博碩士論文 993206010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.227.46.189
姓名 張宇萱(Yu-hsuan Chang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以下水污泥灰合成中孔徑分子篩之表面改質進行水中染料與重金屬吸附研究
(Surface modification of mesoporous molecular sieves synthesized from sewage sludge ashes and its application in the adsorption of dyes and heavy metals.)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用鹼熔(alkaline fusion)方法萃取下水污泥灰中矽、鋁源,作為取代合成中孔徑分子篩 A-MCM41 之原料,並與偏矽酸鈉所合成之 Si-MCM41 作結構特性的比較;之後將下水污泥灰所合成之 A-MCM41 以相同的改質方法與條件,將胺基(APTES)、巰基(MPTMS)與乙烯基(TEVS)三種官能基進行表面改質,探討經改質後獲得的 AA-MCM41、MA-MCM41 及 TA-MCM41 之表面鍵結與結構特性之變化;最後利用研究中所合成之五種自製吸附劑進行水中染料及重金屬離子的吸附試驗,探討其吸附成效並建立等溫吸附模式,瞭解以下水污泥灰合成A-MCM41 及其改質功能化後,對於染料與重金屬離子進行吸附去除之可行性。
  研究結果顯示,以鹼熔之方法確實能將下水污泥灰中的石英相轉變成易溶於水的矽酸鹽類,可有效提供作為合成 A-MCM41 之矽、鋁源。A-MCM41 合成後之 XRD 晶相鑑定,具有主繞射峰(100)及兩副波峰(110)及(200)之顯現;在結構特性方面,A-MCM41 的比表面積為 805 m2/g,孔體積為 0.81 cm3/g,而偏矽酸鈉所合成之 Si-MCM41 之比表面積為 1025 m2/g ,孔體積為 1.04 cm3/g。以 FTIR 鑑定
A-MCM41 表面化學鍵結,在吸收帶 1079 cm-1 及 1269 cm-1 兩處代表結構中確實具有 MCM-41 主要之 Si-O-Si 鍵結,且藉由鍛燒之方式可有效將界面活性劑去除。由27Al NMR圖譜可發現在 53 ppm 時有波峰(peak)的產生,證實鋁原子以鋁氧四面體的形式進入A-MCM41 的骨架當中。在表面改質的結果顯示,改質後之AA-MCM41、MA-MCM41 及 TA-MCM41 仍具有 XRD 晶相鑑定的主繞射峰(100);改質後之元素組成分析結果,胺基改質之 AA-MCM41 氮(N)含量為 2.69
mmol/g;以巰基改質之 MA-MCM41 硫(S)含量為 1.74 mmol/g;而由乙烯基所改質的TA-MCM41 碳(C)含量為 5.47 mmol/g;在 FTIR 分析之結果,各官能基所代表之特徵鍵結皆有顯現,表示本研究之改質方法確實能將有基官能基以後嫁接(post-grafting)的方式達到改質之效果。
  在染料與重金屬離子吸附試驗方面,接觸時間以 24 小時為最適之吸附平衡時間;單成份吸附試驗中去除率之比較,以比表面積為 805 m2/g之A-MCM41對亞甲基藍(MB)的去除率為最佳(87.03 %),而 Pb(II)與 Cu(II)則以胺基改質後之AA-MCM41 具有最優異之去除率(分別為 99.91 %與 58.99 %);在多成份系統中,亞甲基藍(MB)的吸附量下降幅度最大(32.76 %-76.39 %),其次為Pb(II)(9.31
%-65.77 %),而 Cu(II)的下降幅度最小(3.48 %-55.32 %),表示當多種污染物同時存在時,確實會產生競爭吸附之情形。而將吸附效果表現最理想的 A-MCM41、AA-MCM41 及 MA-MCM41 三者建立等溫吸附曲線,由結果之各項參數與 R2 值之判斷(R2=0.9959-0.9999),三者對 MB、Pb(II)與 Cu(II)重金屬離子皆屬於 Langmuir等溫吸附模,A-MCM41 與 MA-MCM41 對 MB 之吸附量最大,分別可達 0.49 mmol/g 與 0.27 mmol/g;AA-MCM41 對 Pb(II)、Cu(II)離子的吸附量分別為 0.71 mmol/g 與 1.25 mmol/g。
摘要(英) In this study the feasibility of synthesizing mesoporous molecular sieve (i.e., referred to as A-MCM41) by using sewage sludge ash (SSA) as the starting Si and Al sources ; and the enhanced adsorption of heavy metals (Pb and Cu) and organic dye (methylene blue) by the resultant A-MCM41 was investigated with surface modification by three modifiers (3-aminopropyltriethoxysilane, 3-Mercaptopropyl-trimethoxysilane, and Triethoxyvinylsilane.)
  For the preparation of a precursor solution for subsequent MCM41 synthesis, Si was solubilized from sewage sludge ash (SSA) by alkali fusion process with a 1.25 NaOH (s) /SSA (by weight) ratio at 400 ℃, followed by a extraction with deionized
water at a L/S=7. It was confirmed that quartz had converted into soluble sodium silicate (Na2SiO3) and sodium aluminum (Na4Al2Si2O9) during the fusion process. The target MCM-41 was synthesized by a hydrothermal process at 105 ℃, using the precursor solution, ammonium hydroxide, and C16TAB (Cetyltrimethylammonium bromide, as surfactant). After the synthesis process, the resultant products were filtered
and calcined at 550 ℃ to remove the surfactant and the A-MCM41 was formed. However, due the presence of Al 2 O 3 derived from SSA, the extracted Al species from SSA was found to be tetrahedrally incorporated in the framework (i.e., A-MCM41), as confirmed by the 27Al NMR analysis. Moreover, the optimum A-MCM41 as synthesized from SSA in this study had a surface of 805 m
2/g and a pore volume of 0.81 cm3/g, as compared to 1025 m2/g and 1.04 cm3/g, respectively, of the control
sample synthesized from pure Na2SiO3.
  Finally, the surface of A-MCM41 as synthesized was further modified with 3-aminopropyltriethoxysilane (APTES), (3-Mercaptopropyl)-trimethoxysilane (MPTMS) and Triethoxyvinylsilane (TEVS), bonding functional groups to the surface to functionalize the mesoporous materials (i.e., referred to as AA-MCM41, MA-MCM41 and TA-MCM41, respectively). The functionalized A-MCM41s were
characterized by FT-IR and EA technologies. The small angle XRD pattern indicates that the structure of AA-MCM41, MA-MCM41 and TA-MCM41 retain the characteristic peaks of A-MCM41.
  Five MCM-41s, including three surface modified A-MCM41s, as well as the A-MCM41 as synthesized, and the pure Si-MCM41 were evaluated for their adsorption performance in Pb(II), Cu(II) and MB. For heavy metals adoption, the amino-functionalized AA-MCM41 was found to have a better removal efficiency for
Pb(II) and Cu(II) (i.e., 99.96 % and 58.99 %, respectively in a single component system with initial concentration 100 mg/L); whereas for organic dye adsorption, the A-MCM41 as synthesized from SSA was found to have greater removal efficiency for MB (i.e.,87.03 %.). The adsorption of Pb(II), Cu(II) and MB, in a multi-component system showed decreased adsorption quantity for the tested adsorbates, possibly due to the competition among the adsorbates. It was also found that the selectivity for the tested adsorbates in decreasing order was Cu(II)>Pb(II)>MB. In the adsorption isotherm, A-MCM41, AA-MCM41 and MA-MCM41 were found well fitted with the Langmuir model (R2=0.9959-0.9999). The maximum adsorption of MB was found to be 0.49 mmol/g for A-MCM41; and the maximum adsorption of Pb(II) and Cu(II) was 0.71mmol/g and 1.25 mmol/g, respectively for AA-MCM41.
  This work demonstrated that it is feasible and beneficial to synthesize A-MCM41 with SSA as starting silicon and aluminum sources was effective in organic dye and metal ion adsorption. And for this synthesis technology suggesting that the preparation of A-MCM41 with SSA could contribute to the recycling of sewage sludge and is feasible, effective, and environmental beneficial.
關鍵字(中) ★ 重金屬離子
★ 染料
★ 表面改質
★ 下水污泥灰
★ 中孔徑分子篩
關鍵字(英) ★ organic dye
★ sewage sludge ash
★ MCM-41
★ function group
★ heavy metal ions
論文目次 中文摘要 .............................................. iii
英文摘要 ................................................ v
誌謝 .................................................. vii
目錄 ................................................. viii
圖目錄 ................................................. xi
表目錄 ................................................ xiv
第一章  前言........................................... 1
1-1 研究緣起與目的 .................................... 1
1-2 研究內容 .......................................... 2
第二章  文獻回顧 ...................................... 3
2-1 下水污泥產出現況、組成特性與最終處置方式 ........... 3
2-1-1 下水污泥的來源與產量 ............................. 3
2-1-2 下水污泥組成特性 ................................. 4
2-1-3 下水污泥最終處置與資材化利用 ..................... 7
2-2 染料與重金屬 ...................................... 13
2-2-1 染料、鉛與銅之來源 .............................. 13
2-2-2 去除染料及重金屬之方法 .......................... 16
2-3 中孔徑分子篩 ...................................... 18
2-3-1 中孔徑分子篩發展史 .............................. 18
2-3-2 界面活性劑與微胞之形成 .......................... 20
2-3-3 矽酸鹽類與界面活性劑之交互作用 .................. 23
2-3-4 中孔徑分子篩之合成機制 .......................... 26
2-3-5 中孔徑分子篩之特性與應用 ........................ 30
2-4 中孔徑分子篩MCM-41表面改質 ........................ 35
2-4-1 MCM-41表面改質機制 .............................. 35
2-4-2 MCM-41以不同官能基改質的應用 .................... 38
2-5 以廢棄物合成中孔徑分子篩相關研究 ................... 42
2-6 吸附原理 .......................................... 45
2-6-1 吸附理論 ........................................ 45
2-6-2 等溫吸附曲線分類 ................................ 47
2-6-3 吸附模式 ........................................ 50
2-7 影響染料及重金屬吸附效果之因子 .................... 53
第三章  研究方法 ..................................... 57
3-1 研究架構 .......................................... 57
3-2 實驗材料與設備 .................................... 59
3-2-1 實驗材料 ........................................ 59
3-2-2 實驗藥品 ........................................ 60
3-2-3 實驗設備 ........................................ 61
3-3 實驗設計 .......................................... 62
3-3-1 原物料前處理 .................................... 62
3-3-2 下水污泥灰合成MCM41.............................. 63
3-3-3 MCM-41表面官能基改質 ............................ 67
3-3-4 亞甲基藍、鉛與銅吸附試驗 ......................... 68
3-4 實驗條件配置 ....................................... 69
3-5 實驗分析儀器與方法 ................................ 73
3-5-1 分析儀器 ........................................ 73
3-5-2 分析方法 ........................................ 81
第四章  結果與討論 ................................... 86
4-1 下水污泥基本特性分析 .............................. 86
4-1-1 下水污泥之物化性質 .............................. 86
4-1-2 毒性特性溶出試驗(TCLP) .......................... 88
4-1-3 下水污泥灰之結晶物種分析(XRD) ................... 89
4-1-4 下水污泥灰之微觀結構特性分析(SEM) ............... 91
4-2 偏矽酸鈉與下水污泥灰合成MCM-41之物化特性........... 92
4-2-1 MCM-41之化學組成分析 ............................ 92
4-2-2 MCM-41之結晶相物種分析 .......................... 92
4-2-3 MCM-41之結構特性分析 ............................ 94
4-2-4 MCM-41之微觀結構分析 ............................ 97
4-2-5 MCM-41之FTIR分析 ................................ 99
4-2-6 MCM-41之固態核磁共振光譜分析(29Si、27Al NMR).... 101
4-3 官能基改質MCM-41之基本物化特性鑑定................. 104
4-3-1 質後MCM-41之結晶相物種分析...................... 104
4-3-2 改質後MCM-41之物化特性與元素組成分析 ........... 105
4-3-3 改質後MCM-41之FTIR分析 ......................... 109
4-3-4 改質後MCM-41之29Si NMR分析 ..................... 111
4-4 染料與重金屬吸附試驗 ............................. 113
4-4-1 單成份吸附試驗 ................................. 113
4-4-2 多成份吸附試驗 ................................. 120
4-4-3 等溫吸附模式 ................................... 123
4-4-4 與其他吸附劑做比較 ............................. 127
第五章  結論與建議 .................................. 129
5-1 結論 ............................................. 129
5-2 建議 ............................................. 131
參考文獻 .............................................. 132
參考文獻 Adjdir M., Ali-Dahmane T. et al., “The synthesis of Al-MCM-41 from volclay-A low-cost Al and Si source.” Applied Clay Science, Vol. 46, No. 2, pp. 185-189 (2009).
Algarra M., Jimenez M. V. et al., “Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41.” Chemosphere, Vol. 59, No. 6, pp.
779-786 (2005).
Artkla S., Kim W. et al., “Highly enhanced photocatalytic degradation of tetramethylammonium on the hybrid catalyst of titania and MCM-41 obtained
from rice husk silica.” Applied Catalysis B: Environmental, Vol. 91, No. 1-2, pp. 157-164 (2009).
Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu C. T-W., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J. B. and Schlenker J. L., “A new family of mesoporous molecular sieves prepared with liquid crystal templates.” J. Am. Chem. Soc.,Vol. 114, pp. 10834-10843 (1992).
Bhatty, J. I. and Reid K. J., “Compressive strength of municipal sludge ash mortars.” ACI Materials Journal, Vol.86, No.4, pp. 394-400 (1989).
Branton P. J., Sing K. S. W., White J. W., “Adsorption of carbon tetrachloride and nitrogen by 3.4 nm pore diameter siliceous MCM-41.” J. Chem. Soc., Faraday Trans., Vol. 13, pp. 2337-2340 (1997).
Burke A. M., Hanrahan J. P. et al., “Large pore bi-functionalised mesoporous silica for metal ion pollution treatment.” J Hazard Mater, Vol. 164, No. 1, pp. 229-234 (2009).
Chandrasekar G., You K. S. et al., “Synthesis of hexagonal and cubic mesoporous silica using power plant bottom ash.” Microporous and Mesoporous Materials, Vol. 111, No. 1-3, pp. 455-462 (2008).
Chang H.L., Chun C.M., Ilhan A. A. and Shih W.H., “Conversion of fly ash into mesoporous aluminosilicate.” Ind. Eng. Chem. Res., Vol. 38, pp. 973-977 (1999).
Charles T. K., James C. V., Roth W. J. and Leonowicz M. E., “The discovery of exxonmobil’’s M41S family of mesoporous molecular sieves.” Studies in Surface Science and Catalysis, Vol. 148, pp. 53-72 (2004).
Cordua W. S., “The hardness of minerals and rocks.” Lapidary Digest, (1990).
Chen C.Y., Li H. X. and Mark E. Davis, “Studies on mesoporous materials I. Synthesis and characterization of MCM- 1.” Microporous Materials, Vol. 2, pp. 17-26 (1993).
Chen N.Y., “The prospective application of Mmolecular sieves catalysts in chemical industry.” Chemistry (THE CHINESE CHEM. SOC., TAIPEI), Vol. 58, No.4, pp. 549-559 (2000).
Chen W., Zhang A. M., Yan X., Han D., “Synthesis of well-aligned carbon nanotubes on MCM-41.” Studies in Surface Science and Catalysis, Vol. 142, pp. 1237-1244
(2002).
David J. Raymond, “A radically modern approachto introductory physics.” The New Mexico Tech Press, Vol. 1, Socorro, New Mexico, USA (2011).
Delacote C., Gaslain F. O. et al., “Factors affecting the reactivity of thiol-functionalized mesoporous silica adsorbents toward mercury II .” Talanta, Vol. 79, No. 3, pp. 877-886 (2009).
Dimos K., Stathi P. et al., “Synthesis and characterization of hybrid MCM-41 materials for heavy metal adsorption.” Microporous and Mesoporous Materials, Vol. 126, No. 1-2, pp. 65-71 (2009).
Du E., Yu S., Zuo L., Zhang J., Huang X. and Wang Y., “Pb(Ⅱ) sorption on molecular sieve analogues of MCM-41 synthesized from kaolinite and montmorillonite.” Applied Clay Science, Vol.51, pp. 94-101 (2011).
Eftekhari S., Habibi-Yangjeh A. et al., “Application of AlMCM-41 for competitive adsorption of methylene blue and rhodamine B: Thermodynamic and kinetic studies.“ J Hazard Mater, Vol. 178, No. 1-3, pp. 349-355 (2010).
Ehamou A., Baudu M. et al., “Aqueous heavy metals removal on amine-functionalized Si-MCM-41 and Si-MCM-48.” J Hazard Mater, Vol. 171, No. 1-3, pp.1001-1008 (2009).
Feng X., Fryxell G. E., Wang L. Q., Kim A. Y., Liu J., and Kemner K. M., “Functionalized monolayers on ordered mesoporous supports.” Science, Vol. 276, No. 5314, pp. 923-926 (1997).
Firouzi A., Kumar D., Bull L.M., Besier T., Sieger P., Huo Q., Walker S.A., Zasadzinski J.A., Glinka G., Nicol J., Margolese D., Stucky G.D. and Chmelka
B.F., “Cooperative organization of inorganic-surfactant and bimimetic assemblies.” Science, Vol. 267, pp. 1138-1143 (1995).
Fujita S., Kapoor M. P. and Inagaki S., “Organic–inorganic hybrid mesoporous silica.” Advances in Materials Research, Vol. 13, Part 3, pp. 141-169 (2009).
Galo J. de A. A. Soler-Illia, Clement Sanchez, Benedicte Lebeau, Joel Patarin. “Chemical strategies to design textured materials: from microporous and
mesoporous oxides to nanonetworks and hierarchical structures.” Chem. Rev., Vol. 102, pp. 4093-4138 (2002).
Hameed B. H., Mahmoud D. K. et al., “Sorption equilibrium and kinetics of basic dye from aqueous solution using banana stalk waste.” J Hazard Mater, Vol. 158, No. 2-3, pp. 499-506 (2008).
Hanzel R., Rajec P., “Sorption of cobalt on modified silica gel materials.” Journal of Radioanalytical and nuclear chemistry, Vol. 246, pp. 607-615 (2000).
Heidari A., Younesi H. et al., “Removal of Ni II , Cd II , and Pb II from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica.” Chemical Engineering Journal, Vol. 153, No. 1-3, pp. 70-79 (2009).
Ho K. Y., McKay G. and Yeung K. L., “Selective adsorbents from ordered mesoporous silica.” Langmuir, Vol. 19, pp. 3019-3024 (2003).
Höller H., Wirsching U., “Zeolites formation from fly ash.” Mineral, Vol. 1, pp. 21 (1985).
Ibrahim H. S., Jamil T. S. and Hegazy E. Z., “Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models.” Journal of Hazardous Materials, Vol. 182, No. 1-3, pp. 842-847 (2010).
Idris S. A., Davidson C. M. et al., “Large pore diameter MCM-41 and its application for lead removal from aqueous media.” J Hazard Mater, Vol. 185, No. 2-3, pp. 898-904 (2011).
Issabayeva G., Aroua M. K. and Sulaiman N. M. N., “Removal of lead from aqueous solutions on palm shell activated carbon.” Bioresource Technology, Vol. 97, pp. 2350-2355 (2006).
Jesionowski T., Krysztafkiewicz A., “Infuence of silane coupling agents on surface properties of precipitated silicas.” Applied Surface Science, Vol. 172, pp. 18-32 (2001).
Kawi S., Shen S. C., “Effects of structural and non-structural Al species on the stability of MCM-41 materials in boiling water.” Materials Letter, Vol. 42, pp. 108-112 (2000).
Knezevic Z., Mavinic D. S. and Anderson B. C., “Pilot scale evaluation of anaerobic codigestion of primary and pretreated waste activated sludge.” Water Environment
Research, Vol. 67, pp. 835 (1995).
Kumar G. P., Kumar P. A. et al., “Uptake and desorption of copper ion using functionalized polymer coated silica gel in aqueous environment.” Separation and
Purification Technology, Vol. 57, No. 1, pp. 47-56 (2007).
Kumar P., Mal N., Oumi Y., Yamana K. and Sano T.,“Mesoporous materials prepared using coal fly ash as the silicon and aluminum source.” Journal of Materials Chemistry, Vol. 11, pp. 3285-3290 (2001).
Lam K. F., Yeung K. L., Mckay G., “An Investigation of Gold Adsorption from a Binary Mixture with Selective mesoporous Silica Adsorbents.” J. Phys. Chem B, Vol. 110, pp. 2187-2194 (2006).
Lam K. F., Yeung K. L., Mckay G., “Efficient approach for Cd2+ and Ni2+ removal and recovery using mesoporous adsorbent with tunable selectivity.” Environ. Sci.
Technol., Vol. 41, pp. 3329-3334 (2007).
Li J., Miao X., Hao Y., Zhao J., Sun X. and Wang L., “Synthesis, amino-functionalization of mesoporous silica and its adsorption of Cr(Ⅵ).”Journal of Colloid and Interface Science, Vol. 318, pp. 309-314 (2008).
Liang X., Xu Y. et al., “Preparation, characterization of thiol-functionalized silica and application for sorption of Pb2+ and Cd2+.” Colloids and Surfaces A:
physicochemical and engineering aspects., Vol. 349, No. 1-3, pp. 61-68 (2009).
Liu J., Feng X., Fryxell G. E., Wang L. Q., Kim A. Y. and Gong M. L., “Hybrid mesoporous materials with functionalized monolayers.” Adv. Mater., Vol. 10, pp.
161-165 (1998).
Luechinger M., Prins R. et al., “Functionalization of silica surfaces with mixtures of 3-aminopropyl and methyl groups.” Microporous and Mesoporous Materials, Vol.
85, No. 1-2, pp. 111-118 (2005).
Marcelo J. B. Souza, Antonio S. Araujo, Anne M.G. Pedrosa, Bojan A. Marinkovic, Paula M. Jardim, Edisson Morgado Jr., “Textural features of highly ordered Al-MCM-41 molecular sieve studied by X-ray diffraction, nitrogen adsorption and transmission electron microscopy.” Materials Letters, Vol. 60, pp. 2682-2685 (2006).
Matsumoto A., Chen H., Tsutsumi K., Crün M. and Unger K., “Novel route in the synthesis of MCM-41 containing framework aluminum and its characterization.”
Microporous snd Mesoporous Material, Vol. 32, pp. 55-62 (1999).
Meynen V., Cool P., Vansant E. F., “Verified syntheses of mesoporous materials.” Microporous and Mesoporous Materials ( 2009).
Mohan D., Pittman C. U., “Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water.” Journal of Hazardous Materials,Vol. 137, No. 2, pp. 762-811 (2006).
Monzo J. Paya M. V. Borrachero and Corcoles A., “Use of sewage sludge ash(SSA)-cement admixtures in motars.” Cement and Concrete Research, Vol. 26, pp.1389-1398 (1996).
Najafi M., Rostamian R. et al., “Chemically modified silica gel with thiol group as an adsorbent for retention of some toxic soft metal ions from water and industrial effluent.” Chemical Engineering Journal, Vol. 168, No. 1, pp. 426-432 (2011).
Parkin G. F. and Owen W. F., “Fundamentals of anaerobic digestion of wastewater sludges. ” Journal of Environmental Engineering, ASCE., Vol. 112, pp. 867 (1986).
Pérez L. D., López J. F. et al., “Effect of the chemical characteristics of mesoporous silica MCM-41 on morphological, thermal, and rheological properties of composites based on polystyrene.” Journal of Applied Polymer Science, Vol. 111, No. 5, pp. 2229-2237 (2009).
Qin Q., Ma J. et al., “Adsorption of nitrobenzene from aqueous solution by MCM-41.” J Colloid Interface Sci, Vol. 315, No. 1, pp. 80-86 (2007).
Ribeiro Carrott M. M. L., Esteà vaÄ o Candeias A. J., Carrott P. J. M. and Unger K. K., “Evaluation of the stability of pure silica MCM-41 toward water vapor.” Langmuir, Vol. 15, pp. 8895-8901 (1999).
Ricou P., Lecuyer I. and Cloirec P. Le., “Removal of Cu2+, Zn2+ and Pb2+ by adsorption onto fly ash and fly ash.” Lime mixing, Vol. 39, NO. 10-11, pp. 239-247 (1999).
Rostamian R., Najafi M. et al., “Synthesis and characterization of thiol-functionalized silica nano hollow sphere as a novel adsorbent for removal of poisonous heavy metal ions from water: Kinetics, isotherms and error analysis.” Chemical
Engineering Journal, Vol. 171, No. 3, pp. 1004-1011 (2011).
Rozada F., Otero M., Mora’n A. and Garcı’a A.I., “Adsorption of heavy metals onto sewage sludge-derived materials.” Bioresource Technology, Vol. 99, pp.6332-6338
(2008).
Ruthven D. M., “Principles of adsorption & adsorption process.” New York (1984).
Saad R., Hamoudi S. and Belkacemi K., “Adsorption of phosphate and nitrate anions on ammonium-functionalized mesoporous silicas.” J Porous Mater, Vol. 15, pp.
315-323 (2008).
Shriver D. F., Atkins P. W., Langford C. H., Inorg. Chem., Oxford University Press, Oxford (1992).
Solsona B., Blasco T.,´opez Nieto J. M. L, Pe ˜na1 M. L., Rey F. and Vidal-Moya A., “Vanadium oxide supported on mesoporous MCM-41 as selective catalysts in the
oxidative dehydrogenation of alkanes.” Journal of Catalysis, Vol. 203, pp. 443-452 (2001).
Wang G., Otuonye A. N. et al., “Functionalized mesoporous materials for adsorption and release of different drug molecules: A comparative study.” Journal of Solid
State Chemistry, Vol. 182, No. 7, pp. 1649-1660 (2009).
Wang G., Wang Y. et al., “Synthesis of highly regular mesoporous Al-MCM-41 from metakaolin.” Applied Clay Science, Vol. 44, No. 1-2, pp. 185-188 (2009).
Wang S., and Li H., “Structure directed reversible adsorption of organic dye on mesoporous silica in aqueous solution.” Microporous and Mesoporous Materials,
Vol. 97, No. 1-3, pp. 21-26 (2006).
Weng C. H. and Pan Y. F., “Adsorption characteristics of methylene blue from aqueous solution by sludge ash.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 274, No. 1-3, pp. 154-162 (2006).
Xia Q. H., Hidajat K. and Kawi S., “Improvement of the hydrothermal stability of fluorinated MCM- 1 material.” Materials Letters , Vol. 42, pp. 102-107 (2000).
Yang H., Deng Y. et al., “Novel synthesis of ordered mesoporous materials Al-MCM-41 from bentonite.” Applied Clay Science, Vol. 47, No. 3-4, pp. 351-355 (2010).
Ying J. Y., Mehnert C. P., Wong M. S., “Synthesis and applications of supramolecular-templated mesoporous materials.” Angew. Chem. Int. Ed., Vol. 38,
pp. 56-77 (1999).
Yoshitake H., Yokoi T. and Tatsumi T., “Adsorption of chromate and arsenate by amino-functionalized MCM-41 and SBA-1.” Chem. Mater., Vol. 14, pp.
4603-4610 (2002).
Yuan R., Cuan R., Shen W. and Zheng J., “Photocatalytic degradation of methylene blue by a combination of TiO2 and activated carbon fibers.” Journal of Colloid and Interface Science, Vol. 282, pp. 87-91 (2005).
Zeid Abdullahal-Othman, “Synthesis, modification, and application of mesoporous materials based on MCM-41.” Doctor of Philosophy, Submitted to the Faculty of the Graduate College of the Oklahoma State University (2006).
Zhao X. S. and Lu G. Q., “Modification of MCM-41 by surface silylation with trimethylchlorosilane and adsorption.” J. Phys. Chem. B, Vol. 102, pp. 1556-1561
(1998).
內政部營建署網站,http://www.cpami.gov.tw/.
王俊傑,“KOH 活化法裂解都市下水污泥生成吸附劑之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2008)。
王達興,“中孔徑分子篩晶體研究”,碩士論文,國立成功大學化學研究所,台南市 (2004)。
台北市政府工務局衛生下水道工程處網站,http://www.sso.taipei.gov.tw/.
甘佳欣,“以次氯酸去除染整廢水色度之反應動力學研究”,碩士論文,國立中山大學環境工程研究所,高雄市 (2000)。
行政院環境保護署網站,http://www.epa.gov.tw/.
行政院衛生署食品藥物管理局網站,http://www.fda.gov.tw/.
朱敬平、李篤中,“污泥處置(Ⅳ):策略與永續利用”,國立台灣大學「台大工程」學刊,第八十四期,第 91-101 頁, (2002)。
邱永亮、魏聖德,“染色化學”,財團法人徐氏文教基金會,台北縣 (2000)。
李和聰,“製備二氧化矽中孔洞材料及其對於銅及鎘離子吸附之研究”,碩士在職專班論文,國立成功大學化學系研究所,台南市 (2008)。
杜佳瑾、林耀堅,“廢棄蛋殼對水溶液中亞甲基藍染料之吸附特性研究”,中華民國環境工程學會 2010 廢水處理技術研討會,屏東縣 (2010)。
林彥志,“TiO2光觸媒電極分解亞甲基藍之變因探討及動力學研究”,碩士論文,國立台灣大學化學工程學研究所,台北市 (2000)。
林嘉玲,“摻配都會下水污泥與廢玻璃燒製水庫淤泥骨材研究”,碩士論文,南亞技術學院材料應用科技研究所,中壢市 (2011)。
徐如人、龐文琴,“無機合成與製備化學”,五南圖書出版股份有限公司,台北市 (2004)。
高佳駿,“具苯環、胺基及磷酸官能基之中孔洞材料的合成與鑑定”,碩士論文,國立中央大學化學研究所,中壢市 (2009)。
唐崇耀,“二氧化鈦奈米孔洞分子篩之合成及光催化反應”,碩士論文,私立中原大學化學系,中壢市 (2005)。
張正明,“酸性溶液下中孔徑分子篩的反應機構之探討”,碩士論文,私立中原大學化學系,中壢市 (2002)。
張有義、郭蘭生,“膠體及界面化學入門”,高立圖書有限公司,台北市 (1997)。
陳虹屹,“下水污泥灰衍生之矽鋁含量對合成 Al-MCM-41 結構之影響”,碩士論文,國立中央大學環境工程研究所,中壢市 (2011)。
陳雅馨,“利用水處理污泥合成活性碳-沸石複合材料同時去除染料與中金屬之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2011)。
黃子光,“下水污泥灰合成中孔徑分子篩及表面改質吸附重金屬之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2010)。
瑞士洛桑管理學院網站,http://www.imd.org/.
鄭紀民,“以電漿輔助化學氣相沉積法製備 TiO2/MCM-41觸媒薄膜之光催化反應研究”,國立中興大學化學工程學系所,台中市 (2009)。
歐陽嶠暉,“下水道工程學”,長松文化公司,台北市 (2004)。
指導教授 王鯤生(Kuen-Sheng Wang) 審核日期 2012-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明