博碩士論文 993206030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:3.238.190.82
姓名 郭立峰( Li-Feng Guo)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以ZnMn2O4/Al2O3吸附劑去除氣流中硫化氫之研究
(Removal of H2S from gas streams using Zn-Mn-based adsorbents)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生質能是目前全球四大能源,僅次於石油、煤及天然氣,然而生質物經熱裂解產生之合成氣中含有數百ppm硫化氫,硫化氫會腐蝕後端管線及毒化合成二甲醚之觸媒,人體暴露在濃度200至1,500 ppm的環境有致死危險。目前以金屬轉換法處理高溫氣體中之硫化氫為技術主流,此類文獻較少探討低濃度硫化氫的處理,並且多數文獻僅以固定的硫化氫濃度為操作參數,忽略不同的硫化氫濃度與空間流速、操作溫度的交互影響,故本研究製備以鋅錳氧化物載擔於γ-氧化鋁之吸附劑,探討在空間流速4,000至30,000 h-1、反應溫度400至600oC和入口硫化氫濃度200至1,000 ppm對吸附效率的影響,並研究吸附劑再生反應與吸附效率衰退的關係;長效性反應測試;改質吸附劑之研究。
製備之吸附劑在鍛燒600oC時有高的比表面積150.6 m2/g,且其尖晶石結構之ZnMn2O4為混合型金屬吸附劑,具有高反應速率和減少鋅元素揮發的優點。研究中愈高的空間流速有愈低的吸附量;愈高的反應溫度有愈高的吸附量;愈高的入口硫化氫濃度有愈高的吸附量,然而當作用中的吸附劑與硫化氫的反應速率達平衡時,愈高的濃度反而會降低吸附劑的吸附量。整體而言,與硫化氫反應的最佳空間流速為不超出17,000 h-1,可適用於吸附溫度400至600oC的狀況,吸附量32.5至53.3 mg-S/g-adsorbent,較之理論吸附量42.6 mg-S/g-adsorbent高的原因,推測為Claus反應消耗掉貫穿吸附劑之硫化氫。當硫化氫濃度為200 ppm並提升空間流速從17,000至30,000 h-1時吸附效率剩60%,然而當濃度為1,000 ppm並隨空間流速提升,吸附效率維持在90%而不衰減,此因提升反應物濃度可增加碰撞機率而增加反應速率,進而提升吸附量。並以相同的操作條件僅提升反應溫度後,吸附量和吸附效率皆大幅提升,此結果符合熱力學和化學反應動力學原理。
吸附劑經長效性測試在100小時仍有87%極佳的吸附效率,XRD證實吸附劑內之鋅元素因再生之劇烈再生放熱反應而揮發,導致吸附效率下降,且未形成金屬硫酸鹽而影響吸附效率。本研究透過不同的再生實驗得知,再生溫度300oC即可將於600oC反應環境形成之鋅錳硫化物完全恢復成鋅錳氧化物,且能有效降低因再生放熱反應導致的吸附效率下降,操作以空氣為再生氣體以及較低的再生溫度具經濟和節省能源的優點。研究試圖添加鈰於鋅錳氧化物上作為改質之吸附劑,因鈰具有晶格氧的功能可有效去除硫化氫,然實驗結果顯示吸附量下降,原因推測為本研究吸附溫度為400至600oC,在此溫度區間內無法提供足夠的熱能活化鈰的特性,並且由XRD得知鈰氧化物覆蓋鋅錳氧化物,進而影響吸附效率。
摘要(英) Biomass may be pyrolyzed to produce syngas, however, some impurity such as H2S may be generated. A few hundred ppm of H2S and medium reaction temperature in the biomass system need to be investigated in order to protect the pipelines and catalyst from damage. Currently, metal conversion is the major treatment method for H2S removal in high temperature. Many studies investigate how to remove high concentration of H2S (over thousands ppm) without caring the interaction of H2S concentration, space velocity and reaction temperature. In this study, Zn-Mn based adsorbents supported on γ-Al2O3 is used for H2S removal in a temperature range of 400 to 600oC, space velocity range of 4,000 to 30,000 h-1, and H2S concentration range of 200 to 1,000 ppm. These parameters will seriously affect the performance of adsorbent capacity, and even interaction. From the experimental results, adsorbent after calcination at 600oC has a high surface area of 150.6 m2/g with the structure of spinel. It is advantageous for removing H2S at high reaction rate and protecting Zn from vaporizing at high temperatures. Experimental results show high capacity of adsorbent with low space velocity, high reaction temperature and high H2S concentration. However, when the reaction rate reaches equilibrium, capacity of adsorbent will decrease with H2S concentration. With the space velocity of 17,000 h-1, temperature range of 400 to 600oC, the capacity of adsorbent will be in the range of 32.5 to 53.3 mg-S/g-adsorbent. Theoretical capacity is 42.6 mg-S/g-adsorbent. The over theoretical capacity is possibly due to physical adsorption of alumina. Increasing H2S concentration from 200 to 1,000 ppm will enhance adsorption capacity and maintain at 90 percent of efficiency even the space velocity is increasing from 17,000 to 30,000 h-1. This is because enhancing concentration of reactants can increase the probability of collision, and thus enhance the adsorption capacity. By the way, enhancing reaction temperature can also increase the activity of molecule to promote adsorption capacity.
Long-term tests have reached more than 100 h and been maintained at 87 percent of efficiency. The reason for decreasing efficiency is because ZnO of adsorbent will be vaporized by violent exothermic reaction. XRD analysis shows the result and has no Zn sulfate or Mn sulfate. By different parameter of regeneration, the results show that Zn and Mn sulfides after adsorption at 600oC can be completely recovered to Zn and Mn oxides at regeneration temperature 300oC, and regeneration at 300oC can mitigate the effect of violent exothermic reaction. It is economic and saving energy. In order to enhance the capacity of adsorbent, ZnMn2O4 doping with CeO2 as a new adsorbent, because Ce has a function of lattice oxygen to effectively enhance ability of H2S removal. However, adding Ce into Zn-Mn based adsorbent does not improve adsorption capacity. The possible reason is that operating at a temperature range of 400 to 600oC can not provide sufficient energy to activate Ce for H2S removal.
關鍵字(中) ★ 生質能
★ 硫化氫
★ 金屬吸附劑
★ 鋅錳氧化物
★ 晶格氧
關鍵字(英) ★ biomass
★ hydrogen sulfide
★ metal oxide adsorbents
★ ZnMn2O4
★ lattice oxygen
論文目次 摘要 I
Abstract III
目錄 A
表目錄 C
圖目錄 D
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 生質能介紹 4
2.1.1 能源的概念 4
2.1.2 生質能的定義 6
2.1.3 生質能生產技術 8
2.2 硫化氫之特性 14
2.2.1 硫化氫之來源 14
2.2.2 硫化氫之性質 16
2.2.3 硫化氫對人體的危害 18
2.3 硫化氫之控制技術 20
2.3.1 濕式硫化氫脫除技術 20
2.3.2 乾式硫化氫脫除技術 25
2.3.3 硫化氫生物脫除技術 32
2.4 吸附劑特性 34
2.5 吸附劑之選擇 37
2.5.1 單一金屬氧化物吸附劑 37
2.5.2 混合型吸附劑 39
2.5.3 載體型吸附劑 40
2.6 吸附劑之製備方法 41
2.7 吸附劑活性的衰退 46
2.8 硫化氫轉化之操作參數 47
2.9 硫化氫吸附反應動力之探討 49
2.9.1 影響反應速率的因素 49
2.9.2 反應動力衰弱模式 52
第三章 實驗方法與實驗設備 54
3.1 研究方法 54
3.2 預備實驗 57
3.2.1 吸附劑之製備 57
3.2.2 吸附劑物化分析方法 58
3.3 實驗設備 60
3.3.1 實驗系統裝置 60
第四章 結果與討論 63
4.1 吸附劑之特性分析 63
4.1.1 SEM分析 63
4.1.2 BET和XRD分析 64
4.2 空間流速對吸附劑的影響 67
4.3 吸附溫度的影響 70
4.4 再生反應溫度的影響 71
4.5 入口硫化氫濃度的影響 75
4.6 空間流速、入口硫化氫濃度與吸附溫度交互影響 78
4.6.1 空間流速與入口硫化氫濃度對吸附效果之交互影響 78
4.6.2 空間流速與吸附溫度對吸附效果之交互影響 79
4.7 長效性測試實驗 81
4.8 添加鈰之Ads-Ce-Zn-Mn吸附劑吸附測試 84
4.9 反應動力模式探討 85
第五章 結論與建議 89
5.1 結論 89
5.2 建議 90
參考文獻 92
參考文獻 [1] 王志成、李褔文,「硫化氫新處理技術:SULFA CHECK 與現行方法之比較」,工業污染防治,第30期,1989,197–202。
[2] 中華民國環保法規資料中心,固定污染源空氣污染物排放標準http://law.epa.gov.tw/zh-tw/laws/631743675.html。
[3] 吳宇勝,溫泉泡湯場所硫化氫危害及通風條件調查研究,嘉南藥理科技大學溫泉產業研究所,碩士論文,2011。
[4] 吳耿東、李宏台,化腐蝕為神奇的生質能源,瓦斯季刊,2007,78,38–49。
[5] 吳榮宗,「工業觸媒概論」,國興出版社,1989。
[6] 李宏台、吳耿東、萬皓鵬、徐瑞鐘,我國生質能源之應用,經濟前瞻,2005。
[7] 李聖慧,以固體吸附法去除沼氣中之硫化氫,崑山科技大學環境工程研究所,碩士論文,2010。
[8] 李灝銘、張木彬,氣態污染物控制新技術-非熱電漿技術,工業污染防治季刊,89期,2004。
[9] 兔束保之,生質能源利用科學,揚智文化事業股份有限公司,2011。
[10] 林曉菁,以鹼性添著碳處理硫化氫與甲硫醇效率影響因子之研究,國立成功大學環境工程學系,碩士論文,1996。
[11] 林圭祥,都市下水道作業人員之風險評估-以高雄市為例,輔英科技大學環境工程與科學系碩士班,碩士論文,2005。
[12] 姚向君,田宜水,生質能源-綠色黃金開發技術,新文京開發出版股份有限公司,2008。
[13] 徐恆文,「煤炭氣化技術發展趨勢」,燃煤新技術研討會,2001。
[14] 陳志威、吳文騰,「生生不息的生質能源」, 《科學發展》第 359期,2004。
[15] 陳維新,生質物與生質能,高立圖書有限公司,2008年9月。
[16] 勞工安全衛生研究所物質安全資料表http://www.iosh.gov.tw/Msds.aspx
[17] 游以德、楊明德、余惠華,封閉掩埋場之復育工程,第一屆廢棄物清理實務研討會論文集,台北;1998。
[18] 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川,電漿源原理與應用之介紹,物理雙月刊廿八卷二期,2006年4月。
[19] 楊嘉葦,奈米零價鐵去除養豬廢水中硫化氫之研究,高雄大學土木與環境工程學系碩士班,碩士論文,2011。
[20] 劉雅菁,以ZnMn2O4/SiO2吸收劑高溫去除硫化氫之研究,國立成功大學環境工程學系,碩士論文,2004。
[21] 蔡詩珊,綠基會通訊專題報導:淺談生質能,綠基會通訊第14期,2008。
[22] 鄭于烽、高瑞娟、洪嘉謨、周才藝「豬糞尿經厭氣發酵排出液大規模培養螺旋藻可行性之探討」,中華生質能源學會會誌,第一卷第一、二期,1982。
[23] 歐新榮, 毒性氣體的生成機制與健康危害-硫化氫。勞工安全衛生簡訊第64期,2004。
[24] 蘇忠楨,養豬場沼氣生物脫硫系統研究,台灣動物科技研究所應用動物組,2004。
[25] Abbasian, J., Slimane, R. B., A regenerable copper-based sorbent for H2S removal coal gases, Industrial and Engineering Chemistry Research, 1998, 37, 2775–2782.
[26] Ahmed, M. A., Alonso, L., Palacios, J.M., Cilleruelo, C., Abanades, J. C., Structural changes in zinc ferrites as regenerable sorbents for hot coal gas desulfurization, Solid State Ionics, 2000, 138, 51–62.
[27] Alonso, L., Palacios, J. M., Performance and recovering of a Zn-dopedmanganese oxide as a regenerable sorbent for hot coal gas desulfurization, Energy and Fuel, 2002, 16, 1550–1556.
[28] Alvarez-Cruz, R., Insights in the development of a new method to treat H2S and CO2 from sour gas by alkali, Fuel, 2012, 100, 173–176.
[29] Atimtay, A. T., Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas, Clean Products and Processes, 2001, 197–208.
[30] Baby, R., Prakash, M. J., Improving the performance of an active carbon–nitrogen adsorption cryocooler by thermal regeneration, Carbon, 2005, 43, 2338–2343.
[31] Baker, R.W., Future directions of membrane gas separation technology, Chemistry Research, 2002, 41, 1393-1411.
[32] Bakker, W. J. W., Kapteijn, F., Moulijn, J. A., A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production conceptual process application to coal gas cleaning, Chemical Engineering Journal, 2003, 96, 223–235.
[33] Barankova, H., Bardos, L., Atmospheric pressure plasma sources and processing, Handbook of deposition technologies for Films and coatings, 2010, 865-880.
[34] Bhatia, S., Carbon capture and storager:Solution or a challenge, Hydrocaron Process, 2008, 87(11), 99-104.
[35] Blondeau, J., Jeanmart, H., Biomass pyrolysis at high temperatures: prediction of gaseous species yields from an anisotropic particle, Biomass and Bioenergy, 2012, 41, 107–121.
[36] Bridgwater, A.V., Renewable fuels and chemicals by thermal processing of biomass, Chemical Engineering Journal, 2003, 91, 87–102.
[37] Bu, X., Research improvement in Zn-based sorbent for hot gas desulfurization, Powder Technology, 2008, 180, 253–258.
[38] Bullin. J.A., Bryan Research and Engineering, Inc. - Technical Papers.
[39] Cheah, S., Regenerable manganese-based sorbent for cleanup of simulated biomass-derived syngas, Energy Fuels, 2011, 25, 379–387.
[40] Cheremisinoff, N.P., Rosenfeld, P., Davletshin, A.R., Responsible Care:A new strategy for pollution prevention and waste reduction through environment management, 2008, 143-235.
[41] Clark, P.D., Studies on sulfate formation during the conversion of H2S and SO2 to sulfur over activated alumina, Applied Catalysis A: General, 2002, 235, 61–69.
[42] Cnop, T., Overview of UOP membrane technology for acid gas removal, paper presented at the 2008 UOP Middle East Adsorbents and Gas Processing Technology Conference, Abu Dhabi, 2008.
[43] Cuong, P. H., Estournes, C., Heinrich, B., Ledoux, M. J., High temperature H2S removal over high specific surface area β-SiC supported iron oxide sorbent-part 2 preparation and characterization, J. Chemical Society. Faraday Trans., 1998, 94, 443–450.
[44] Edward, L.K., Mui, Danny C.K. Ko, Gordon McKay, Production of active carbons from waste types––a review, Carbon, 2004, 42, 2789–2805.
[45] El-Bishtawi, R., Haimour, N., Claus recycle with double combustion process, Fuel Processing Technology, 2004, 86, 245–260.
[46] Elseviers, W. F., Verelst, H., Transition metal oxides for hot gas desulfurization, Fuel, 1999, 78, 601–612.
[47] Fang, H.B., Zhao, J.T., Fang, Y.T., Huang, J.J., Wang, T., Selective oxidation of hydrogen sulfide to sulfide over activated carbon-supported metal oxides, Fuel, 2013, 108, 143-148.
[48] Flytzani-Stephanopoulos, M., Sakbodin, M., Wang, Z., Regenerative adsorption and removal of H2S from hot fuel gas streams by rare earth oxides, Science, 2006, 312, 1508–1510.
[49] Focht, G. D., Ranade, P. V., Harrison, D. P., High temperature desulfurization using zinc ferrite:reduction and sulfidation kinetics, Chemical Engineering Science, 1988, 43, 3005–3013.
[50] Focht, G. D., Ranade, P. V., Harrison, D. P., High temperature desulfurization using zinc ferrite:solid structural property changes, Chemical Engineering Science, 1989, 44, 215–224.
[51] Guillemet-Fritsch, S., Chanel, C., Sarrias, J., Bayonne, S., Rousset, A., Alcobe, X., Martinez, M.L., Sarrion, Structure, thermal stability and electrical properties of zinc manganites, Solid State Ionics, 2000, 128, 233–242.
[52] Hall, D.O., In "Biomass for energy" Ed. Hall, D.O., Section of International Solar Energy Society, 1979, 1–18.
[53] Ham, V.D., Vanderbosch, A. G. J., Prins, R. H., Survey of desulfurization processes for coal gas in:atimtay, desulfurization of hot coal gas, NATO ASI Ser 1996,42, 117–136.
[54] Huang, C.E., The study of the hydrogen damage mechanism of pressure vessel and its preventive strategy, Environment and Safety Engineering, YunTech 2010, National Yunlin University of Science and Technology, 2000.
[55] Huang, L., Xia, L., Dong, W., Hou, Huiqi., Energy efficiency in hydrogen sulfide removal by non-thermal plasma photolysis technique at atmospheric pressure, Chemical Engineering Journal, 2013, 228, 1066-1073.
[56] Ikenaga, N., Chiyoda, N., Matsushima, H., Suzuki, T., Preparation of activated carbon-supported ferrite for absorbent of hydrogen sulfide at a low temperature, Fuel, 2002, 81, 1569–1576.
[57] Jiang, D., Su, L., Ma, L., Yao, N., Xu, X., Tang, H., Li, X., Cu-Zn-Al mixed metal oxides derived from hydroxycarbonate prescursors for H2S removal at low temperature, Applied Surface Science, 2010, 256, 3216-3223.
[58] Jung, S.Y., Lee, S. J., Lee, T. J., Ryu, C. K., Kim, J. C., H2S removal and regeneration properties of Zn-Al-based sorbents promoted with various promoters, Catalysis Today, 2006, 111, 217–222.
[59] Jun, H. K., Lee, T. J., Ryu, S. O., Kim, J. C., A Study of Zn—Ti-based H2S removal sorbents promoted with cobalt oxides, Industrial and Engineering Chemistry Research, 2001, 40, 3547–3556.
[60] Kalakota, V.R., Sulfur removal using regenerable sorbents of rare earth / transition metal oxides, the Department of Chemical Engineering of Andhra University., Thesis of Master., 2008.
[61] Kohl, A.L., Nielsen, R.B., Gas purification, Gulf Publishing Company, Houston, TX, 1997.
[62] Kohl, A.L., Riesenfeld, F.C., Gas purification, 4th Ed. Gulf Publishing Company, Houston, TX, 1985.
[63] Kuramochi, H., Prediction of the behaviors of H2S and HCl during gasification of selected residual biomass fuels by equilibrium calculation, Fuel, 2005, 84, 377–387.
[64] Kyotani, T., Kawashima, H., Tomita, A., High temperature desulfurization reaction with Cu-containings sorbents, Environment Science Technology, 1989, 23(2), 218-223.
[65] Lew, S., Jothimurugesan, K., Flytzani-Stephanopoulo, M., Sulfidation of zinc titanate and zinc oxide solids, Industrial & Engineering Chemistry Research, 1992, 31, 1890–1899.
[66] Li, Z., Flytzani-Stephanopoulos, M., Cu-Cr-O and Cu-Ce-O regenerable oxide sorbents for hot gas desulfurization, Industrial & Engineering Chemistry Research, 1997, 36, 187–196.
[67] Liang, W.J., Fang, H.P., Li, J., Zheng, F., Li, J.X., Jin, Y.Q., Performance of non-thermal DBD plasma reactor during the removal of hydrogen sulfide, Journal of Electrostatics, 2011, 69, 206-213.
[68] Linga Reddy, E., Biju, V.M., Subrahmanyam, C.h., Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma, Applied Energy, 2012, 95, 87-92.
[69] Lu, J.G., Zheng, Y.F., He, D.L., Selective absorption of H2S from gas mixture into aqueous solution of blended amines of methyldiethanolamine and 2-tertiarybutylamino-2-ethoxyethanol in a packed column, Separation and Purification Technology, 2006, 52, 209-217.
[70] Maddox, R.N., Gas and liquid sweetening, third ed. Campbell Petroleum Series, Norman, 1982.
[71] Mojtahedi, W., Abbasian, J., H2S removal from coal gas at elevated temperature and pressure in fluidized bed with zinc titanate sorbents, part 1:cyclic tests, Energy Fuels, 1995, 9, 782–801.
[72] Mokhatab, S., Poe, A., Handbook of natural gas transmission and processing, chapter 7 – natural gas sweetening, 2012, 253-290.
[73] Moosavi, G.R., Naddafi, K., Mesdaghinia, A., Vaezi, F., Mahmoudi, M., H2S removal in an oxidative packed bed scrubber using different chemical oxidants, Journal of Applied Sciences, 2005, 5, 651-654.
[74] Nagl, G., Controlling H2S emission, Chemical Engineering, 1997, 125–131.
[75] Nizami, A.S., Murphy, J.D., 2010. What type of digester configurations should be employed to produce bio-methane from grass silage? Renewable and Sustainable Energy Reviews 14, 1558–1568.
[76] Park, N. K., Han, D. C., Lee, T. J., Ryu, S. O., A study on the reactivity of Ce-based Claus catalysts and the mechanism of its catalysis for removal of H2S contained in coal gas, Fuel, 2011, 90, 288–293.
[77] Patrick, V., Gavalas, R., Flyzani-Stephanopoulos, M., Jothimurugisan, K., High temperature sulfidation-regeneration of CuO-Al2O3 sorbent, Industrial and Engineering Chemistry Research, 1989, 28, 931–940.
[78] Poston, J. A., A reduction in the spalling of zinc titanate desulfurization sorbents through addition of lanthanum oxide, Industrial and Engineering Chemistry Research, 1996, 35, 875–882.
[79] Ranke, G., Mohr, V.H., The rectisol wash new developments in acid gas removal from synthesis gas, Gulf Publishing Company, Houston, TX, 1985.
[80] Rao, M.V.V.S., Srivastava, S.K., Electron impact ionization and attachment cross sections for H2S, J. Geophys, 1993, 13137-13145.
[81] Sapre, A.V., Catalyst deactivation kinetics from variable space-velocity experiments, Chemical Engineering Science, 1997, 52, 4615–4623.
[82] Sasaoka, E., Sakamoto, M., Ichio, T., Kasaoka, S., Sakata, Y., Reactivity and durability of iron oxide high temperaure desulfurization sorbents, Fuel and Energy, 1993, 7, 632–638.
[83] Sassi, M., Amira, N., Chemical reactor network modeling of a microwave plasma thermal decomposition of H2S into hydrogen and sulfur, International Journal of Hydrogen Energy, 2012, 37, 10010–1001
[84] Schaack, J. P., Chan, F., H2S scavenging-1, Oil and Gas Journal, 1989, 51–55.
[85] Schlodder, E., In "Electron transport and photophosphorylation", Ed. Barber, J., 1982, 105–176.
[86] Speight, J.G., Gas processing: environmental aspects and methods, Butterworth Heinemann, Oxford, England, 1993.
[87] Sulfur production report by the United States Geological Survey http://www.usgs.gov/
[88] Swisher, J. H., Yang, J., Gupta, R. P., Attirtion-resistant zinc titanate sorbent for sulfur, Industrial & Engineering Chemistry Research., 1995, 34, 4463–4471.
[89] Turpin, A., Experimental study of mass transfer and H2S removal efficiency in a spray tower, Chemical Engineering and Processing, 2008, 47, 886–892.
[90] Vnira R. Synthesis of thiadiazabicyclane and bis-1,3,5-dithiazinane by cyclothiomethylation of aliphatic diamines with CH2O and H2S, Tetrahedron, 2007, 63, 11702–11709.
[91] Wang, J., Liang, B., Parnas, R., Manganese-based regenerable sorbents for high temperature H2S removal, Fuel, 2013, 107, 539-546.
[92] Wang, X., Sun, T., Yang, J., Zhao, L., Jia, J., Low-temperature H2S removal from gas streams with SBA-15 supported ZnO nanoparticles, Chemical Engineering Journal, 2008, 142, 48–55.
[93] Westmoreland, P. R., Harrison, D. P., Evaluation of candidate solids for high-temperature desulfurization of low-BTU gases, ES&T., 1976, 10, 659–661.
[94] Yasyerli, S., Cerium-manganese mixed oxides for high temperature H2S removal and activity comparisons with V-Mn, Zn-Mn, Fe-Mn sorbents, Chemical Engineering and Processing, 2008, 47, 577–584.
[95] Zagoruiko, A.N., Matros, Yu.Sh., Mathematical modelling of Claus reactors undergoing sulfur condensation and evaporation, Chemical Engineering Journal, 2002, 87, 73–88.
[96] Zeng, Y., Kaytakoglu, S., Harrison, D.P., Reduced cerium oxide as an efficient and durable high temperature desulfurization sorbent, Chem. Eng. Sci. , 2000, 55, 4893–4900.
[97] Zeng, Y., Zhang, S., Groves, F.R., Harrison, D.P., High temperature gas desulfurization with elemental sulfur production, Chemical Engineering Science, 1999, 54, 3007–3017.
[98] Zhao, J., Huang, J., Zhang, J., Wang, Y., Influence of fly ash on high temperature desulfurization using iron oxide sorbent, Fuel and Energy, 2002, 16, 1585–1590.
[99] Zhao, L., Li, Xinyong., Zhao, Ji., Fabrication, characterization and photocatalytic activity of cubic-like ZnMn2O4, Applied Surface Science, 2013, 268, 274– 277.
指導教授 張木彬(Mu-Bin Zhang) 審核日期 2014-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明