博碩士論文 993206026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:107.23.37.199
姓名 施韋羽(Wei- Yu Shih)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
(Variations of urban fine suspended particulate matter (PM2.5) from various environmental factors and sources and its role on atmospheric visibility in Taiwan)
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析
★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定
★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估
★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性★ 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 都會地區細懸浮微粒(PM2.5)特性及來源對民眾健康影響和污染源管制相當重要。本文彙整2011年3月9日至2012年3月29日期間,在台灣北、中、南都會區三個空品監測站(新莊站、忠明站、小港站)進行共63次的PM2.5手動檢測質量及成分濃度,目的是藉由系統性收集PM2.5空間及時間變化,探討都會區PM2.5濃度受季節變化、不同檢測方法和儀器套件、不同天氣型態、潛在污染來源的影響,並研究大氣能見度和各種PM2.5成分及污染源的關係。
研究結果發現,新莊站和忠明站PM2.5平均質量濃度都以春季最高,小港站則是以冬季濃度最高。依據天氣系統型態分析,新莊站和忠明站除了本地污染外,還受到亞洲大陸污染長程傳輸影響;南部地區由於受到亞洲大陸氣流傳輸影響較小,小港站主要應該是當地污染源排放加上環境對流擴散不佳的影響。在春、秋及冬季各站主要的成分都是SO42-,夏季則是有機碳(OC)濃度接近SO42-。夏季時,NO3-揮發比值最高,其餘揮發離子則較無季節性變化。
整體觀測期間,三個監測站大多以R&P 2000 FRM (Federal Reference Method) 的PM2.5檢測濃度最低,空品站的自動監測濃度最高,R&P2300微粒成分採樣器則是介於兩者之間,且當質量濃度較高時,彼此間的差距也越大。其中,造成R&P2000與R&P2300檢測結果差異主要是受到R&P2300裝設蜂巢管影響。
天氣型態(Chuang et al., 2008)對分析指出發生高壓迴流(HPPC)、高壓推擠(HPP)及鋒前暖區+弱南風(WAF+WSW)時,北部有高PM2.5質量濃度,北部在東北季風及西南季風期間濃度較低。中、南部則在HPPC、HPP及東北季風三種天氣類型較容易呈現高濃度PM2.5,並在WAF+WSW及西南季風期間有低濃度。
利用PMF (Positive Matrix Factorization) (U.S. EPA, 2008)模式進行PM2.5污染源推估,三個監測站都解析出6個污染源,且都以Secondary nitrate and chloride的貢獻百分比最高,其次分別為Secondary sulfate、Gasoline emission、Soil dust、Diesel emission、Biomass burning。以PM2.5化學成分、污染來源和環境因子對大氣能見度進行多元迴歸分析,三個監測站PM2.5主要受到二次無機離子潮解的氣膠含水量,使大氣能見度降低。
總結來說,台灣都會區PM2.5濃度隨著季節及不同天氣系統的改變而有所變化,PMF解析結果顯示交通排放對大氣PM2.5濃度有顯著貢獻,可提供給相關單位進行都市來源管制的評估;此外,PM2.5成分中的二次無機離子對都市能見度降低有重大影響。
摘要(英) The characteristics and source contributions are very important in residents’ health effect and source control. This work compiles 63 samples of PM2.5 mass and speciations manually collected at three air quality monitoring stations (Xinzhuang, Chungming, and Siaogang) located in the metropolitan areas of northern, central, and southern Taiwan from March 9, 2011 to March 29, 2012. The aim of this work is studying seasonal variations of urban PM2.5, the effects of various measurement methods and instrumental units, different weather types, and potential source contributions on PM2.5. Moreover, the relationship of various PM2.5 speciations and sources with visibility is also investigated.
The results show that the highest PM2.5 mass concentrations at the Xinzhuang and Chungming stations are occurred in spring, while that of the Siaogang station is in winter. For the weather patterns results, the sources of Xinzhuang and Chungming stations are contributed from local sources as well as long-range transport of Asian continent based on weather pattern analysis. In contrast, Siaogang station is affected locally plus poor ventilation in the environment. The major species is SO42- in almost all the stations and seasons except for the summer. Organic carbon concentration is very close to SO42- and highest vaporization proportion of NO3- is observed in summer while other volatile ions are without seasonal variations.
For the whole observation study, the collected PM2.5 concentration is the lowest when using R&P 2000 FRM (Federal Reference Method), highest for referring to the data of air quality stations, and in the middle for the data from R&P2300 speciation sampler. In addition, the differences among sampling methods become wider when the collected concentrations are higher. The deviations between R&P2000 and R&P2300 are inferred to be affected by honeycomb denuders installed in the R&P 2300 sampler.
High PM2.5 concentration was observed in the north for the weather patterns of High Pressure Peripheral Circulation (HPPC), High Pressure system Pushing (HPP), and Warm area Ahead of a cold Front coupling with Weak Southern Wind (WAF+WSW) based on the weather pattern analysis (Chuang et al., 2008). Lower PM2.5 concentration frequently occurred in the periods of Northeastern and Southwest monsoons. In contrast, high PM2.5 concentrations were normally appeared in HPPC, HPP, and Northeastern monsoon and low for WAF+WSW and Southwestern monsoon in the central and southern Taiwan.
Six source types were resolved from PMF (U.S. EPA, 2008) (Positive Matrix Factorization) source apportionment for all three stations. Secondary nitrate and chloride contributed highest followed by Secondary sulfate, Gasoline emission, Soil dust, Diesel emission, and Biomass burning. Multiple regression analysis on atmospheric visibility using PM2.5 species, sources types, and environmental factors showed that visibility is mainly reduced by the water content deliquesced from secondary inorganic ions.
In summary, Taiwan urban PM2.5 is varied by seasons and weather patterns. Traffic emissions contributed significantly to atmospheric PM2.5, which may help the authorities in urban pollution control and assessment. Moreover, secondary inorganic ions are significant in reducing urban visibility.
關鍵字(中) ★ 細懸浮微粒(PM2.5)
★ 天氣型態
★ PMF模式
★ 大氣能見度
關鍵字(英) ★ Fine particulate matter (PM2.5)
★ weather patterns
★ PMF model
★ Atmospheric visibility
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 X
表目錄 XIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 細懸浮微粒(PM2.5)特性 3
2.2 氣膠形成來源 3
2.3 氣膠化學組成 4
2.3.1 氣膠水溶性離子來源 4
2.3.2 氣膠碳成分 4
2.4 台灣都會區細懸浮微粒(PM2.5)特性 7
2.5 大氣能見度與細懸浮微粒(PM2.5)的關係 9
2.6 手動採樣FRM篩選器的差異討論 10
2.7 受體模式正矩陣因子法PMF(Positive Matrix Factorization)應用 13
2.8 PMF來源解析的風向推估方法CPF ( Conditional probability function) 17
第三章 研究方法 18
3.1 研究架構 18
3.2 採樣地點時程及地點 20
3.2.1 採樣地點概述 20
3.2.2 採樣時間及採樣次數 22
3.3 PM2.5自動監測儀器及手動採樣儀器 24
3.3.1 R&P2000 PM2.5氣膠質量濃度採樣器 24
3.3.2 R&P2300 PM2.5氣膠質量濃度採樣器 25
3.3.3 自動監測儀器 27
3.4 手動採樣分析方法 29
3.4.1 採樣濾紙前準備 29
3.4.2 質量濃度秤重分析 30
3.4.3 水溶性離子分析方法 31
3.4.4 碳成分檢驗分析方法 32
3.4.5 微粒揮發NO3-、NH4+、Cl-及OC補償方法 34
3.5 ISORROPIA模式 36
3.6 正矩陣因子法PMF (Positive Matrix Factorization)操作 37
3.6.1 輸入資料處理 38
3.6.2 操作流程 39
3.7 條件機率函數CPF ( Conditional probability function)推估方法 42
第四章 結果與討論 43
4.1 北、中、南都會區手動檢測與自動監測儀器PM2.5質量濃度變化趨勢 43
4.1.1 新莊空品監測站手動檢測和自動監測質量濃度變化 44
4.1.2 忠明空品站手動檢測和自動監測質量濃度變化 48
4.1.3 小港空品站手動檢測和自動監測質量濃度變化 52
4.1.4 R&P2000手動檢測和空品站PM2.5質量濃度線性定量關係 56
4.1.5 R&P2000和R&P2300手動檢測PM2.5質量濃度線性迴歸定量關係 60
4.1.6 R&P2000與R&P2300及空品站PM2.5質量濃度比值 64
4.1.7 利用揮發離子推估R&P2000與R&P2300的PM2.5質量濃度 66
4.2 北、中、南都會區PM2.5手動檢測成分濃度變化趨勢 68
4.2.1 PM2.5手動檢測成分濃度扣除採樣空白後的影響 68
4.2.2 新莊監測站PM2.5成分濃度隨季節及時間變化 70
4.2.3 忠明監測站PM2.5成分濃度隨季節及時間變化 73
4.2.5 PM2.5成分濃度質量閉合(Mass Closure)評估 79
4.3 揮發離子濃度推估 85
4.3.1 環境最高溫度(TMax)及修正後PM2.5質量濃度關係推估揮發NO3-濃度 85
4.3.2 環境最高溫度(TMax)及修正後PM2.5質量濃度關係推估揮發Cl-濃度 88
4.3.2 環境最高溫度(TMax)及修正後PM2.5質量濃度關係推估揮發NH4+濃度 91
4.4 R&P2000和R&P2300手動檢測PM2.5質量濃度差異探討 94
4.4.1 WINS衝擊器、VSCC旋風離心器及Harvard impactor (R&P 2300)三者對PM2.5採集濃度差異比較 94
4.4.2 Harvard impactor(R&P 2300)裝設濾紙匣及蜂巢管對PM2.5採集質 量濃度的影響 97
4.5 北、中、南都會區PM2.5濃度變化影響因子及來源推估 101
4.5.1 台灣北、中、南都會區PM2.5濃度變化彼此關聯性 101
4.5.2 天氣型態對台灣北、中、南都會區PM2.5濃度變化影響 108
4.5.3 受體模式PMF推估北、中、南都會區PM2.5潛在來源 114
4.5.4 不同天氣型態各污染來源貢獻百分比分佈 153
4.6 台灣北、中、南都會區PM2.5濃度及氣象因子對大氣能見度影響 157
4.6.1 PM2.5成分及天氣因子對大氣能見度的多元迴歸分析 157
4.6.2 PM2.5推估來源及天氣因子對大氣能見度的多元迴歸分析 167
第五章 結論與建議 171
5.1 結論 171
5.2建議 173
第六章 參考文獻 174
附錄1 各監測站周邊建設及四周環境位置 183
附錄2 各監測站R&P2000與R&P2300及空品站PM2.5質量濃度比值 185
附錄3 各監測站溫度分布圖 191
附錄4 新莊站及忠明站各季節相關係數矩陣 192
附錄5 新莊站及小港站各季節相關係數矩陣 194
附錄6 忠明站及小港站各季節相關係數矩陣 196
附錄7 各監測站高壓迴流(HPPC)典型天氣圖及逆軌跡圖 198
附錄8 各監測站高壓推擠(HPP)典型天氣圖及逆軌跡圖 199
附錄9 各監測站鋒前暖區(WAF)典型天氣圖及逆軌跡圖 200
附錄10 各監測站弱南風(WSW)典型天氣圖及逆軌跡圖 201
附錄11 各監測站東北季風典型天氣圖及逆軌跡圖 202
附錄12 各監測站西南季風典型天氣圖及逆軌跡圖 203
附錄13 新莊站PMF執行Bootstrapping模式結果 204
附錄14 忠明站PMF執行Bootstrapping模式結果 206
附錄15 小港站PMF執行Bootstrapping模式結果 208
附錄16 口試委員意見答覆 210
參考文獻 Ackermann-Librich, U., Leuenberger, P., Schwartz, J., Schindler, C., 1997. Lung function and long term exposure to air pollutants in Switzerland. Journal of Respiratory and Critical Care Medicine 155, 122-129.
Allen A.G., Harrison R.M., Erisman J.W., 1989. Field Measurements of the Dissociation of Ammonium Nitrate and Ammonium Chloride Aerosols, Atmospheric Environment 23, 1591-1599.
Amato, F. Hopke, P.K., 2012. Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization. Atmospheric Environment 46, 329-337.
Bae, M.S., Schauer, J.J., Turner, J.R., 2006. Estimation of the monthly average ratios of organic mass to organic carbon for fine particulate matter at an urban site. Aerosol science and technology 40(12), 1123-1139.
Cao, J.J., Ho, K.F., Lee, S.C., Fung, K., Zhang, X.Y., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its 8 fractions in Hong Kong. Aerosol and Air Quality Research 6 (2), 106–122.
Cao, J.J., Wang, Q.Y., Chow, J.C., Watson, J.G., Tie, X.X., Shen, Z.X., Wang P., An, Z.S., 2012. Impacts of aerosol compositions on visibility impairment in Xi’an, China. Atmospheric Environment 59, 559-566
Cao, J.J., Wu, F., Chow, J.C., Lee, S.C., Li, Y., Chen, S.W., An, Z.S., Fung, K.K., Watson, J.G., Zhu, C.S., Liu, S.X., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi’an, China. Atmospheric Chemistry and Physics 5, 3127–3137.
Chan, Y.C., Simpson, R.W., Mctainsh, G.H., Vowles, P.D., Cohen, D.D., Bailey, G.M., 1999. Source apportionment of visibility degradation problems in Brisbane (Australia) — using the multiple linear regression techniques. Atmospheric Environment 33, 3237 – 3250.
Chang, S.C., Chou, C.K., Chan, C.C., Lee, C.T., 2010a. Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008. Atmospheric Environment 44, 1088-1096.
Chang, S.C., Chou, C.K., Chan, C.C., Lee, C.T., 2010b. Temporal characteristics from continuous measurements of PM2.5 and speciation at the Taipei Aerosol Supersite from 2002 to 2008. Atmospheric Environment 44, 1088-1096.
Chang, S.C., Lee, C.T., 2007. Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City from 1994–2003. Atmospheric Environment 41, 4002-4017.
Chou, C.K. Lee, C.T., Cheng, M.T., Yuan, C.S., Chen, S.J., Wu, Y.L., Hsu, W.C., Lung, S.C., Hsu, S.C., Lin, C.Y., Liu, S.C., 2010. Seasonal variation and spatial distribution of carbonaceous aerosols in Taiwan. Atmospheric Chemistry and Physics 10, 9563–9578.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Maglino, K.L., Ziman, S.D., Richards, L.W., 1993. PM10 and PM2.5 compositions in California’s San Joaquin Valley. Aerosol Science and Technology 18, 105-128.
Chuang, M.T., Chiang, P.C., Chan, C.C., Wang, C.F., Chang, E.E., Lee, C.T., 2008. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Science of The Total Environment 399, 128-146.
Chung, S.H., Seinfeld, J.H., 2002. Global distribution and climate forcing of carbonaceous aerosols. Journal of Geophysical Research 107(D19), 4407.
Dan, M., Zhuang, G., Li, X., Tao, H., Zhuang Y., 2004. The characteristics of carbonaceous species and their sources in PM 2.5 in Beijing. Atmospheric Environment 38, 3443-3452.
Draxler, R.R., Rolph, G.D., 2010. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD. http://ready.arl.noaa.gov/HYSPLIT.php.
Deng, X.J., Tie, X., Wu, D., Zhou, X.J., Tan, H.B., Li, F., and Jiang, C., 2008. Long-term Trend of Visibility and its Characterizations in the Pearl River Delta Region (PRD), China Atmospheric Environment 42, 1424 –1435.
Dwivedi, D., Agarwal, A.K., Sharma, M., 2006. Particulate emissions characterization of a biodiesel vs. diesel-fueled compression ignition transport engine: a comparative study. Atmospheric Envirronment 40, 5586-5595.
Eatough D.J., Farber R., 2009. Apportioning Visibility Degradation to Sources of PM2.5 Using Positive Matrix Factorization. Journal of the Air and Waste Management Association 59(9), 1092–1110.
Fang, G.C., Chang, S.C., 2010. Atmospheric particulate (PM10 and PM2.5) mass concentration and seasonal variation study in the Taiwan area during 2000–2008. Atmospheric Research 98(2), 368-377.
Fountoukis, C., Nenes, A., 2007 ISORROPIA II: A Computationally Efficient Thermodynamic Equilibrium Model for K+ - Ca2+ - Mg2+ - NH4+ - Na+ - SO42- - NO3- - Cl- - H2O Aerosols. Atmospheric Chemistry and Physics 7, 4639–4659.
Friedlander, S.K., 2000. Smoke, Dust and Haze. Oxford University Press, New York.
Gugamsetty, B., Wei, H., Liu, C.N., Awasthi, A., Hsu, S.C., Tsai, C.J., Roam, G.D., Wu, Y.C., Chen, C.F., 2012. Source Characterization and Apportionment of PM10, PM2.5 and PM0.1 by Using Positive Matrix Factorization. Aerosol and Air Quality Research 12(4), 476-491.
Han, Y.M., Cao, J.J., Chow, J.C., Watson, J.G., Fung, K., Jin, Z.D., Liu, S.X., An, Z.S., 2007. Evaluation of the thermal/optical reflectance method for discrimination between soot- and char-EC. Chemosphere 69, 569–574.
Harrison, R., Yin, J., 2007. Characterisation of Particulate Matter in The United Kingdom. The University of Birmingham Literature Review (REF. CPEA 6), 1-51.
Ho, K., Lee, S., Cao, J., Chow, J.C., Watson , J.G., Chan, C.K., 2006. Seasonal variations and mass closure analysis of particulate matter in Hong Kong. The Science of the total environment 355(1-3), 276.
Ho, K.F., Lee, S.C., Chan, C.K., Yu, J.C., Chow, J.C. and Yao, X.H., 2003. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmospheric Environment 37, 31-39.
Hodkinson, R.J., 1966. Calculations of Colour and Visibility in Urban Atmospheres Polluted by Gaseous NO2. Air and water pollution 10(2), 137.
Hu, C.W., Chao, M.R., Wu, K.Y., Chang-Chien, G.P., Lee, W.J., Chang, L.W., and Lee, W.S., 2003. Characterization of multiple airborne particulate metals in the surroundings of a municipal waste incinerator in Taiwan, Atmospheric Environment 37, 2845–2852.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695–697.
Jang, M.S., Lee, S., and Kamens, R.M., 2003. Organic aerosol growth by acid-catalyzed heterogeneous reactions of octanal in a flow reactor, Atmospheric Environment37, 2125–2138.
Jeong, C.H., McGuire, M.K., Herod, D., Dann, T., Dabek–Zlotorzynska, E. Wang, D., Ding, L., Celo, V., Mathieu, D., Evans, G., 2011. Receptor model based identification of PM2.5 sources in Canadian cities. Atmospheric Pollution Research 2, 158-171.
Kenny L.C., Thorpe A., 2001. Evaluation of VSCC Cyclones, Health & Safety Laboratory Report # IR/L/EXM/01/01.
Kenny, L.C., Merrifield, T., Mark, D., Gussman, R., Thorpe, A., 2004. The Development and Designation Testing of a New U.S. Environmental Protection Agency-Approved Fine Particle Inlet: a Study of the U.S. Environmental Protection Agency Designation Process. Aerosol Science and Technology 38(2), 15-22.
Kim, E., Hopke, P.K., Edgerton, E.S., 2003. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association 53, 731-739.
Kim, E., Hopke, P.K., Edgerton, E.S., 2004a. Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmospheric Environment 38, 3349–3362.
Kim, E., Hopke, P.K., Paatero, P., Edgerton, E.S., 2004b. Incorporation of parametric factors into multilinear receptor model studies of Atlanta aerosol. Atmospheric Environment 37, 5009–5021.
Kim, Y.J., Kim, K.W., Kim, S.D., Lee, B.K., Han, J.S., 2006. Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmospheric Environment 40, S593–S605.
Kulmala, M., Keronen, P., Laaksonen, A., Vesala, T., Korhonen, P., 1995. The Effect of HCl on Cloud Droplet Formation. J. Aerosol Science 26, 413-414.
Lee, C.G., Yuan, C.S., Chang, J.C., Yuan, C., 2005. Effects of aerosol species on atmospheric visibility in Kaohsiung city, Taiwan. Journal of the Air and Waste Management Association 55(7), 1031-1041.
Lee, C.T., Chang, S.Y., 2002. A GC–TCD Method for Measuring the Liquid Water Mass of Collected Aerosols. Atmospheric Environment 36, 1883–1894.
Lee, C.T., Hsu, W.C., 1998. A Novel Method to Measure Aerosol Water Mass. Journal of Aerosol Science 29, 827–837.
Lee, C.T., Hsu, W.C., 2000. The Measurement of Liquid Water Mass Associated with Collected Hygroscopic Particles. Journal of Aerosol Science 31, 189–197.
Lee, C.T., Shen, C.T., 1995. Visibility and Its Estimating Model in the Taipei Metrololitan Area. Proceedings of the National Science Council, Republic of China (A) 19, 506-513.
Lee, C.T., Tsuang, M.T., Chan, C.C., Cheng, T.J., Hung, S.L., 2006. Aerosol characteristics from Taiwan Aerosol Supersite in Asian Yellow-dust Periods in 2002. Atmospheric Environment 40, 3409-3418.
Lee, J.H., Hopke, P.K., Turner, J.R., 2006. Source identification of airborne PM2.5 at the St. Louis-Midwest Supersite. Journal of Geophysical Research 111, D10S10.
Lee, Y. L., Sequeira, R., 2002. Water-soluble aerosol and visibility degradation in Hong Kong during autumn and early winter, 1998. Environmental Pollution 116, 225–233.
Lim, J.M., Lee, J.H., Moon, J. H., Chung, Y.S., and Kim, K.H., 2010. Source apportionment of PM10 at a small industrial area using Positive Matrix Factorization. Atmospheric Research 95, 88-100.
Liu, D., Wenzel, R.J., Prather, K.A., 2003. Aerosol time-of-flight mass spectrometry during the Atlanta Supersite experiment: 1. Measurements. Journal of Geophysical Research 108 (D7), 8426.
Liu, W., Wang, Y., Russell, A., Edgerton, E.S., 2006. Enhanced source identification fractions and gas phase components. Atmospheric Environment 40, S445 – S466.
Madhavi, L.K., Badarinath, K.V.S., 2003. Black carbon aerosols over tropical urban environment—A case study. Atmospheric Research 69, 125–133.
Malm, W.C., Day, D.E., 2001. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmospheric Environment 35, 2845–2860.
Malm, W.C., Hand, J.L., 2007. An examination of the physical and optical properties of aerosols collected in the IMPROVE program. Atmospheric Environment 41, 3407–3427.
Malm, W.C., Pitchford, M.L., 1997. Comparison of calculated sulfate scattering efficiencies as estimated from size-resolved particle measurements at three national locations. Atmospheric Environment 31, 1315 – 1325.
Mangelson, N.F., Lewis, L., Joseph, J. M., Cui, W., Machir, J., Williams, N.W., Eatough, D.J., Rees, L.B., Wilkerson, T., Jensen, D.T., 1997.The contribution of sulfate and nitrate to atmospheric fine particles during winter inversion fogs in cache valley, utah. AWMA 47, 167-175.
Mooibroek, D., Schaap, M., Weijers, E., Hoogerbrugge, R., 2011. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmospheric Environment 45, 4180-4191.
Ohta, S., Okita, T., 1990. A Chemical Characterization of Atmospheric Aerosol in Sapporo. Atmospheric Environment 24A, 815-822.
Paatero P., 1997. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems 37, 23-35.
Paatero P., Tapper U., 1994. Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111-126.
Paatero, P., Hopke, P.K., 2003. Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta 490, 277-289.
Park, S.S., Kim, Y.J., Fung, K., 2001. Characteristics of PM2.5 carbonaceous aerosol in the Sihwa industrial area, Korea. Atmospheric Environment 35, 657–665.
Peters, T.M., Vanderpool, R.W. and Wiener, R.W. 2001. Design and Calibration of the EPA PM2.5 Well Impactor Ninety-Six (WINS). Aerosol Science and Technology 34, 389-397.
Polissar, A.V., Hopke, P.K., Paatero, P., Malm, W.C., Sisler, J.F., 1998. Atmospheric aerosol over Alaska 2. Elementalcomposition and sources. Journal of Geophysical Research 103, 19045–19057.
Polissar, A.V., Hopke, P.K., Poirot, R.L., 2001. Atmospheric aerosol over Vermont: chemical composition and sources. Environmental Science and Technology 35, 4604 – 4621.
Pope, C.A.3rd., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Journal of the American Medical Association 287, 1132-1141.
Ramadan, Z., Song, X.H., Hopke, P.K., 2000. Identification of sources of Phoenix aerosol by positive matrix factorization.Journal of the Air and Waste Management Association 50,1308–1320.
Rees, S.L., Robinson, A.L., Khlystov, A., Stanier, C.O., Pandis, S.N., 2004. Mass Balance Closure and the Federal Reference Method for PM2.5 in Pittsburgh, Pennsylvania. Atmospheric Environment 38, 3305–3318.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment 27A, 1309-1330.
Russell, A.G., McRae, G.J., Cass, G.R., 1983. Aerosol nitrate dynamics in an urban basin. Aerosol Science and Technology 2, 179.
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R.T., 2002. Measurement of emissions from air pollution sources.5. C1-C32 organic compounds from gasoline-powered motor vehicles. Environmental Science and Technology 36, 1169–1180.
Schwartz, J., 1994. Particulate air pollution and chronnic respiratory disease. Environmental Research 62, 7-13.
Seaton, A., MacNee, W., Donaldson, K., Godden, D., 1995. Particulate air pollution and acute health effects. Lancet 345, 176-178.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. Wiley, New York.
Shah, S.D., Cocker III, D.R., Wayne, J.M., Norbeck, J.M., 2004. Emission rates of particulate matter and elemental and organic carbon from in-use diesel engines. Environment Science and Technology 38, 2544–2550.
Song, X.H., Polissar, A.V., Hopke, P.K., 2001. Source of fine particle composition in the northeastern US. Atmospheric Environment 35, 5277–5286.
Tan, P.V., Fila, M.S., and Evans, G.J., Jervis, R.E., 2002. Aerosol laser ablation mass spectrometry of suspended powders from PM sources and its implications to receptor modeling, JAPCAJ. Air Waste Management 52, 27–40.
Thach, T. Q., Wong, C.M., Chan, K.P., Chau, Y.K., Chung, Y.N., Ou, C.Q., Yang, L., Hedley, A.J., 2010. Daily visibility and mortality: assessment of health benefits from improved visibility in Hong Kong. Environmental research 110(6), 617-623.
Thorpe, A., Mark, D., Kenny, L.C., 2001. Effect of dust loading on the performance of the VSCC Cyclones, Health & Safety Laboratory Report # IR/L/EXCON/01/09.
Tsai, Y.I., Chen, C.L., 2006. Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmospheric Environment 40, 4734-4750.
Tsai, Y.I., Kuo, S.C., 2005. PM 2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Turpin, B.J., Lim, H.J., 2001. Species contributions to PM2.5 mass concentrations: Revisiting common assumptions for estimating organic mass. Aerosol Science and Technology 35(1), 602-610.
Twomey, S., 1977. The influence of pollution on the short-wavde albedo of clouds. Journal of the Atmospheric Sciences 34, 1149-1152.
U.S. Environment Protection Agency, 1998. Air Pollution Training Institute training course: 435 Atmospheric Sampling.
U.S. Environment Protection Agency, 2008. EPA Positive Matrix Factorisation (PMF) 3.0 Fundamentals and User Guide. U.S. Environment Protection Agency Office of Research and Development, EPA 600/R-08/108.
Vanderpool, R.W., Peters, T.M., Natarajan, S., Tolocka, M.P., Gemmill, D.B., Wiener, R.W., 2001. Sensitivity Analysis of the U.S. Environmental Protection Agency WINS PM 2.5 Separator. Aerosol Science and Technology 34, 465-476.
Vanderpool, R.W., Peters, T.M., Natarajan, S., Tolocka, M.P., Gemmill, D.B., Wiener, R.W., 2001. Sensitivity Analysis of the U.S. Environmental Protection Agency WINS PM 2.5 Separator. Aerosol Science and Technology 34, 465-476.
Vecchi, R., Chiari, M., D’Alessandro, A., Fermo, P., Lucarelli, F., Mazzei, F., Nava, S., Piazzalunga, A., Prati, P., Silvani, F., 2008. A mass closure and PMF source apportionment study on the sub-micron sized aerosol fraction at urban sites in Italy. Atmospheric Environment 42(9), 2240-2253.
Wall, S.M., John, W., Ondo, J.L., 1988. Measurement of aerosol size distributions for nitrate and major ionic species. Atmospheric Environment 22, 1649-1656.
Watson, J.G., 2002. Visibility: Science and regulation. Journal of the Air & Waste Management Association 52, 628–713.
Watson, J.G., Chow, J.C., 2001. Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border, Science of the Total Environment 276(1), 33–47.
Watson, J.G., Chow, J.C., Houck, J.E., 2001. PM 2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in northwestern Colorado during 1995, Chemosphere 43, 1141–1151.
Watson, J.G., Chow, J.C., Lowenthal, D.H., Pritchett, L.C., Frazier, C.A., Neuroth, G.R., Robbins, R., 1994. Differences in the carbon composition of source profiles for diesel- and gasoline-powered vehicles. Atmospheric Environment 28 (15), 2493–2505.
World Health Organization, 2005. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Global Update 2005. Summary of Risk Assessment.
Wu, P.M., Okada, K., 1994. Nature of coarse nitrate particles in the atmospherea single particle approach. Atmospheric Environment 28, 2053-2060.
Ye, X., Ma, Z., Zhang, J., Du, H., Chen, J., Chen, H., Yang, X., Gao, W., Geng, F., 2011. Important role of ammonia on haze formation in Shanghai. Environmental Research Letters 6(2), 024019.
Yuan, C.S., Lee, C.G., Liu, S.H., Chang, J.C., Yuan, C., Yang, H.Y., 2006. Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols. Atmospheric Research 82, 663–679.
Zhang, R., Wang, M., Sheng, L., Kanai, Y., Ohta, A., 2004. Seasonal characterization of dust days, mass concentration and dry deposition of atmospheric aerosols over Qingdao, China. China Particuology 2(5), 196–199.
Zhao, W.P., Hopke, K., 2004. Source apportionment for ambient particles in the San Gorgonio wilderness. Atmospheric Environment 38, 5901–5910.
Zhu, C.S., Chen, C.C., Cao, J.J. Tsai, C.J., Chou, C.K., Liu, S.C., Roam, G.D., 2010. Characterization of carbon fractions for atmospheric fine particles and nanoparticles in a highway tunnel. Atmospheric Environment 44, 2668-2673.
行政院環境保護署環境檢驗所,2012,空氣中懸浮微粒(PM2.5)檢測方法-手動採樣法,NIEA A205.11C。
余政哲,2010。鹿林山大氣氣膠含水量探討及乾氣膠光學特性。國立中央大學環境工程研究所碩士論文。
李崇德、吳義林、周崇光、張士昱、莊銘棟、溫志雄,2011。「細懸浮微粒(PM2.5)質量濃度與成分人工採樣分析先驅計畫」期末報告,EPA-100-FA11-03-A088。
林琴軒,2010。北部氣膠超級測站近七年氣膠特性變化探討。國立中央大學環境工程研究所碩士論文。
張佑嘉,2011。中南半島進污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性。國立中央大學環境工程研究所碩士論文。
許博閔,2011。鹿林山大氣背景站不同氣團氣膠光學特性。國立中央大學環境工程研究所碩士論文。
陳聖中,2012。台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討。國立中央大學環境工程研究所碩士論文。
劉俊男、蔡春進、洪紹銘、巫月春、陳重方,2012。國內 PM 2.5 微粒分徑器適用性評估。行政院環境保護署環境檢驗所─環境分析評論(第2期),P6-10。
指導教授 李崇德(Chung-Te Lee) 審核日期 2013-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明