博碩士論文 993206022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:18.119.158.115
姓名 嚴啟鳴(Chi-ming Yen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 都市有機廢棄物固態厭氧消化產出甲烷之特性研究
(Study on solid-state anaerobic digestion of municipal solid wastes for methane production)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢鑄砂及石材污泥取代水泥生料之研究★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究
★ 廢棄物衍生鋁熱熔融劑處理鉻污泥★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰
★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用模擬都市有機固體廢棄物採批次固態厭氧消化產甲烷,以模擬一般廢棄物為基質,下水污泥為植種菌,利用幫浦將淋滲液迴流至消化槽,取代在過去液態厭氧消化研究所需的機械攪拌裝置。原物料含水量於85%以下,符合固態厭氧消化之條件。本研究參考過去液態厭氧消化產甲烷之文獻設計兩個不同因子之實驗:溫度與滲漉量。
在不同的溫度(35℃、55℃)下,顯示消化槽溫度在55℃的兩個不同滲漉量之批次時,有最佳的累積產甲烷量,分別為43.32 L/kg VS與39.42 L/kg VS,且在此溫度條件下所需反應時間最短,分別為28及26天即達到反應終點;其次為35℃,甲烷產量分別為35.65 L/kg VS與38.83 L/kg VS,所需反應時間為52天及56天。在不同滲漉量(0.38 ml/cm2/min與0.76 ml/cm2/min)下對於甲烷產量則無明顯之趨勢,但在反應初期,溫度55℃,滲漉量0.38 ml/cm2/min有氫氣之產生,產氣量為1.91 L/kg VS。在四個不同批次實驗中揮發性脂肪酸與總有機碳被厭氧微生物所利用轉化成甲烷,顯示利用固態厭氧消化處理高固體物含量之有機廢棄物不僅可去除有機物質,亦可產生再生能源甲烷。
摘要(英) This study investigated the feasibility of solid-state anaerobic digestion for methane production, using simulated municipal solid waste as substrate and sewage sludge as inocula. Unlike the conventional wet anaerobic digestion process, mechanical stirring was not adopted in the digesters of this study. Instead, passive-mixing was achieved by pumping and spraying the liquid residues (i.e., leachate) back to the system, thus gradually rinsing the digesting materials. Initial moisture contents of the feedstock were all below 85%, conforming that the system was always initiated as a solid-state digestion.
The effect of temperature on methane production was examined by performing the digestion process at 35℃and 55℃. Results showed that under thermophilic conditions (i.e., 55℃), 43.32 and 39.42 L/kg VS of maximum methane yields were obtained on Day 28 and 26, respectively. In comparison, mesophilic (35℃) processes only resulted in 35.65 and 38.83 L/kg VS of maximum methane yields, and required a longer period of incubation process (52 and 56 days, respectively). No significant differences in methane production were observed between the circulation rate at 0.38 ml/cm2/min and 0.76 ml/cm2/min. However, when the system was conducted at 0.38 ml/cm2/min circulation rate under mesophilic conditions, production of hydrogen (up to 1.91 L/kg VS) appeared at the early stage of incubation.
These results indicated that using this solid-state anaerobic digestion system to treat municipal solid waste not only can help the degradation of organic substances but can also promote the formation of methane.
關鍵字(中) ★ TOC/TKN
★ 迴流量
★ 溫度
★ 固態厭氧消化
★ 甲烷
關鍵字(英) ★ TOC/TKN
★ blackflow rate
★ methane
★ solid-state anaerobic digestion
★ temperature
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 ix
表目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2研究目的 3
第二章 文獻回顧 4
2.1 台灣地區廢棄物特性與處理現況 4
2.1.1廢棄物特性 4
2.1.2處理現況 8
2.2 厭氧消化特性 10
2.3 固態厭氧消化系統 22
2.4 固態厭氧消化之操作因子 26
第三章 實驗方法與步驟 28
3.1 實驗架構 28
3.2 實驗材料配置 30
2.3 實驗操作因子配置 33
3.4 實驗裝置 34
3.5 檢測方法與設備 40
3.5.1 原物料檢測方法 40
3.5.2 生質氣體檢測方法 42
3.5.3 淋滲液檢測方法 45
3.5.4 檢測設備 49
3.5.5 藥品 50
第四章 結果與討論 51
4.1 實驗材料分析 51
4.2 厭氧消化生質氣體特性分析 54
4. 3 厭氧消化中揮發性脂肪酸的變化 64
4.4 固態厭氧消化之基質分解率 70
4.5 固態厭氧消化總表評估 76
4.6 厭氧消化產甲烷文獻數據比較 78
五、 結論與建議 80
5.1 結論 80
5.2 建議 82
參考文獻 83
附錄 91
參考文獻 1. Abouelenien F., Nakashimada Y. and Nishio N., “Dry mesophilic fermentation of chicken manure for production of methane by repeated batch culture” , Journal of Bioscience and Bioengineering, vol 107, No. 3, pp. 293-295 (2009).
2. Alatriste-Mondragon F., Samar P., Cox HHJ., Ahring BK. and Iranpour, R., “Anaerobic codigestion of municipal, farm, and industrial organic waste: A survey of recent literature” , Water Environment Research, vol 78, No. 6, pp. 607-636 (2006).
3. Appels L., Baeyens J., Degreve J. and Dewil R.,“Principles and potential of the anaerobic digestion of waste- activated sludge” , Progress in energy and combustion science, vol 34, No. 6, pp. 755-781 (2008).
4. Bary AI., Cogger CG., Sullivan DM. and Myhre EA., “Characterization of fresh yard trimmings for agricultural use. ” , Bioresource Technology, vol 96, No. 13, pp. 1499-1504 (2005).
5. Batstone DJ., Keller J., Newell RB. and Newland M., “ Modelling anaerobic degradation of complex wastewater. I: model development. ” Bioresource Technology, vol 75, No. 1, pp. 67-74 (2000).

6. BEKON http://www.bekon.eu/ (2011).
7. Bouallagui H., Touhami Y., Cheikh RB. and Hamdi M., “Bioreactor performance in anaerobic digestion of fruit and vegetable wastes” , Process Biochemistry, vol 40, No. 3-4, pp. 989-995 (2005).
8. Chen Y., Cheng JJ. and Creamer KS., “Inhibition of anaerobic digestion process: A review. ”, Bioresource Technology, vol 99, No. 10, pp. 4044-4064 (2008).
9. Collet P., Helias A., Lardon L., Ras M., Goy RA. and Steyer JP., “Life-cycle assessment of microalgae culture coupled to biogas production” , Bioresource Technology, vol 102, No. 1, pp. 207-214 (2011).
10. R. Chandra, V.K. Vijay, P.M.V. Subbarao, T.K. Khura., “Production of methane from anaerobic digestion of jatropha and pongamia oil cakes” , Applied Energy, vol 93, pp. 148-159 (2011).
11. Feng CP., Shimada S., Zhang ZY. and Maekawa T, “A pilot plant two- phase anaerobic digestion system for bioenergy recovery from swine wastes and garbage” , Waste Management, vol 28, No. 10, pp. 1827-1834 (2008).
12. Gerardi MH., “The microbiology of anaerobic digesters” , Hoboken N.J. : Wiley-Interscience, New York (2003).
13. Ghanem III., Gu GW. and Zhu JF., “Leachate production and disposal of kitchen food solid waste by dry fermentation for biogas generation” , Renewable energy, vol 23, No. 3-4, pp. 673-684 (2001).
14. Guendouz J., Buffiere P., Cacho J., Carrere M. and Delgenes JP., “High- solids anaerobic digestión: comparison of three pilot scales” , Water Science and Technology, vol 58, No. 9, pp. 1757-1763 (2008).
15. Habiba L., Hassib B. and Moktar H., “Improvement of activated sludge stabilization and filterability during anaerobic digestion by fruit and vegetable waste addition.” , Bioresource Technology, vol 100, No. 4, pp. 1555-1560 (2009).
16. Juliastuti SR., Baeyens J., Creemers C., Bixio D. and Lodewyckx E., “The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge.” Journal of Hazardous Materials, vol 100, No. 1-3, pp. 271-283 (2003)
17. Kaparaju P. and Rintala J, “Anaerobic co- digestion of potato tuber and its industrial by- products with pig manure” , Resources Conservation and Recycling, vol 43, No. 2, pp. 175-188 (2005).
18. Larsen HE., Munch B. and Schlundt J., “Use of indicators for monitoring the reduction of pathogen in animal waste treated in biogas plants” , Zentralblatt Fur Hygiene Und Umweltmedizin, vol 195, No. 5-6, pp. 544-555 (1994).
19. Li YB., Park SY. and Zhu JY., “Solid-state anaerobic digestion for methane production from organic waste”, Renewable and Sustainable Energy Reviews, vol 15, No. 1, pp. 821-826 (2011).
20. Liew LN., Shi J. and Li YB., “Enhancing the solid-state anaerobic digestion of fallen leaves through simultaneous alkaline treatment” , Bioresource Technology, vol 102, No. 19, pp. 8828-8834 (2011).
21. Lin CY., Wu CC. and Hung CH., “Temperature effects on fermentative hydrogen production from xylose using mixed anaerobic cultures” , International Journal of Hydrogen Energy, vol 33, No. 1, pp. 43-50(2008).
22. Macias-Corral M., Samani Z., Hanson A., Smith G., Funk P., Yu H. and Longworth J., “Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure.”, Bioresource Technology, vol 99, No. 17, pp. 8288-8293 (2008).
23. Madigan M. T., Martinko J. M., Dunlap P. V., Clark D. P.,“Brock biology of microorganisms.”, Benjamin Cummings, San Francisco (2009).
24. Martin DJ., Potts LGA, and Heslop VA, “Reaction mechanisms in solid-state anaerobic digestion - I. The reaction fronthypothesis” ,Process Safety and Environmental Protection, vol 81, No. B3, pp. 171-179 (2003).
25. Masse DI. And Droste RL., “Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor” , Water Research, vol 34, No. 12, pp. 3087-3106 (2000).
26. Mechichi T. and Sayadi S., “Evaluating process imbalance of anaerobic digestion of olive mill wastewaters.”, Process Biochemistry, vol 40, No. 1, pp. 139-145 (2005).
27. Mshandete A., Kivaisi A., Rubindamayugi, M. and Mattiasson, B, “Anaerobic batch co- digestion of sisal pulp and fish wastes” , Bioresource Technology, vol 95, No. 1, pp. 19-24 (2004).
28. Qu X., Vavilin VA., Mazeas L., Lemunier M., Duquennoi C., He PJ. And Bouchez T,“Anaerobic biodegradation of cellulosic material : Batch experiments and modelling based on isotopic data and focusing on aceticlastic and non-aceticlastic methanogenesis”, Waste Management, vol 29, No. 6, pp. 1828-1837 (2009).
29. Rittmann, B. E., and McCarty P. L., “Environmental biotechnology: Principles and applications”,McGraw-Hill international editions, New York, (2000).
30. Rao MS., Singh SP., Singh AK. and Sodha MS., “Bioenergy conversion studies of the organic fraction of MSW: assessment of ultimate bioenergy production potential of municipal garbage. ” , Applied Energy, vol 66, No. 1, pp. 75-87 (2000).
31. Romano RT. and Zhang RH., “Co-digestion of onion juice and wastewater sludge using an anaerobic mixed biofilm reactor.”, Bioresource Technology, vol 99, No. 3, pp. 631-637 (2006).
32. Silvestre G., Rodriguez-Abalde A., Fernandez B., Flotats X, and Bonmati A, “Biomass adaptation over anaerobic co-digestion of sewage sludge and trapped grease waste. ”, Bioresource Technology, vol 102, No. 13, pp. 6830-6836 (2011).
33. Stroot PG., McMahon KD., Mackie RI. and Raskin L.,“Anaerobic codigestion of municipal solid waste and biosolids under various mixing conditions- I. Digester performance. ”, Water Research, vol 35, No. 7, pp. 1804-1816 (2001).
34. Sung S. and Liu T., “ Ammonia inhibition on thermophilic anaerobic digestion.” , Chemosphere, vol 53, No. 1, pp. 43-52 (2003).
35. Ueno Y., Tatara M., Fukui H., Makiuchi T., Goto M. and Sode K., “Production of hydrogen and methane from organic solid wastes by phase- separation of anaer process” , Bioresource Technology, vol 98, No. 9, pp. 1861-1865 (2007).
36. Xie BF., Cheng J., Zhou JH., Song WL., Liu JZ. and Cen KF., “Production of hydrogen and methane from potatoes by two-phase anaerobic fermentation”, Bioresource Technology, vol 99, No. 13, pp. 5942–5946 (2008).
37. Yen HW. and Brune DE., “Anaerobic co-digestion of algal sludge and waste paper to produce methane”, Bioresource Technology, vol 98, No. 1, pp. 130-134 (2007).
38. Zhang T., Liu H. and Fang HHP., “Biohydrogen production from starch in wastewater under thermophilic condition” , Journal of Environmental Management, vol 69, No. 2, pp. 149 – 156 (2003).
39. 王盈琪,郭文健,“結合產氫產甲烷之高溫厭氧發酵程序之開發”,2011年廢棄物處理技術研討會 (2011)。
40. 台北市政府工務局衛生下水道工程處 http://www.sso.taipei.gov.tw/
41. 行政院環保署 http://www.epa.gov.tw/
42. 李季眉,張怡塘,林瑩峰,章裕民,方鴻源,邱應志,袁又罡,“環境微生物”,中華民國環境工程學會,新北市 (1999)。
43. 林健三,“環境工程概論”,鼎茂圖書出版股份有限公司,台北市 (2007)
44. 張祖恩,“一般及事業廢棄物最終處置技術”,行政院環境保護署環境保護人員訓練所,中壢市 (2000)。
45. 陳玫佐,“生質沼氣發酵特性之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2010)。
46. 陳瑞仁,“有機性廢水處理”,行政院環境保護署環境保護人員訓練所,中壢市 (2008)。
47. 黃昱翔,“有機廢棄物高溫固態厭氧醱酵產氫特性之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2010)。
48. 經濟部能源局 http://www.moeaboe.gov.tw/
49. 駱尚廉,楊萬發,“環境工程(二)下水道工程”,曉園出版社公司,台北市 (2006)。
50. 歐陽嶠暉,“下水道工程學”,長松文化,台北市 (2007)。
51. 劉錡樺,“水處理污泥轉換活性碳-沸石複合複合吸附材料之研究”,碩士論文,國立中央大學環境工程研究所,中壢市 (2010)。
指導教授 王鯤生(Kuen-sheng Wang) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明