博碩士論文 993206011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:35.171.183.163
姓名 陳信彧(Sin-yu Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以批次與動態溶出探討飛灰中重金屬及戴奧辛之溶出特性
(Leaching Characteristics of Heavy Metals and Dioxins from Fly Ash Using Batch and Dynamic Leaching Procedures)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 垃圾焚化飛灰因含有高濃度之重金屬與戴奧辛,被歸類為毒性有害事業廢棄物。本研究以批次與動態溶出兩種方式,探討台灣地區都市垃圾焚化廠飛灰中重金屬與戴奧辛之溶出潛勢與對環境可能造成之影響,並藉由不同溶液探討不同環境介質對於飛灰中重金屬與戴奧辛溶出之影響。本研究並以飛灰穩定化試驗探求適合之螯合劑,進而增加飛灰穩定化之能力。批次溶出試驗結果顯示A廠飛灰在四種溶液(HAc、acid rain、humic acid、SDBS)中,Pb之溶出濃度分別為:21.6、19.3、16.7、16.0 mg/L,均超過法規標準(5 mg/L);B廠飛灰只於醋酸溶液中,Pb、Cu及Cd之溶出濃度超過法規標準。而兩廠飛灰之PCDD/Fs溶出以高氯數物種為主(如HpCDD、OCDD等);PCBs溶出則以3,3’,4,4’-TCB、2,3’,4,4’,5-PeCB與2,3,3’,4,4’-PeCB為主。動態溶出試驗結果顯示A廠飛灰在四種溶液中,重金屬之溶出濃度皆以Pb最高,其次依序為Zn、Cu、Cr、Cd。Cd在界面活性劑溶液中之溶出濃度最高,而Zn、Pb、Cu及Cr則在醋酸溶液中之溶出濃度最高。在PCDD/Fs方面,飛灰受醋酸溶液長時間(13天)流洗,導致其結構受破壞,而增加其PCDD/Fs之溶出濃度。在PCBs方面,則發現有其他PCB之物種溶出(與批次溶出之結果相比),如:3,3’,4,4’,5-PeCB、2,3,3’,4,4’,5-HxCB與2,3,3’,4,4’,5,5’-HpCB。飛灰穩定化試驗結果顯示以無機硫系(A廠)或磷酸鹽系(B廠)搭配水泥之重金屬穩定化效果較佳,而穩定化對降低戴奧辛之溶出有些許之助益。
摘要(英) The MSWI fly ash which contains high concentrations of heavy metals and dioxins has been classified as hazardous waste. In this study, batch and dynamic leaching procedures were used to explore the leaching behaviors of heavy metals and dioxins in the fly ash generated from MSWI. Heavy metals and dioxins leached from different solutions are assessed, and different chelating agents are tested for higher stability of MSWI fly ash. The results of batch leaching procedure indicate that the leached Pb concentrations of the plant A were 21.6, 19.3, 16.7 and 16.0 mg/L for HAc, acid rain, humic acid and SDBS as solvents, respectively. These concentrations all exceeded the regulated standard (5 mg/L). The leached Pb, Cu and Cd concentrations of the plant B exceeded the regulated limit, but only occurred in HAc solution. Highly chlorinated PCDD/Fs were observed in the leachates of fly ash, accounting for more than 80% of PCDD/Fs. In addtion, 3,3’,4,4’-TCB, 2,3’,4,4’,5-PeCB and 2,3,3’,4,4’-PeCB were also observed in the leachates of the fly ash. The results of dynamic leaching procedure indicated that the leached Pb concentrations of the plant A was the highest, followed by Zn, Cu, and Cr, whereas Cd was the lowest. In the SDBS solution, the leached Cd concentrations was the highest. On the other hand, the leached Zn, Pb, Cu and Cr concentrations were the highest in HAc solution. The structures of fly ash were destroyrd due to the long-term washing (13 days) of fly ash were washed by HAc solution, resulting in the increase of PCDD/Fs concentrations leached from the fly ash. 3,3’,4,4’,5-PeCB, 2,3,3’,4,4’,5-HxCB and 2,3,3’,4,4’,5,5’-HpCB were also observed in the leachates of the fly ash, compared with the results of batch leaching. Adding inorganic sulfide (A plant) or phosphate (B plant) along with cement results in the best stabilization effect in treating the fly ash. We also found there was some stabilization effect for dioxins of fly ash.
關鍵字(中) ★ 戴奧辛
★ 溶出程序
★ 穩定化
★ 重金屬
★ 飛灰
關鍵字(英) ★ Stabilization
★ Leaching procedures
★ Dioxins
★ Fly ash
★ Heavy metals
論文目次 誌謝..................................................... II
摘要.....................................................III
Abstract..................................................IV
目錄.......................................................V
圖目錄..................................................VIII
表目錄.....................................................X
第一章 前言................................................1
1.1 研究緣起...............................................1
1.2 研究目的與範疇.........................................2
第二章 文獻回顧............................................3
2.1 飛灰來源及其基本特性...................................3
2.1.1 飛灰來源.............................................3
2.1.2 飛灰之物理特性.......................................3
2.1.3 飛灰之化學特性.......................................5
2.1.4 飛灰之溶出特性.......................................8
2.2 飛灰中之重金屬........................................11
2.2.1重金屬之來源.........................................11
2.2.2 重金屬之物化特性....................................12
2.2.3 焚化程序中重金屬之流佈..............................15
2.3. 飛灰中之戴奧辛.......................................17
2.3.1 戴奧辛類化合物之來源................................17
2.3.2戴奧辛類化合物之定義.................................18
2.3.3 戴奧辛類化合物之物化特性............................19
2.3.4 戴奧辛類化合物之毒性................................20
2.3.5 焚化程序中戴奧辛類化合物之形成機制..................23
2.4 飛灰處理方式..........................................24
2.5 廢棄物之溶出試驗......................................28
2.6 不同溶出方法應用於焚化灰渣之概況......................33
第三章 研究方法與材料.....................................37
3.1 研究方法..............................................37
3.2 研究流程..............................................37
3.3實驗之材料、藥品與設備.................................38
3.3.1實驗材料.............................................38
3.3.2 實驗藥品............................................42
3.3.3 實驗設備............................................43
3.4飛灰基本性質分析方法...................................44
3.4.1 pH值................................................44
3.4.2 含水率..............................................45
3.4.3 元素分析............................................45
3.4.4 氯鹽分析............................................46
3.4.5 硫酸鹽分析..........................................47
3.4.6 重金屬總量分析......................................49
3.4.7 化學組成分析........................................49
3.5 試體之製作............................................50
3.6 溶出試驗..............................................50
3.7 穩定化試驗............................................54
3.8 戴奧辛及呋喃分析程序..................................55
3.9 多氯聯苯分析程序......................................65
第四章 結果與討論.........................................75
4.1 飛灰基本特性探討......................................75
4.2 溶出試驗..............................................81
4.2.1 批次溶出探討........................................81
4.2.1.1重金屬溶出結果.....................................81
4.2.1.2 PCDD/Fs溶出結果...................................82
4.2.1.3 PCBs溶出結果......................................85
4.2.2 動態溶出探討........................................88
4.2.2.1 溶出液pH值........................................88
4.2.2.2 重金屬溶出結果....................................89
4.2.2.3 PCDD/Fs溶出結果...................................92
4.2.2.4 PCBs溶出結果......................................93
4.2.3 TCLP與CEN 14405不同溶出方式之比較(A廠飛灰為例)....95
4.4 穩定化試驗............................................99
第五章 結論與建議........................................112
5.1 結論.................................................112
5.2 建議.................................................113
參考文獻.................................................114
參考文獻 1. Anthony, T. C. and Tay, J. H., “Municipal solid waste incinerator fly ash for geotechnical applications”, Journal of Geotechnical Engineering-ASCE, Vol. 119, pp. 811-825 (1993).
2. Ballschmiter, K. and Zoller, W., “Formation of polychlorinated dibenzodioxins and dibenzofurans from chloro-phenols and chlorophenates at various temperatures-identification of trichlorodibenzodioxins”, Chemosphere, Vol. 15, pp. 2129-2132 (1985).
3. Barton, R. G., Clark, W. D. and Seeker, W. R., “Fates of metals in wastes combustion systems”, Combustion Science and Technology, Vol. 74, pp. 327-342 (1990).
4. Buchholz, B. A. and Landersberg, S., “Trace metal analysis of size-fractioned municipal solid waste incinerator fly ash and its leachates”, Journal of Environmental Science and Health A : Toxic/Hazardous Substances and Environmental Engineering, Vol. 28, pp. 423-441 (1993).
5. Buchholz, B. A., and Landsberger, S., “Leaching dynamics studies of municipal solid waste incinerator ash”, Journal of the Air and Waste Management Association, Vol. 45, pp. 579-590 (1995).
6. Carsch, S., Thoma, H. and Hutzinger, O., “Leaching of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans from municipal waste incinerator fly ash by water and organic solvents”, Chemosphere, Vol. 15, pp. 1927-1930 (1986).
7. Chen, T., Yan, J. H., Lu, S. Y., Li, X. D., Gu, Y. L., Dai, H. F., Ni, M. J. and Cen, K. F., “Characteristic of polychlorinated dibenzo-p-dioxins and dibenzofurans in fly ash from incinerators in China”, Journal of Hazardous Materials, Vol. 150, pp. 510-514 (2008).
8. Chang, M. B. and Huang, T. F., “Dioxin contents in fly ash from large-scale MSW Incinerators in Taiwan”, Chemosphere, Vol. 39, pp. 2671-2680 (1999).
9. Chang, Y. S., Kong, S. B. and Ikonomou, M. G. “PCBs contributions to the total TEQ released from Korean municipal and industrial incineration”, Chemosphere, Vol. 39, pp. 2629-2640 (1999).
10. Cheng, T. W., “Effect of additional materials on the properties of glass-ceramic produced from incinerator fly ashes”, Chemosphere, Vol. 56, pp. 127-131 (2004).
11. Choi, K. I., Lee and D. H., “PCDD/F in leachates from Korean MSW landfills”, Chemosphere, Vol. 63, pp. 1353-1360 (2006).
12. Chimenos, J. M., Fernandez, A. I., Nadal, R., Espiell, F., “Short-term nature weathering of MSWI bottom ash”, Journal of Hazardous Materials, Vol. 79, pp. 287-299 (2000).
13. De Boom, A. and Degrez, M., “Belgian MSWI fly ashes and APC residues : A characterisation study”, Waste Management, Vol. 32, pp. 1163-1170 (2012).
14. Dickson, L. C., Lenoir, D. and Hutzinger, O., “Surface-catalyzed formation of chlorinated dibenzodioxins and dibenzofurans during incineration”, Chemosphere, Vol. 19, pp. 277-282 (1989).
15. Durlak, S. K., Biswas, P. and Shi, J., “Equilibrium analysis of the effect of the temperature, moisture and soldium content on heavy metal emission from municipal solid wastes incinerators”, Journal of Hazardous Materials, Vol. 56, pp. 1-20 (1997).
16. Derie R., “A new way to stabilize fly ash from municipal incinerators”, Waste Management, Vol. 16, pp. 711-716 (1996).
17. Eighmy, T. T., Eusden, J. D., Krzanowski, J. E., Domingo, D. S., Staempfli, D., Martin, J. R. and Erickson, P. M., “Comprehensive approach toward understanding element speciation and leaching behavior in municipal solid waste incineration electrostatic precipitator ash”, Environmental Science and Technology, Vol. 29, pp. 629-646 (1995).
18. Everaert, K. and Baeyens, J., “The formation and emission of dioxins in large scale thermal processes”, Chemosphere, Vol. 46, pp. 439-448 (2002).
19. Fedjea, K. K., Ekbergb, C., Skarnemarkc, G., Steenari and B. M., “Removal of hazardous metals from MSW fly ash - An evaluation of ash leaching methods”, Journal of Hazardous Materials, Vol. 173, pp. 310-317 (2010).
20. Fisher, G. L., Chang, D. P. Y. and Brummer, M., “Fly ash collected from electrostatic precipitators : microcrystalline structures and mystery of the spheres”, Science, Vol. 192, pp. 553-555 (1976).
21. Gardner, K. H., “Characterization of leachates from municipal incinerator ash materials : A thesis”, Clarkson University (1991).
22. Germani, M. S. and Zoller, W. H., “Solubilities of elements on in-stack suspended particles from a municipal incinerator”, Atmospheric Environment, Vol. 28, pp. 1393-1400 (1994).
23. Greenberg, R. R., Zoller, W. H. and Gordon, G. E., “Composition and size distributions of particles released in refuse incineration”, Environmental Science and Technology, Vol. 12, pp. 566-573 (1978).
24. Hage, J. L. T. and Mulder, E., “Preliminary assessment of three new European leaching tests”, Waste Management, Vol. 24, pp. 165-172 (2004).
25. Ham, S. Y., Kim, Y. J. and Lee, D. H., “Leaching characteristics of PCDD/Fs and dioxin-like PCBs from landfills containing municipal solid waste and incineration residues”, Chemosphere, Vol. 70, pp. 1685-169 (2008).
26. Hamernik, J. D. and Frantz, G. C., “Physical and chemical-properties of municipal solid-waste fly-ash”, ACI Materials Journal, Vol. 88, pp. 294-301 (1991).
27. Hsi, H. C. and Yu, T. H., “Evaluation of the leachability of polychlorinated dibenzo-p-dioxins and dibenzofurans in raw and solidified air pollution control residues from municipal waste incinerators”, Chemosphere, Vol. 67, pp. 1434-1443 (2007).
28. IAWG (International Ash Working Group):Chandler, A. J., Eighmy, T. T., Hartle´n, O., Kosson, D., Sawell, S. E., Sloot, H. and Vehlow, J., “Municipal solid waste incinerator residues”, Studies in Environmental Science, Vol. 67 (1997).
29. IAWG (International Ash Working Group):Chandler, A. J., Eighmy, T. T., Hartle´n, O., Kosson, D., Sawell, S. E., Sloot, H. and Vehlow, J., “Municipal solid waste incinerator residues”, Resources, Conservation and Recycling, Vol. 20 (1997).
30. Idris, A. and Saed, K., “Characteristics of slag produced from incinerated hospital waste”, Journal of Hazardous Materials, Vol. 93, pp. 201-208 (2002).
31. Johnson, C. A., Kersten, M., Ziegler, F. and Moor, H. C., “Leaching behavior and solubility-controlling solid phases of heavy metals in municipal solid waste incinerator ash”, Waste Management, Vol. 16, pp. 129-134 (1996).
32. Kida, A., Noma, Y. and Imada, T., “Chemical speciation and leaching properties of elements in municipal incinerator ashes”, Waste Management, Vol. 16, pp. 527-536 (1996).
33. Kim, Y. J., Osako, M. and Lee, D. H., “A study on the solubility of PCDD/Fs when in coexistence with dissolved humic matter”, Journal of the Japan Society of Waste Management Experts, Vol. 10, pp. 214-223 (1999).
34. Kim, Y. J., Osako, M. and Lee, D. H., “Effect of dissolved humic matters on the leachability of PCDD/F from fly ash - Laboratory experiment using Aldrich humic acid”, Chemosphere, Vol. 47, pp. 599-605 (2002).
35. Kim, Y. J. and Lee, D. H., “Solubility enhancement of PCDD/F in the presence of dissolved humic matter”, Journal of Hazardous Materials, Vol. 91, pp. 113-127 (2002).
36. Kim, H. S. and Kim, J. M., “Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content”, Journal of the European Ceramic Society, Vol. 24, pp. 2373-2382 (2004).
37. Kirk, D. W. and Chan, C. Y., “Behaviour of metals under the conditions of roasting MSW incinerator fly ash with chlorinating agents”, Journal of Hazardous Materials, Vol. 64, pp. 75-89 (1999).
38. Klein, D. H., Andren, A. W., Carter, J. A., Emery, J. F., Feldmen, C., Fulkerson, W., Lyon, W. S., Ogle, J. C., Talmi, Y., Vanhook, R. I. and Bolton, N., “Pathways of thirty-seven trace elements through coal-fired power plant”, Environmental Science and Technology, Vol. 9, pp. 973-979 (1975).
39. Laforest, G. and Duchesne, J., “Characterization and leachability of electric arc furnace dust made from remelting of stainless steel”, Journal of Hazardous Materials, Vol. 135, pp. 156-164 (2006).
40. Landers J. P. and Bunce N. J., “The Ah receptor and the mechanism of dioxin toxicity”, Biochemical Journal, Vol. 276, pp. 273-187 (1991).
41. Le Forestier, L. and Libourel, G., “Characterization of flue gas residues from municipal solid waste combustors”, Environmental Science and Technology, Vol. 32, pp. 2250-2256 (1998).
42. Mathews, A.P., “Chemical equilibrium analysis of lead and beryllium speciation in hazardous waste incinerators”, Proceedings of the Second International Symposium on Metals Speciation, Separation and Recovery II, pp. 73-83 (1989).
43. McKay, G., “Dioxin characterisation, formation and minimization during municipal solid waste incineration: Review”, Chemical Engineering Journal, Vol. 86, pp. 343-368 (2002).
44. Milligan, M. S. and Altwicker, E., “The relationship between de novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans and low-temperature carbon gasification in fly ash”, Environmental Science and Technology, Vol. 27, pp. 1595-1601 (1993).
45. Mizutani, S., Yoshida, T., Sakai, S. I. and Takatsuki, H., “Release of metals from MSWI fly ash and availability in alkali condition”, Waste Management, Vol. 16, pp. 537-544 (1996).
46. Mulholland, J. A. and Sarofim, A. F., “Mechanisms of inorganic particle formation during suspension heating of simulated aqueous wastes”, Environmental Science and Technology, Vol. 25, pp. 268-274(1991).
47. Osako, M. and Kim, Y. J., “Influence of coexisting surface-active agents on leachability of dioxins in raw and treated fly ash from an MSW incinerator”, Chemosphere, Vol. 54, pp. 105-116 (2004).
48. Olie, K., Vermeulen, P. L. and Hutzinger, O., “Chlorodibenzo-p-dioxins and chlorodibenzofurans are trace components of fly ash and flue gas of some municipal incinerators in the Netherlands”, Chemosphere, Vol. 6, pp. 455-459 (1977).
49. Querol, X., Fernhndez-Turiel, J. L. and Lbpez-Soler, A., “Trace elements in coal and their behavior during combustion in a large power station”, Fuel, Vol. 74, pp. 331-345 (1995).
50. Richer, U. and Birnbaum L., “Detailed investigations of filter ashes from municipal solid waste incineration”, Waste Management and Research, Vol. 16, pp. 190-196(1998).
51. Schramm, K. W., Merk, M., Henkelmann, B. and Kettrup, A., “Leaching of PCDD/Fs from fly ash and soil with fire-extinguishing water”, Chemosphere, Vol. 30, pp. 2249-2257 (1995a).
52. Schramm, K. W., Wu, W. Z., Henkelmann, B., Merk, M., Xu, Y., Zhang, Y. Y. and Kettrup, A., “Influence of linear alkylbenzene sulfonate LAS as organic cosolvent on leaching behavior of PCDD/Fs from fly ash and soil”, Chemosphere, Vol. 31, pp. 3445-3453 (1995b).
53. Schramm, K. W., Saraci, M., Gunthner, A., Henkelmann, B., Lahaniatis, E. and Kettrup, A., “Solubilization of PCDD/Fs from fly ash by LAS-solutions”, Colloids and Surfaces A : physicochemical and engineering aspects, Vol. 125, pp. 201-208 (1997).
54. Song, G. J., Kim, K., Seo, Y. and Kim, S., “Characteristics of ashes from different locations at the MSW incinerator equipped with various air pollution control devices”, Waste Management, Vol. 24, pp. 99-106 (2004).
55. Song, G. J., Kim, S. H., Seo, Y. C. and Kim, S. C., “Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment”, Chemosphere, Vol. 71, pp. 248-257 (2008).
56. Sukandar, S., Yasuda, K., Tanaka, M. and Aoyama, I., “Metals leaching from medical waste incinerator fly ash : A case study on particle size comparison”, Enviormental Pollution, Vol. 144, pp. 726-735 (2006).
57. Suzuki, K., Kasai, E., Aono, T., Yamazaki, H. and Kawamoto, K., “De novo formation characteristics of dioxins in the dry zone of an iron ore sintering bed”, Chemosphere, Vol. 54, pp. 97-104 (2004).
58. Tuppurainen, K., Asikainan, A., Ruokojarvi, P. and Ruuakanen, J., “Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste incineration and other combustion processes”, Accounts Chemical Research, Vol. 36, pp. 652-658 (2003).
59. Valerie, C. and Rudy, S., “The use of leaching tests to study the potential mobilization of heavy metals from soils and sediments : A comparison”, HUB research paper (2007).
60. Van der Sloot, H. A., Comans, R. N. J. and Hjelmar, O., “Similarities in the leaching behavior of trace contaminants from waste, stabilized waste, construction materials and soils”, the Science of the Total Environment, Vol. 178, pp. 111-126 (1996).
61. Wadge, A., Hutton, M. and Peterson, P. J., “The concentrations and particle size relationships of selected trace elements in fly ashes from U.K. coal-fired power plants and refuse Incinerator”, the Science of the Total Environment, Vol. 54, pp. 13-27 (1986).
62. Wey, M. Y. and Chang, F. Y., “Comparison of the characteristics of bottom and fly ashes generated from various incineration processes”, Journal of Hazardous Materials, Vol. 138, pp. 594–603 (2006).
63. Wilewska-Bien, M., Lundberg, M., Steenari, B. M., and Theliander, H., “Treatment process for MSW combustion fly ash laboratory and pilot plant experiments”, Waste Management, Vol. 27, pp. 1213-1224 (2007).
64. Yasuhara A. and Katami, T., “Leaching behavior of polychlorinated dibenzo-p-dioxins and furans from the fly ash and bottom ash of a municipal solid waste incinerator”, Waste Management, Vol. 27, pp. 439-447 (2007).
65. Zhao, Y., Song, L. and Li G., “Chemical stabilization of MSW incinerator fly ashes”, Journal of Hazardous Materials, Vol. 95, pp. 47-63 (2002).
66. 李建中,李釗,何啟華,鄭清江,「垃圾焚化灰爐之力學特性與大地工程之應用」,一般廢棄物焚化灰渣資源化技術與實務研討會論文集,pp. 193-225,1996。
67. 顧順榮,「重金屬於都市垃圾焚化過程之濃度分佈及溶出特性」,國立中央大學環境工程研究所,碩士論文,1994。
68. 樊邦棠,「環境工程化學」,科技圖書股份有限公司,1994。
69. 吳家誠,「金屬之化學物種分類與分析技術」,化學,Vol. 49,No. 4,1991。
70. 吳秀東,「都市垃圾焚化過程中重金屬的分佈及去除效率之探討」,國立中央大學環境工程研究所,碩士論文,1998。
71. 林國旋,「重金屬於焚化爐中之動態評估」,技術與訓練,Vol. 17,No. 2,pp. 44-58,1992。
72. 劉彥均,「以逐步萃取程序及溶出試驗評估都市垃圾焚化底渣長期穩定特性之研究」,國立台灣大學環境工程研究所,碩士論文,2004。
73. 余宗賢,「固化法於飛灰重金屬及戴奧辛之穩定化研究」,國立高雄第一科技大學環境與安全衛生工程系,碩士論文,2004。
74. 許桂秋,「以序列萃取探討集塵灰之重金屬與戴奧辛溶出特性」,國立中央大學環境工程研究所,碩士論文,2008。
75. 黃靖云,「不同養護條件對都市垃圾焚化底渣中重金屬溶出特性之影響」,嘉南藥理科技大學環境工程與科學系,碩士論文,2008。
76. 謝函潔,「焚化飛灰吸附有機物及重金屬鉛、鎘之探討」,國立台灣大學環境工程研究所,碩士論文,2001。
77. 羅瑞士,「焚化集塵灰螯合劑之合成與效能評估」,國立屏東科技大學環境工程與科學所,碩士論文,2003。
78. 孫世勤、闕蓓德,「都市垃圾焚化飛灰處理方式評估」,工業污染防制期刊,第78期,pp. 170-206,2001。
79. 陳永翔,「焚化灰渣熔融及資源化處理之研究」,國立台北科技大學材料及資源工程系,碩士論文,2001。
80. 趙永楠,「以動態/半動態溶出程序評估都市垃圾焚化底渣長期穩定特性之研究」,國立台灣大學環境工程研究所,碩士論文,2003。
81. 陳盈良、張祖恩、張高僑、盧幸成、施百鴻、張益國,「都市垃圾焚化飛灰固化體之長期穩定性」,中華民國環境工程學會第二十屆廢棄物處理技術研討會,2005。
82. 陳崇智、黃進修、許順珠、關家倫,「利用歐盟整合環境性溶出/萃取試驗方法標準對台灣熔融飛灰之分析研究」,工業技術研究院能源與環境研究所,2006。
83. 楊萬發、張慶源、張根穆,「垃圾焚化底渣及飛灰短期自然風化時期重金屬溶出特性差異探討」,中華民國環境工程學會第二十二屆廢棄物處理技術研討會,2007。
84. 張坤森、郭曉恬、林哲宇、鄧逸群、陳信亨、陳勇達,「以不同萃取程序去除垃圾焚化飛灰有害重金屬之研究」,中華民國環境工程學會第二十二屆廢棄物處理技術研討會,2007。
85. 蘇偉凱,「垃圾焚化灰中銅鋅鉛鎘的溶出研究」,國立中興大學環境工程研究所,碩士論文,1996。
86. 賴祐呈,曾昭桓,蘇偉凱,鐘盛名,「以管柱試驗及修正式逐步萃取法評估垃圾焚化灰渣中金屬之溶出」,第十一屆廢棄物處理技術研討會論文集,1996。
指導教授 張木彬(Moo-been Chang) 審核日期 2012-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明