釋出的SMP物質隨之增加,且因過量的進流COD濃度,使得槽中亦有老化、死亡的生物質累積,因此槽中水SMP濃度隨進流COD濃度增加而增加。
關鍵字:薄膜生物反應器、溶解性微生物產物、SRT、進流COD濃度
摘要(英) The objectives of this study were to investigate the treatment efficiency of synthetic wastewater by membrane bioreactor (MBR) and to elucidate the characteristics of soluble microbial products (SMP) at different operation parameters, including sludge retention time (SRT) 10, 20 and 40 days and influent COD concentration 300, 600 and 900 mg/L.
The results showed that the optimum treatment efficiency was occurred at operation parameter SRT 20 days. On the characteristic effect of SMP, the major component of SMP was carbohydrate and the most utilization substrate for biomass in the MBR was protein, however, the carbohydrate was easily to block the membrane filtration than the protein resulting to the concentration accumulated in the tank of MBR. Owing to the ratio of SCODSMP/SCOD and DOCSMP/DOC in the effluent grater than 90%, that is, the main contains of SCOD and DOC is SMP in the effluent. Furthermore, the concentration of SCODSMP and DOCSMP were increased from the MBR to the effluent showed that the small molecular of SMP, which belonged to UAP (Utilization-Associated Products), was easily to pass through the membrane. On the analysis of EEM, the intensity of EEM spectra of the effluent was smaller than in the tank revealed that larger molecular of SMP, which belonged to BAP (Biomass-Associated Products), was blocked by this membrane.
The treatment efficiency of UV254, SCODSMP, DOCSMP, SCODSMP/SCOD and DOCSMP/DOC was increased with the increase of SRT. This phenomenon revealed that the substrate utilization is increased with the growth of biomass resulting in improve the release of the double bond material and SMP. Because of the excessive biomass growth and the carbon source was insufficient, therefore, SMP was utilized as the food for biomass so that the concentration of SMP was dropt down at SRT 40 days. Nevertheless, the utilization of protein and the generation of carbohydrate were improved so that the ratio of protein to carbohydrate (P/C) was decrease. On the molecular weight distribution, the range of molecular weight distribution of UAP and BAP had a slight increase when the SRT increased. In addition, the concentration of SMP-like analyzed by EEM spectrum in MBR was increased with the increase of SRT due to the decay of the excessive biomass as well as the compositions of SMP was raised in the effluent.
The treatment efficiency was initially increased and then decreased corresponding to the variation of influent COD concentration 300, 600 and 900 mg/L. Simultaneously, the concentration of SCODSMP and DOCSMP also increased when the substrate was sufficient for the metabolism of biomass in MBR. On the molecular weight distribution, the major component of SMP was UAP, however, the concentration of BAP and UAP was similar at influent COD concentration 900 mg/L. Furthermore, the range of molecular weight distribution of BAP and UAP had broadened with the increase of the influent COD concentration. Finally, the concentration of SMP-like analyzed by EEM spectra in MBR was increased with the increase of influent COD concentration due to the substrate was sufficient for the metabolism of biomass in MBR.
Keyword: membrane bioreactor (MBR), soluble microbial products (SMP), sludge retention time (SRT), influent COD concentration
關鍵字(中) ★ 薄膜生物反應器
★ 溶解性微生物產物
★ SRT
★ 進流COD 濃度
關鍵字(英) ★ membrane bioreactor (MBR)
★ soluble microbial products (SMP)
★ sludge retention time (SRT)
★ influent COD concentration
論文目次 摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 IX
表目錄 XI
符號表示 XIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 薄膜生物反應器 4
2.1.1 MBR之優缺點 4
2.1.2 MBR分類 5
2.1.3 MBR模組與材料 7
2.1.4 MBR出流水特性 8
2.2 影響MBR積垢成因 11
2.2.1 MBR積垢 11
2.2.2 積垢類型 13
2.2.3積垢因子 15
2.2.4 薄膜積垢清洗 20
2.3 MBR操作因子 24
2.4 SMP簡介 27
2.4.1 SMP分類 27
2.4.2 SMP起源 29
2.4.3 SMP特性 30
2.5 MBR操作因子對SMP之影響 33
2.6 SMP特性與含量轉換推估 37
第三章 實驗材料與方法 45
3.1 模組特性 45
3.1.1 模廠建置 45
3.1.2 污泥來源及馴養 45
3.1.3進流水樣 49
3.1.4薄膜單元 49
3.1.5 MBR操作條件 51
3.2 實驗儀器與設備 52
3.3實驗藥品 53
3.4 實驗分析項目 54
3.5 實驗分析方法與步驟 57
3.6 SMP含量計算與表示 64
第四章 結果與討論 65
4.1 MBR處理成效 65
4.1.1 MBR操作情況 65
4.1.2 變化SRT對水質特性之影響 69
4.1.3 變化進流COD對水質特性之影響 75
4.1.4 SRT與進流COD濃度變化結果之差異性 83
4.2 不同SRT之SMP含量變化 85
4.2.1 SMP中碳水化合物與蛋白質組成變化 85
4.2.2 蛋白質與碳水化合物比值 86
4.2.3 SMP含量變化 86
4.3 不同進流COD濃度之SMP含量變化 91
4.3.1 SMP中碳水化合物與蛋白質組成變化 91
4.3.2 蛋白質與碳水化合物比值 92
4.3.3 SMP含量變化 93
4.4 不同SRT之SMP特性 96
4.4.1 分子量分佈 96
4.4.2 EEM分析 102
4.5 不同進流COD濃度之SMP特性 106
4.5.1 分子量分佈 106
4.5.2 EEM分析 111
4.6 綜合評析 114
第五章 結論與建議 117
5.1 結論 117
5.2 建議 121
參考文獻 122
附錄 139
附錄一 薄膜清洗頻率 140
附錄二 各條件下進流水之蛋白質與碳水化合物含量 141
附錄三 碳水化合物與蛋白質佔SMP含量計算 143
附錄四 SMP之含量計算(以SCOD、DOC表示) 144
參考文獻 1. Aquino, S., and D. Stuckey, “Production of Soluble Microbial Products (SMP) in Anaerobic Chemostats Under Nutrient Deficiency”, Journal of Environmental Engineering, 129, pp. 1007-1014,(2003).
2. Aquino, S. F., and D. C. Stuckey, “Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds”, Water Research, 38, pp. 255-266,(2004).
3. Barker, D., S. Salvi, A. Langenhoff, and D. Stuckey, “Soluble Microbial Products in ABR Treating Low-Strength Wastewater”, Journal of Environmental Engineering, 126, pp. 239-249,(2000).
4. Barker, D. J., G. A. Mannucchi, S. M. L. Salvi, and D. C. Stuckey, “Characterisation of soluble residual chemical oxygen demand (COD) in anaerobic wastewater treatment e.uents”, Water Research, 33, pp. 2499-2510,(1999).
5. Barker, D. J., and D. C. Stuckey, “A review of soluble microbial products (SMP) in wastewater treatment systems”, Water Research, 33, pp. 3063-3082,(1999).
6. Baskir, C. I., and G. S. Hansford, “Product formation in the continuous culture of microbial populations grown on carbohydrates”, Biotechnology and Bioengineering, pp. 1857-1875,(1980).
7. Boero, V. J., E. J. W. W., and Bowers A. R., “Molecular weight distribution of soluble microbical products in biological system”, Water Science and Technology, 34, pp. 241-248,(1996).
8. Bouhabila, E. H., R. Ben Aı̈m, and H. Buisson, “Fouling characterisation in membrane bioreactors”, Separation and Purification Technology, 22–23, pp. 123-132,(2001).
9. Boylen, C. W., and J. C. Ensign, “Intracellular substrates for endogenous metabolism during long-term starvation of rod and spherical cells of Arthrobacter crystallopoietes”, Journal of Bacteriology, 103, pp. 578-87,(1970).
10. Brookes, A., S. Judd, E. Reid, E. Germain, S. Smith, H. Alvarez-Vazquez, P. Le-Clech, T. Stephenson, E. Turra, and B. Jefferson, “Biomass characterisation in membrane bioreactors”, International Membrane Science and Technology Conference,(2003).
11. Burleigh, I. G., and E. A. Dawes, “Studies on the endogenous metabolism and senescence of starved Sarcina lutea”, Biochemical Journal, 102, pp. 236-50,(1967).
12. Chen, W., P. Westerhoff, J. A. Leenheer, and K. Booksh, “Fluorescence Excitation−Emission Matrix Regional Integration to Quantify Spectra for Dissolved Organic Matter”, Environmental Science & Technology, 37, pp. 5701-5710,(2003).
13. Chipasa, K. B., and K. Medrzycka, “Behavior of microbial communities developed in the presence/reduced level of soluble microbial products”, Journal of Industrial Microbiology and Biotechnology, 31, pp. 457-61,(2004).
14. Christensen, H. N., “Biological Transport”, (1975).
15. Cirja, M., P. Ivashechkin, A. Schäffer, and P. X. Corvini, “Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR)”, Reviews in Environmental Science and Bio/Technology, 7, pp. 61-78,(2008).
16. Confer, D. R., and B. E. Logan, “Molecular weight distribution of hydrolysis products during biodegradation of model macromolecules in suspended and biofilm cultures I. Bovine serum albumin”, Water Research, 31, pp. 2127-2136,(1997).
17. Dawes, E. A., and D. W. Ribbons, “Some aspects of the endogenous metabolism of bacteria”, Bacteriology Reviews, 28, pp. 126-49,(1964).
18. Demain, A. L., R. W. Burg, and D. Hendlin, “Excretion and degradation of ribonucleic acid by bacillus subtilis ”, Journal of Bacteriology, 89, pp. 640-6,(1965).
19. Dong, B., and S. Jiang, “Characteristics and behaviors of soluble microbial products in sequencing batch membrane bioreactors at various sludge retention times”, Desalination, 243, pp. 240-250,(2009).
20. Drews, A., “Membrane fouling in membrane bioreactors—Characterisation, contradictions, cause and cures”, Journal of Membrane Science, 363, pp. 1-28,(2010).
21. Drews, A., J. Mante, V. Iversen, M. Vocks, B. Lesjean, and M. Kraume, “Impact of ambient conditions on SMP elimination and rejection in MBRs”, Water Research, 41, pp. 3850-8,(2007).
22. DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith, “Colorimetric Method for Determination of Sugars and Related Substances”, Analytical Chemistry, 28, pp. 350-356,(1956).
23. Eckenfelder Jr, W. W., “Point toxics control for industrial wastewaters.”, Civil engineering, 3, pp. 98-112,(1988).
24. Emanuelsson, E. A. C., J. P. Arcangeli, and A. G. Livingston, “The anoxic extractive membrane bioreactor”, Water Research, 37, pp. 1231-1238,(2003).
25. Emery, T., “ Iron metabolism in humans and plants.”, American Scientist 70, pp. 626-632,(1982).
26. Fan, A., and S. Chang, “Membrane Bioreactors: Design and Operation Options”, Filtration and Separation, 33, pp. 26-29,(2002).
27. Feng, H., L. Hu, D. Shan, C. Fang, Y. He, and D. Shen, “Effects of operational factors on soluble microbial products in a carrier anaerobic baffled reactor treating dilute wastewater”, Journal of Environmental Sciences, 20, pp. 690-695,(2008).
28. Gander, M., B. Jefferson, and S. Judd, “Aerobic MBRs for domestic wastewater treatment: a review with cost considerations”, Separation and Purification Technology, 18, pp. 119-130,(2000).
29. Gareth, M. E., and C. F. Judith, “Environmental Biotechnology Principles and Applications”,(2003).
30. Germain, E., and T. Stephenson, “Biomass Characteristics, Aeration and Oxygen Transfer in Membrane Bioreactors: Their Interrelations Explained by a Review of Aerobic Biological Processes”, Reviews in Environmental Science and Bio/Technology, 4, pp. 223-233,(2005).
31. Hao, O. J., and A. O. Lau, “Kinetics of Microbial By-Product Formation in Chemostat Pure Cultures”, Journal of Environmental Engineering, 114, pp. 1097-1115,(1988).
32. Harold, F. M., “Conservation and transformation of energy by bacterial membranes”, Bacteriology Reviews, 36, pp. 172-230,(1972).
33. Heppel, L. A., “Selective release of enzymes from bacteria”, Science, 156, pp. 1451-1455,(1967).
34. Herbert, H., “The chemical composition of microorganisms as a function of their environment”, A Symposium of the Society for General Microbiology 11, pp. 391-416,(1961).
35. Holakoo, L., G. Nakhla, E. K. Yanful, and A. S. Bassi, “Chelating properties and molecular weight distribution of soluble microbial products from an aerobic membrane bioreactor”, Water Research, 40, pp. 1531-8,(2006).
36. Huang, G., G. Jin, J. Wu, and Y. Liu, “Effects of glucose and phenol on soluble microbial products (SMP) in sequencing batch reactor systems”, International Biodeterioration & Biodegradation, 62, pp. 104-108,(2008).
37. Hutner, S. H., “Inorganic Nutrition”, Annual Review of Microbiology, 26, pp. 313-346,(1972).
38. Itonaga, T., K. Kimura, and Y. Watanabe, “Influence of suspension viscosity and colloidal particles on permeability of membrane used in membrane bioreactor (MBR)”, Water Science and Technology, 50, pp. 301-9,(2004).
39. Jang, N., X. Ren, J. Cho, and I. S. Kim, “Steady-state modeling of bio-fouling potentials with respect to the biological kinetics in the submerged membrane bioreactor (SMBR)”, Journal of Membrane Science, 284, pp. 352-360,(2006).
40. Jarusutthirak, C., and G. Amy, “Understanding soluble microbial products (SMP) as a component of effluent organic matter (EfOM)”, Water Research, 41, pp. 2787-93,(2007).
41. Jia, X. S., H. Furumai, and H. H. P. Fang, “Extracellular polymers of hydrogen-utilizing methanogenic and sulfate-reducing sludges”, Water Research, 30, pp. 1439-1444,(1996).
42. Jiang, T., M. D. Kennedy, B. F. Guinzbourg, P. A. Vanrolleghem, and J. C. Schippers, “Optimising the operation of a MBR pilot plant by quantitative analysis of the membrane fouling mechanism”, Water Science and Technology, 51, pp. 19-25,(2005).
43. Jiang, T., M. D. Kennedy, V. D. Schepper, S.-N. Nam, I. Nopens, P. A. Vanrolleghem, and G. Amy, “Characterization of Soluble Microbial Products and Their Fouling Impacts in Membrane Bioreactors”, Environmental Science & Technology, 44, pp. 6642-6648,(2010).
44. Jiang, T., S. Myngheer, D. J. De Pauw, H. Spanjers, I. Nopens, M. D. Kennedy, G. Amy, and P. A. Vanrolleghem, “Modelling the production and degradation of soluble microbial products (SMP) in membrane bioreactors (MBR)”, Water Research, 42, pp. 4955-64,(2008).
45. Judd, S., “Submerged membrane bioreactors: Flat plate or hollow fibre?”, Filtration and Separation, 39, pp. 30-31,(2002).
46. Judd, S., “The status of membrane bioreactor technology”, Trends in Biotechnology, 26, pp. 109-16,(2008).
47. Judd, S., and C. Judd, “The MBR book”,(2006).
48. Kim, I. S., and N. Jang, “The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR)”, Water Research, 40, pp. 2756-64,(2006).
49. Kimura, K., T. Naruse, and Y. Watanabe, “Changes in characteristics of soluble microbial products in membrane bioreactors associated with different solid retention times: Relation to membrane fouling”, Water Research, 43, pp. 1033-9,(2009).
50. Kruger, and J. Nicholas, The Bradford Method for Protein Quantitation, in J. Walker, ed., “The Protein Protocols Handbook, Humana Press”, pp. 15-21,(2002).
51. Kuberkar, V. T., and R. H. Davis, “Modeling of fouling reduction by secondary membranes”, Journal of Membrane Science, 168, pp. 243-258,(2000).
52. Kuo, W.-C., and G. F. Parkin, “Characterization of soluble microbial products from anaerobic treatment by molecular weight distribution and nickel-chelating properties”, Water Research, 30, pp. 915-922,(1996).
53. Kuo, W. C., “Production of soluble microbial chelators and their impact on anaerobic treatment”, Ph.D. thesis, University of Iowa, Iowa City,(1993).
54. Lübbecke, S., A. Vogelpohl, and W. Dewjanin, “Wastewater treatment in a biological high-performance system with high biomass concentration”, Water Research, 29, pp. 793-802,(1995).
55. Le-Clech, P., V. Chen, and T. A. G. Fane, “Fouling in membrane bioreactors used in wastewater treatment”, Journal of Membrane Science, 284, pp. 17-53,(2006).
56. Lee, K. R., and I. T. Yeom, “Evaluation of a membrane bioreactor system coupled with sludge pretreatment for aerobic sludge digestion”, Environmental Technology, 28, pp. 723-730,(2007).
57. Liang, S., C. Liu, and L. Song, “Soluble microbial products in membrane bioreactor operation: Behaviors, characteristics, and fouling potential”, Water Research, 41, pp. 95-101,(2007).
58. Liao, B. Q., D. M. Bagley, H. E. Kraemer, G. G. Leppard, and S. N. Liss, “A review of biofouling and its control in membrane separation bioreactors”, Water Environment Research, 76, pp. 425-36,(2004).
59. Liu, Y., and J. L. Rols, “Kinetics of soluble microbial product formation in substrate-sufficient batch culture of activated sludge”, Applied Microbiology and Biotechnology, 59, pp. 605-608,(2002).
60. Malamis, S., and A. Andreadakis, “Fractionation of proteins and carbohydrates of extracellular polymeric substances in a membrane bioreactor system”, Bioresource Technology, 100, pp. 3350-7,(2009).
61. Meng, F., S. R. Chae, A. Drews, M. Kraume, H. S. Shin, and F. Yang, “Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material”, Water Research, 43, pp. 1489-512,(2009).
62. Menniti, A., and E. Morgenroth, “Mechanisms of SMP production in membrane bioreactors: choosing an appropriate mathematical model structure”, Water Research, 44, pp. 5240-51,(2010).
63. Morel, F. M. M., “Principles of Aquatic Chemistry”,(1983).
64. Nachaiyasit, S., and D. C. Stuckey, “Effect of Low Temperatures on the Performance of an Anaerobic Baffled Reactor (ABR)”, Journal of Chemical Technology & Biotechnology, 69, pp. 276-284,(1997).
65. Neijssel, O. M., and D. W. Tempest, “The role of energy-spilling reactions in the growth ofKlebsiella aerogenes NCTC 418 in aerobic chemostat culture”, Archives of Microbiology, 110, pp. 305-311,(1976).
66. Neilands, J. B., “Hydroxamic acids in nature”, Science, 156, pp. 1443-7,(1967).
67. Ng, H. Y., T. W. Tan, and S. L. Ong, “Membrane Fouling of Submerged Membrane Bioreactors:  Impact of Mean Cell Residence Time and the Contributing Factors”, Environmental Science & Technology, 40, pp. 2706-2713,(2006).
68. Ni, B. J., R. J. Zeng, F. Fang, W. M. Xie, G. P. Sheng, and H. Q. Yu, “Fractionating soluble microbial products in the activated sludge process”, Water Research, 44, pp. 2292-302,(2010).
69. Noguera, D. R., N. Araki, and B. E. Rittmann, “Soluble microbial products (SMP) in anaerobic chemostats”, Biotechnology and Bioengineering, 44, pp. 1040-7,(1994).
70. Nossal, N. G., and L. A. Heppel, “The release of enzymes by osmotic shock from Escherichia coli in exponential phase”, The Journal of Biological Chemistry, 241, pp. 3055-62,(1966).
71. Ognier, S., C. Wisniewski, and A. Grasmick, “Characterisation and modelling of fouling in membrane bioreactors”, Desalination, 146, pp. 141-147,(2002).
72. Okamura, D., Y. Mori, T. Hashimoto, and K. Hori, “Identification of biofoulant of membrane bioreactors in soluble microbial products”, Water Research, 43, pp. 4356-62,(2009).
73. Pan, J. R., Y. Su, and C. Huang, “Characteristics of soluble microbial products in membrane bioreactor and its effect on membrane fouling”, Desalination, 250, pp. 778-780,(2010).
74. Pang, C. M., P. Hong, H. Guo, and W.-T. Liu, “Biofilm Formation Characteristics of Bacterial Isolates Retrieved from a Reverse Osmosis Membrane”, Environmental Science & Technology, 39, pp. 7541-7550,(2005).
75. Park, N., B. Kwon, I. S. Kim, and J. Cho, “Biofouling potential of various NF membranes with respect to bacteria and their soluble microbial products (SMP): Characterizations, flux decline, and transport parameters”, Journal of Membrane Science, 258, pp. 43-54,(2005).
76. Payne, J. W., “Peptides and microorganisms”, Adv. Microb. Physiol., 13, pp. 55-113.,(1976).
77. Pirt, S. J., “Principles of Microbe and Cell Cultivation. blackwell Scientific, Oxford.”,(1975).
78. Porcelli, N., and S. Judd, “Chemical cleaning of potable water membranes: A review”, Separation and Purification Technology, 71, pp. 137-143,(2010).
79. Postgate, J. R., and J. R. Hunter, “Accelerated Death of Aerobacter aerogenes Starved in the Presence of Growth -Limiting Substrates”, Journal of General Microbiology, 34, pp. 459-73,(1964).
80. Pribyl, M., F. Tucek, P. A. Wilderer, and J. Wanner, “Amount and nature of soluble refractory organics produced by activated sludge microorganisms in sequencing batch and continuous flow reactors”, Water Science and Technology, 35, pp. 27-34,(1997).
81. Psoch, C., and S. Schiewer, “Resistance analysis for enhanced wastewater membrane filtration”, Journal of Membrane Science, 280, pp. 284-297,(2006).
82. Ramesh, A., D. J. Lee, and J. Y. Lai, “Membrane biofouling by extracellular polymeric substances or soluble microbial products from membrane bioreactor sludge”, Applied Microbiology and Biotechnology74, pp. 699-707,(2007).
83. Rittmann, B. E., W. Bae, E. Namkung, and C.-J. Lu, “A Critical Evaluation of Microbial Product Formation in Biological Processes”, Water Science and Technology, 19 pp. 517–528,(1987).
84. Rittmann, B. E., and P. L. McCarty, “Environmental Biotechnology:Principles and Application”, McGraw-Hill,(2001).
85. Rogers, D., “Osmotic pools in Escherichia coli”, Science, 159, pp. 531-532,(1968).
86. Rosenberger, S., H. Evenblij, S. te Poele, T. Wintgens, and C. Laabs, “The importance of liquid phase analyses to understand fouling in membrane assisted activated sludge processes—six case studies of different European research groups”, Journal of Membrane Science, 263, pp. 113-126,(2005).
87. Saier, M. H., Jr., B. U. Feucht, and M. T. McCaman, “Regulation of intracellular adenosine cyclic 3’:5’-monophosphate levels in Escherichia coli and Salmonella typhimurium. Evidence for energy-dependent excretion of the cyclic nucleotide”, The Journal of Biological Chemistry, 250, pp. 7593-601,(1975).
88. Schiener, P., S. Nachaiyasit, and D. C. Stuckey, “Production of Soluble Microbial Products (SMP) in an Anaerobic Baffled Reactor: Composition, Biodegradability, and the Effect of Process Parameters”, Environmental Technology, 19, pp. 391-399,(1998).
89. Schwarz, A. O., B. E. Rittmann, G. V. Crawford, A. M. Klein, and G. T. Daigger, “Critical Review on the Effects of Mixed Liquor Suspended Solids on Membrane Bioreactor Operation”, Separation Science and Technology, 41, pp. 1489-1511,(2006).
90. Shin, H., and S. Kang, “Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention times”, Water Research, 37, pp. 121-7,(2003).
91. Smeaton, J. R., and W. H. Elliott, “Selective release of ribonuclease-inhibitor from Bacillus subtilis cells by cold shock treatment”, Biochemical and Biophysical Research Communications, 26, pp. 75-81,(1967).
92. Strange, R. E., and F. A. Dark, “Substrate- Accelerated Death’ of Aerobacter aerogenes”, Journal of General Microbiology, 39, pp. 215-28,(1965).
93. Sun, F. Y., X. M. Wang, and X. Y. Li, “Change in the fouling propensity of sludge in membrane bioreactors (MBR) in relation to the accumulation of biopolymer clusters”, Bioresource Technology, 102, pp. 4718-25,(2011).
94. Thompson, J., “Characteristics and energy requirements of an alpha-aminoisobutyric acid transport system in Streptococcus lactis”, Journal of Bacteriology, 127, pp. 719-30,(1976).
95. Tian, Y., L. Chen, S. Zhang, and S. Zhang, “A systematic study of soluble microbial products and their fouling impacts in membrane bioreactors”, Chemical Engineering Journal, 168, pp. 1093-1102,(2011).
96. Tom, S., J. Simon, J. Bruce, and B. Keith, “Membrane bioreactors for wastewater treatment ”, Membrane bioreactors for wastewater treatment,(2006).
97. Trussell, R. S., R. P. Merlo, S. W. Hermanowicz, and D. Jenkins, “The effect of organic loading on process performance and membrane fouling in a submerged membrane bioreactor treating municipal wastewater”, Water Research, 40, pp. 2675-83,(2006).
98. Viero, A. F., and G. L. Sant’anna, Jr., “Is hydraulic retention time an essential parameter for MBR performance?”, Journal of Hazardous Materials, 150, pp. 185-6,(2008).
99. Villain, M., and B. Marrot, “Influence of sludge retention time at constant food to microorganisms ratio on membrane bioreactor performances under stable and unstable state conditions”, Bioresource Technology, 128, pp. 134-144,(2013).
100. Visvanathan, C., R. B. Aim, and K. Parameshwaran, “Membrane Separation Bioreactors for Wastewater Treatment”, Critical Reviews in Environmental Science and Technology, 30, pp. 1-48,(2000).
101. Wang, S., G. Guillen, and E. M. V. Hoek, “Direct Observation of Microbial Adhesion to Membranes†”, Environmental Science & Technology, 39, pp. 6461-6469,(2005).
102. Wang, X.-M., and X.-Y. Li, “Accumulation of biopolymer clusters in a submerged membrane bioreactor and its effect on membrane fouling”, Water Research, 42, pp. 855-862,(2008).
103. Wang, X.-M., X.-Y. Li, and X. Huang, “Membrane fouling in a submerged membrane bioreactor (SMBR): Characterisation of the sludge cake and its high filtration resistance”, Separation and Purification Technology, 52, pp. 439-445,(2007).
104. Wang, Z. P., and T. Zhang, “Characterization of soluble microbial products (SMP) under stressful conditions”, Water Research, 44, pp. 5499-509,(2010).
105. Wozniak, T., “MBR design and operation using MPE-technology (Membrane Performance Enhancer)”, Desalination, 250, pp. 723-728,(2010).
106. Xie, W.-M., B.-J. Ni, T. Seviour, G.-P. Sheng, and H.-Q. Yu, “Characterization of autotrophic and heterotrophic soluble microbial product (SMP) fractions from activated sludge”, Water Research, 46, pp. 6210-6217,(2012).
107. Zuthi, M. F., H. H. Ngo, and W. S. Guo, “Modelling bioprocesses and membrane fouling in membrane bioreactor (MBR): a review towards finding an integrated model framework”, Bioresource Technology, 122, pp. 119-29,(2012).
108. 吳典樵,「利用薄膜生物處理程序處理高纖維廢水之研究」,中原大學土木工程學系碩士學位論文,(2007)。
109. 李信杰,「沉浸式生物薄膜反應器之積垢特性探討」,國立交通大學環境工程研究所碩士論文,(2006)。
110. 李晏齊,「薄膜阻塞機制與胞外聚合物之探討」,中原大學土木工程學系碩士學位論文,(2008)。
111. 林敬傑,「薄膜程序處理及回收薄膜生物反應槽(MBR)出流水之研究」, 國立中央大學環境工程研究所碩士論文,(2007)。
112. 范姜仁茂,莊連春、曾迪華、廖述良、游勝傑、梁德明,「薄膜生物反應器(MBR)於廢水處理之技術評析」,工業污染防治,109 pp. 49-96,( 2009)。
113. 范喻翔,「淨水場濾池反洗廢水水量與水質特性之研究」,國立中央大學環境工程研究所碩士論文,(2009) 。
114. 康美祝,「MBR 除氮系統特性之研究」,國立中央大學環境工程研究所碩士論文,(2002)。
115. 張維運,「決定薄膜生物反應槽臨界通量的研究」,中原大學土木工程學系碩士學位論文,(2008)。
116. 莊順興、胡國良,「薄膜生物反應器於工業廢水處理之應用」,化工技術,12, pp. 145-152,(2004) 。
117. 陳依旻,「薄膜生物處理系統(MBR)中溶解性微生物產物(SMP)特性與影響之研究」,國立中央大學環境成研究所碩士論文,(2011)。
118. 劉馥萱,「不同污泥停留時間對薄膜生物反應槽中兩種薄膜阻塞機制與積垢物之分析」,中原大學土木工程學系碩士學位論文,(2011)。
119. 谢元華、何站敏、 韓進、朱彤、徐成海,「膜生物反應器中膜污染控制技術的研究進展」,Chinese Journal of Chemical Engineering, 40, pp. 59-63,(2012)。
120. 莊榮輝,「膠體過濾法」,http://juang.bst.ntu.edu.tw/Protein/Analysis/A1.htm ,(2001)。
指導教授 曾迪華(Dyi-hwa Tseng) 審核日期 2013-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明