博碩士論文 993206017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:120 、訪客IP:54.174.43.27
姓名 楊幸僖(Hsing-hsi Yang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 臭氧結合紫外光/過氧化氫程序降解水中環境荷爾蒙類物質烷基苯酚之研究
(Degradation of Environmental Hormones Alkylphenol in Water by Ozone combined with UV/Hydrogen Peroxide Processes)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) O3結合UV/H2O2程序可透過連串化學反應,產生氧化力極高的氫氧自由基,相較於其他種類的氧化系統組合,效果更佳。因此本研究以O3/UV/H2O2程序處理烷基苯酚(Alkylphenol,AP)水溶液,並探討溶液之初始pH、過氧化氫添加劑量、臭氧進流濃度、反應物初始濃度等控制因子對處理效率之影響。另外,探討此程序下烷基苯酚可能之降解途徑及評估反應後水溶液之生物毒性及雌激素活性。
實驗結果顯示,反應15分鐘內即可將90%以上之烷基苯酚去除,相較紫外光及臭氧等組合程序反應時間更短,但水中總有機碳去除率卻僅達60%,原因為O3/UV/H2O2程序僅破壞了烷基苯酚本身的結構,但卻造成其他中間產物的生成,使得水中總有機碳無法有效地去除,若需提高礦化效率則需增加氧化時間。
本研究結果顯示,以O3/UV/H2O2程序降解起始濃度5 mg/L之烷基苯酚,其最適操作條件為:[O3]=0.06mg/min、[H2O2]0=0.45~0.48mM ([H2O2]0/[AP]0 ratio=20)
、光強度(I)=1.9×10-6 Einstein L-1s-1。此操作條件下,反應15分鐘後,OP可達91.94%去除率;NP可達90.41%去除率。
由LC/MS分析結果顯示,烷基苯酚降解機制由削減烷基鏈開始,芳香環發生羥基化反應(hydroxylation),使‧OH取代H。降解過程中可能之中間產物為:烷基苯二酚(Alkylcatechol)、間苯三酚(1,2,4-trihydroxybenzene)、氫醌(Hydroquinone)、Muconaldehyde與Muconic acid類物質,以及其他小分子物質,如:烷類、乙酸、羧酸類等化合物。
烷基苯酚水溶液之Microtox,則會隨著降解時間的增加,毒性逐漸降低。而在雌激素活性方面,活性強度則隨時間增加而減低,結果顯示中間產物仍具有雌激素活性,原因可能為水溶液中多種中間產物產生,使得雌激素活性加成作用,提高了化合物本身之雌激素活性。
摘要(英) The process of combining O3 with UV/H2O2 could make serial chemical reactions and produce more active hydroxyl radicals, which have stronger oxidation capacity than conventional oxidants. Consequently, the O3/UV/H2O2 process would be more effective compared to other types of oxidation combination systems. Accordingly, this study evaluates the treatment of alkylphenol aqueous solutions by using the O3/UV/H2O2 process. The effect of various operating parameters including initial pH, H2O2 dosage, initial rate of ozone concentration and initial substrate concentration on the removal of alkylphenols in the O3/UV/H2O2 process was investigated. Moreover, the possible degradation mechanism of alkylphenols in the O3/UV/H2O2 process, bio-toxicity tests (Microtox), and estrogenic activity of reaction aqueous solution were evaluated.
The results of the investigation show that using the O3/UV/H2O2 process can remove 90% of alkylphenols within 15 minutes, and the reaction time is shorter than other processes. Nevertheless, the mineralization efficiency of alkylphenols in the O3/UV/H2O2 process was only 60%, the results indicated that the alkylphenols only destroyed their own structure and formed numerous intermediate products. However, removal of total organic carbon in solution was ineffective. In order to enhance mineralization of alkylphenols, the oxidation time must be increased.
The optimum operating conditions for the O3/UV/H2O2 process to destroy alkylphenols found in this study were summarized as follows:UV light intensity = 1.9×10-6 Einstein L-1s-1, pH = 4, [O3] = 0.06mg/min, [H2O2]0/[AP]0 molar ratio = 20. In which, the treatment effectiveness of OP and NP were 91.94% and 90.41% after 15 minutes, respectively.
The degradation products were analyzed by LC/MS, and revealed that the degradation of alkylphenols begins from shortening the alkyl chain. The following may be substitution of the hydrogen on chain with a hydroxyl radical, as well as an additional hydroxyl radical to the aromatic ring. The degradation intermediates are alkylcatechol, 1,2,4-trihydroxybenzene, hydroquinone, muconaldehyde, muconic acid, and other small fragments, such as alkanes, acetic acid, carboxylic acids and other compounds.
With the oxidation time increasing, the bio-toxicity (Microtox) and estrogenic activity of alkylphenols aqueous solution was reduced. However, the results of the investigation show that the intermediate products still had estrogenic activity. The possible causes with the formation of numerous intermediate products to enhance the synergistic effect on the estrogenic activity after alkylphenol degradation, thus, increasing the estrogenic activity of the compounds themselves.
關鍵字(中) ★ 烷基苯酚
★ 辛基苯酚
★ 過氧化氫
★ 臭氧
★ O3/UV/H2O2
★ 壬基苯酚
關鍵字(英) ★ Octylphenol
★ Alkylphenol
★ Hydrogen peroxide
★ O3/UV/H2O2
★ Nonylphenol
★ Ozone
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 X
第一章 前言 1
第二章 文獻回顧 4
2.1環境荷爾蒙之定義及作用機制 4
2.2烷基苯酚之來源與特性、對環境生態之影響及流布與管制現況 6
2.3烷基苯酚常見之處理方式 15
2.4高級氧化程序 17
2.4.1過氧化氫特性 18
2.4.2紫外光氧化程序原理 18
2.4.3 臭氧基本特性與氧化原理 19
2.5 臭氧結合紫外光/過氧化氫程序 25
2.5.1 O3/UV/H2O2程序機制原理及影響因子 25
2.5.2 O3/UV/H2O2程序應用現況 28
第三章 實驗設備、材料及方法 33
3.1 實驗儀器 33
3.2 實驗藥品 34
3.3 實驗設備裝置 36
3.4 實驗方法 39
3.5 分析方法 42
第四章 結果與討論 52
4.1背景實驗 52
4.1.1過氧化氫氧化實驗 52
4.1.2紫外光直接光解實驗 54
4.1.3臭氧氧化實驗 59
4.1.4小結 62
4.2 臭氧結合紫外光/過氧化氫程序降解烷基苯酚化合物 63
4.2.1起始溶液pH效應 63
4.2.2過氧化氫劑量效應 67
4.2.3臭氧進流劑量影響 73
4.2.4反應物初始濃度效應 78
4.3高級氧化程序最佳組合條件之探討 81
4.4烷基苯酚之中間產物及降解途徑推論 87
4.5烷基苯酚及其中間產物之生物毒性與雌激素活性探討 97
第五章 結論與建議 102
5.1結論 102
5.2建議 104
參考文獻 105
附錄 A-1
參考文獻 1.Adams, C. D., P. A. Scanlan, and N. D. Secrist,“Oxidation and biodegradability enhancement of 1, 4-dioxane using hydrogen peroxide and ozone”, Environmental Science & Technology, 28, pp. 1812-1818,(1994).
2.Ahel, M., and W. Giger,“Aqueous solubility of alkylphenols and alkylphenol polyethoxylates”, Chemosphere, 26, pp. 1461-1470,(1993).
3.Alnaizy, R., and A. Akgerman,“Advanced oxidation of phenolic compounds”, Advances in Environmental Research, 4, pp. 233-244,(2000).
4.Arnold, S. F., D. M. Klotz, B. M. Collins, P. M. Vonier, L. J. Guillette Jr, and J. A. McLachlan,“Synergistic activation of estrogen receptor with combinations of environmental chemicals”, Science, 272, pp. 1489-1492,(1996).
5.Beltran, F. J., G. Ovejero, J. F. Garcia-Araya, and J. Rivas,“Oxidation of polynuclear aromatic hydrocarbons in water. 2. UV radiation and ozonation in the presence of UV radiation”, Industrial & engineering chemistry research, 34, pp. 1607-1615,(1995).
6.Błędzka, D., D. Gryglik, and J. S. Miller,“Photolytic degradation of 4-tert-octylphenol in aqueous solution”, Environment Protection Engineering, 35, pp. 235-247,(2009).
7.Błędzka, D., D. Gryglik, M. Olak, J. Gębicki, and J. S. Miller,“Degradation of n-butylparaben and 4-tert-octylphenol in H2O2/UV system”, Radiation Physics and Chemistry, 79, pp. 409-416,(2010).
8.Cespedes, R., S. Lacorte, A. Ginebreda, and D. Barcelo,“Occurrence and fate of alkylphenols and alkylphenol ethoxylates in sewage treatment plants and impact on receiving waters along the Ter River (Catalonia, NE Spain)”, Environmental Pollution, 153, pp. 384-392,(2008).
9.Chang, B. V., F. Chiang, and S. Y. Yuan,“Anaerobic degradation of nonylphenol in sludge”, Chemosphere, 59, pp. 1415-1420,(2005).
10.Cheng, C. Y., C. Y. Wu, C. H. Wang, and W. H. Ding,“Determination and distribution characteristics of degradation products of nonylphenol polyethoxylates in the rivers of Taiwan”, Chemosphere, 65, pp. 2275-2281,(2006).
11.Clara, M., S. Scharf, C. Scheffknecht, and O. Gans,“Occurrence of selected surfactants in untreated and treated sewage”, Water Research, 41, pp. 4339-4348,(2007).
12.Clarin, J., M. Fletcher, and D.Reichardt,(1998).
http://www.calpoly.edu/~ceenve/enve/jsczechowski/enve436/projects/UV/UV-Ozone-Peroxide.html
13.Corvini, P. F. X., A. Schaffer, and D. Schlosser,“Microbial degradation of nonylphenol and other alkylphenols - our evolving view”, Applied Microbiology and Biotechnology, 72, pp. 223-243,(2006).
14.Crittenden, J. C., S. Hu, D. W. Hand, and S. A. Green,“A kinetic model for H2O2/UV process in a completely mixed batch reactor”, Water Research, 33, pp. 2315-2328,(1999).
15.Duong, C. N., J. S. Ra, J. Cho, S. D. Kim, H. K. Choi, J. H. Park, K. W. Kim, and E. Inam,“Estrogenic chemicals and estrogenicity in river waters of South Korea and seven Asian countries”, Chemosphere, 78, pp. 286-93,(2010).
16.Esplugas, S., J. Gimenez, S. Contreras, E. Pascual,and M. Rodriguez,“Comparison of different advanced oxidation processes for phenol degradation”, Water Research, 36, pp. 1034-1042,(2002).
17.Flouriot, G., F. Pakdel, B. Ducouret, and Y. Valotaire,“Influence of xenobiotics on rainbow trout liver estrogen receptor and vitellogenin gene expression”, Journal of molecular endocrinology, 15, pp. 143-151,(1995).
18.Galindo, C., and A. Kalt,“UV/H2O2 oxidation of monoazo dyes in aqueous media: a kinetic study”, Dyes and Pigments, 40, pp. 27-35,(1999).
19.Glaze, W. H.,“Drinking-water treatment with ozone”, Environmental Science & Technology, 21, pp. 224-230,(1987).
20.Glaze, W. H., J. W. Kang, and D. H. Chapin,“The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation”,(1987).
21.Hohne, C., and W. Puttmann,“Occurrence and temporal variations of the xenoestrogens bisphenol A, 4-tert-octylphenol, and tech. 4-nonylphenol in two German wastewater treatment plants”, Environmental Science and Pollution Research, 15, pp. 405-416,(2008).
22.Hawrelak, M., E. Bennett, and C. Metcalfe,“The environmental fate of the primary degradation products of alkylphenol ethoxylate surfactants in recycled paper sludge”, Chemosphere, 39, pp. 745-752,(1999).
23.Hoigne, J., and H. Bader,“The role of hydroxyl radical reactions in ozonation processes in aqueous solutions”, Water Research, 10, pp. 377-386,(1976).
24.Hong, L., and M. H. Li,“Acute toxicity of 4-nonylphenol to aquatic invertebrates in Taiwan”, Bull Environ Contam Toxicol, 78, pp. 445-9,(2007).
25.Ince, N. H.,“ “Critical” effect of hydrogen peroxide in photochemical dye degradation”, Water Research, 33, pp. 1080-1084,(1999).
26.Isobe, T., H. Nishiyama, A. Nakashima, and H. Takada,“Distribution and behavior of nonylphenol, octylphenol and nonylphenol monoethoxylate in okyo metropolitan area: Their association with aquatic particles and sedimentary distributions”, Environmental Science & Technology, 35, pp. 1041-1049,(2001).
27.Jeong, J. J., J. H. Kim, C. Kim, I. Hwang, and K. Lee,“3-and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2, 3-dioxygenase”, Microbiology, 149, pp. 3265-3277,(2003).
28.Jie, X., W. Yang, Y. Jie, J. H. Hashim, X. Y. Liu, Q. Y. Fan, and L. Yan,“Toxic effect of gestational exposure to nonylphenol on F1 male rats”, Birth Defects Research Part B: Developmental and Reproductive Toxicology, 89, pp. 418-428,(2010).
29.29. Korner, W., U. Bolz, W. Susmuth, G. Hiller, W. Schuller, V. Hanf, and H. Hagenmaier,“Input/output balance of estrogenic active compounds in a major municipal sewage plant in Germany”, Chemosphere, 40, pp. 1131-1142,(2000).
30.Kim, S. J., S. C. Kim, S. G. Seo, D. J. Lee, H. Lee, S. H. Park, and S. C. Jung, “Photocatalyzed destruction of organic dyes using microwave/UV/O3/H2O2/TiO2 oxidation system”, Catalysis Today, 164, pp. 384-390,(2011).
31.Kuramitz, H., J. Saitoh, T. Hattori, and S. Tanaka,“Electrochemical removal of p-nonylphenol from dilute solutions using a carbon fiber anode”, Water Research, 36, pp. 3323-3329,(2002).
32.La Guardia, M. J., R. C. Hale, E. Harvey, and T. M. Mainor,“Alkylphenol Ethoxylate Degradation Products in Land-Applied Sewage Sludge (Biosolids)”, Environmental Science & Technology, 35, pp. 4798-4804,(2001).
33.Langlais, B., D. A. Reckhow, and D. R. Brink, “Ozone in water treatment: Application and engineering: Cooperative research report”, CRC ,(1991).
34.Lee, H. B., and T. E. Peart,“Determination of 17 beta-estradiol and its metabolites in sewage effluent by solid-phase extraction and gas chromatography/mass spectrometry”, Journal of AOAC international, 81, p. 1209,(1998).
35.Legrini, O., E. Oliveros, and A. Braun,“Photochemical processes for water treatment”, Chemical Reviews, 93, pp. 671-698,(1993).
36.Lopez, A., G. Ricco, G. Mascolo, G. Tiravanti, A. Di Pinto, and R. Passino,“Biodegradability enhancement of refractory pollutants by ozonation: a laboratory investigation on an azo-dyes intermediate”, Water Science and Technology, 38, pp. 239-245,(1998).
37.Lucas, M. S., J. A. Peres, and G. L. Puma,“Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics”, Separation and Purification Technology, 72, pp. 235-241,(2010).
38.Mandavgane, S. A., and M. K. N. Yenkie,“Degradation of salicylic acid by UV, UV/H2O2, UV/O3, photofenton processes”,(2011).
39.Masten, S. J., and S. H. R. Davies,“The use of ozonization to degrade organic contaminants in wastewaters”, Environmental Science & Technology, 28, pp. 180-185,(1994).
40.Mazellier, P., and J. Leverd,“Transformation of 4-tert-octylphenol by UV irradiation and by an H2O2/UV process in aqueous solution”, Photochemical & Photobiological Sciences, 2, pp. 946-953,(2003).
41.Mokrini, A., D. Ousse, and S. Esplugas,“Oxidation of aromatic compounds with UV radiation/ozone/hydrogen peroxide”, Water Science and Technology, 35, pp. 95-102,(1997).
42.Neamtu, M., and F. H. Frimmel,“Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation”, Science of the Total Environment, 369, pp. 295-306,(2006).
43.Neamtu, M., D. M. Popa, and F. H. Frimmel,“Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol”, J Hazard Mater, 164, pp. 1561-7,(2009).
44.Nimrod, A. C., and W. H. Benson,“Environmental Estrogenic Effects of Alkylphenol Ethoxylates”, Critical Reviews in Toxicology, 26, pp. 335-364,(1996).
45.Ning, B., N. J. Graham, and Y. Zhang,“Degradation of octylphenol and nonylphenol by ozone - part II: indirect reaction”, Chemosphere, 68, pp. 1173-9,(2007).
46.Pothitou, P., and D. Voutsa,“Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece”, Chemosphere, 73, pp. 1716-1723,(2008).
47.Ren, G., D. Sun, and J. S. Chunk,“Advanced treatment of oil recovery wastewater from polymer flooding by UV/H2O2/O3 and fine filtration”, Journal of Environmental Sciences, 18, pp. 29-32,(2006).
48.Rice, R. G.,“Applications of ozone for industrial wastewater treatment—a review”, Ozone: science and engineering, 18, pp. 477-515,(1996).
49.Routledge, E. J., and J. P. Sumpter,“Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen”, Environmental Toxicology and Chemistry, 15, pp. 241-248,(1996).
50.Sasai, R., D. Sugiyama, S. Takahashi, Z. Tong, T. Shichi, H. Itoh, and K. Takagi,“The removal and photodecomposition of n-nonylphenol using hydrophobic clay incorporated with copper-phthalocyanine in aqueous media”, Journal of Photochemistry and Photobiology A: Chemistry, 155, pp. 223-229,(2003).
51.Sellers, R. M.,“Spectrophotometric determination of hydrogen peroxide using potassium titanium(IV) oxalate”, The Analyst, 105, p. 950,(1980).
52.Sonntag, C., P. Dowideit, X. Fang, R. Mertens, X. Pan, M. N. Schuchmann, and H. P. Schuchmann,“The fate of peroxyl radicals in aqueous solution”, Water Science and Technology, 35, pp. 9-15,(1997).
53.Soto, A. M., H. Justicia, J. W. Wray, and C. Sonnenschein,“p-Nonyl-phenol: an estrogenic xenobiotic released from" modified" polystyrene”, Environmental health perspectives, 92, p. 167,(1991).
54.Staehelin, J., R. Buhler, and J. Hoigne,“Ozone decomposition in water studied by pulse radiolysis. 2. Hydroxyl and hydrogen tetroxide (HO4) as chain intermediates”, The Journal of Physical Chemistry, 88, pp. 5999-6004,(1984).
55.Staehelin, J., and J. Hoigne,“Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide”, Environmental Science & Technology, 16, pp. 676-681,(1982).
56.Tanenbaum, D. M., Y. Wang, S. P. Williams, and P. B. Sigler,“Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains”, Proceedings of the National Academy of Sciences, 95, p. 5998,(1998).
57.Trapido, M., J. Veressinina, and R. Munter,“Ozonation and AOP treatment of phenanthrene in aqueous solutions”, Ozone: science & engineering, 16, pp. 475-485,(1994).
58.Trapido, M., Y. Veressinina, and R. Munter,“Advanced oxidation processes for degradation of 2, 4-dichlo-and 2, 4-dimethylphenol”, Journal of Environmental Engineering, 124, p. 690,(1998).
59.Wu, J., J. Yang, M. Muruganandham, and C. Wu,“The oxidation study of 2-propanol using ozone-based advanced oxidation processes”, Separation and Purification Technology, 62, pp. 39-46,(2008).
60.Yao, J. J., Z. H. Huang, and S. J. Masten,“The ozonation of pyrene: Pathway and product identification”, Water Research, 32, pp. 3001-3012,(1998).
61.Ying, G. G., R. S. Kookana, A. Kumar, and M. Mortimer,“Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland”, Science of the Total Environment, 407, pp. 5147-5155,(2009).
62.Ying, G. G., B. Williams, and R. Kookana,“Environmental fate of alkylphenols and alkylphenol ethoxylates--a review”, Environment International, 28, pp. 215-226,(2002).
63.Yu, Z., S. Peldszus, and P. M. Huck,“Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound—Naproxen, carbamazepine and nonylphenol—on activated carbon”, Water Research, 42, pp. 2873-2882,(2008).
64.Zayas, P. T., G. Geissler, and F. Hernandez,“Chemical oxygen demand reduction in coffee wastewater through chemical flocculation and advanced oxidation processes”, Journal of Environmental Sciences-China, 19, pp. 300-305,(2007).
65.Zeff, J. D., and E. Leitis, “Oxidation of organic compounds in water”, U.S. Patent, pp. 492-407,(1988).
66.Zhang, Y. P., X. Zhou, Y. X. Lin, and X. Zhang,“Ozonation of nonylphenol and octylphenol in water”, Fresenius Environmental Bulletin, 17, pp. 760-766,(2008).
67.丁望賢、吳建誼,「環境荷爾蒙-壬基苯酚與雙酚 A 在台灣水環境中之分析與流布調查」,環境檢驗雙月刊,33,pp.12-21,(2000)。
68.王正雄、張小萍、李宜樺、黃壬瑰、陳佩珊、洪文宗,「台灣地區擬似環境荷爾蒙物質管理及環境流布調查」,微生物與環境荷爾蒙研討會論文集,(2000)。
69.王正雄、張小萍、黃壬塊、李宜樺、王世冠、洪文宗、陳珮珊,「環境荷爾蒙─壬基苯酚殘留調查及其對雄鯉魚生理效應之研究」,臺灣公共衛生雜誌,20,pp.202-215,(2001)。
70.行政院環境保護署,中文毒理資理庫。
71.吳仁彰、林義芳,「臭氧之應用與濃度量測」,量測資訊,第62期,pp.49-52,(1998)。
72.吳彦霖、余焱、袁海霞、董文博,「水溶液中對叔辛基酚的紫外光降解研究」,中國環境科學,pp.1333-1337,(2010)。
73.李美慧,「常見環境荷爾蒙物質及其影響」,環境荷爾蒙研討會論文集,台北生技中心,pp. 4-13,(2000)。
74.林子瑜,「壬基苯酚誘導人類胎盤滋養層細胞氧化傷害及粒線體功能缺損」,醫學技術學系,臺北醫學大學,碩士,台北市,(2005)。
75.林坤儀,「以臭氧/紫外光處理環境荷爾蒙類物質-以雙酚A、壬基苯酚及辛基苯酚聚氧乙基醇為例」,環境工程學研究所,臺灣大學,碩士,台北市,(2005)。
76.康世芳、蔣本基、張怡怡、張簡國平、李家偉,「飲用水水源及水質標準中列管物質篩選與監測計劃期末報告」,行政院環境保護署,計畫編號EPA-98-U1J1-02-101,(2009)。
77.莊欣怡,「烷基酚類職業暴露族群之生物偵測研究」,環境衛生研究所,國立陽明大學,碩士,台北市,(2004)。
78.陳怡諭,「以H2O2/O3/UV程序處理含巴拉刈農藥水溶液之研究」,環境工程研究所,國立中山大學,碩士,高雄市,(2003)。
79.陳錫金,「界面活性劑Octylphenol Polyethoxylates生物降解與復育之研究」,環境工程研究所,國立中央大學,博士,桃園縣,(2005)。
80.黃榮茂、王禹文、林聖富、楊得仁,「化學化工百科辭典」,曉園出版社,(1987)。
81.蔡維馨,「紫外光/過氧化氫程序降解辛基苯酚聚氧乙烯醇水溶液之研究」,環境工程研究所,國立中央大學,碩士,桃園縣,(2011)。
82.蔣本基、張怡怡、王財富、王根樹,「新興污染物監測、評估、處理及風險評估之研究計劃期末報告」,經濟部水利署,計畫編號MOEAWRA0990016,(2010)。
83.魏東洋、陸桂英、劉廣立、賈曉珊,「O3,UV,H2O2及其組合工藝處理有機污染物的效果對比研究」,環境工程,25,pp. 7-9,(2007)。
84.顧洋,「高級氧化程序在廢水處理上的應用」,工業污染防治技術手冊,29,(1993)。
指導教授 曾迪華(Dyi-hwa Tseng) 審核日期 2012-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明