博碩士論文 993207015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.145.115.195
姓名 范嘉仁(Jia-ren Fan)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 具適應性光學輔助之快速表面粗糙度量測: Zr-based BMG及流體層像差校正之應用
(AO-assisted rapid in-process surface roughness measurement : Zr-based BMG and aberrations correction induced by flowing fluid layer )
相關論文
★ 快速鑄造與單/雙蠟注射成型在歧管熔模鑄造中尺寸一致性的比較★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究
★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試★ 無心研磨製程參數優化研究
★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例★ 精密熱鍛模擬及模具合理化分析
★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究★ 模組化滾針軸承自動組裝設備設計開發與功能驗證
★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究★ 雷射焊補運用於壓鑄模具壽命改善研究
★ 晶粒成長行為對於高功率元件可靠度改善的驗證★ HF-ERW製管製程分析及SCADA 工業4.0運用
★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測★ 精密閥件射出成形製程開發-CAE模擬與開模驗證
★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文是結合光學散射現象和適應性光學系統來增進金屬表面粗糙度量測的準確性。論文研究重點分三部分。
(1) 適應性光學系統輔助進行快速金屬表面粗糙度線上量測:
此研究為利用適應性光學結合光散射現象來建構一個可用於線上量測金屬表面粗糙度之系統。由實驗的量測結果中,對於五個粗糙度範圍在0.2μm到3.125μm的標準試片,進行量測後得到其各別功光率值與粗糙度之間存在一個良好的相對關係,並且其相關係數R2高達0.9967。
(2) 動態空氣擾流環境下之金屬玻璃表面粗糙度量測:
近年來金屬玻璃合金由於具有優異的特性而受到相當廣泛的關注,特別是兼具生物相容性的鋯基金屬玻璃材料,在許多研究中指出其表面粗糙度會影響生物細胞的附著、增生、分化。因此,針對鋯基金屬玻璃的表面粗糙度量測進行研究。由結果顯示此量測系統可以進行線上金屬玻璃的表面粗糙度即時估測,並且有效的增進量測準確度與穩定性。
(3) 探討流體層對於光學式粗糙度測量之影響及像差校正:
針對雷射光束通過金屬表面的流動液體層時所受到的光學像差影響進行實驗上及理論上的研究。由實驗結果顯示,經由適應性光學系統即時的校正過後可以下降RMS值並且改善散射光強度衰減的現象。
摘要(英) This study is a combination of the optical scattering phenomenon and an adaptive optics system to improve the accuracy of the measurement of surface roughness. The focus of the study is:
(1) This study presents an in-process measurement of surface roughness by combining an optical probe of laser-scattering phenomena and adaptive optics for aberration correction. Measurement results of five steel samples with a roughness ranging from 0.2 to 3.125 μm demonstrate excellent correlation between the peak power and average roughness with a correlation coefficient (R2) of 0.9967.
(2) Bulk metallic glasses (BMGs) have received extensive attention recently due to amorphous-related extraordinary properties such as high strength, elasticity, and excellent corrosion resistance. In particular, Zr-based BMGs are recognized as a biocompatible material and surface roughness may affect many aspects of cell attachment, proliferation and differentiation. Therefore, this study presents an in-process measurement of surface roughness by combining an optical probe of laser-scattering phenomena and adaptive optics (AO) for aberration correction. The proposed system can be used as a rapid in-process roughness monitor/estimator to further increase the precision and stability of manufacturing processes for all classes of BMGs materials in situ.
(3) The induced optical aberration of laser beam passing through a transparent flowing fluid layer on a metal specimen is experimentally and theoretically studied. Real-time AO correction in closed-loop can reduce the wavefront RMS error nd improve the attenuation of scattered laser intensity.
關鍵字(中) ★ 適應性光學
★ 表面粗糙度
關鍵字(英) ★ Adaptive Optics
★ surface roughness
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 表面粗糙度量測 1
1.2適應性光學系統 3
1.3 研究動機 6
1.4 論文架構 8
第二章 實驗規劃與方法 9
2.1 實驗設備 9
2.2 實驗設計與量測系統架構 16
第三章 適應性光學系統輔助進行快速金屬表面粗糙度 18
線上量測 18
3.1前言 18
3.2快速量測系統之建構 19
3.3適應性光學系統輔助表面粗糙度量測 21
3.4 實驗結果與討論 23
3.5 小結 27
第四章 動態空氣擾流環境下之金屬玻璃表面粗糙度量測 28
4.1 前言 28
4.2動態擾流實驗設計與架構 30
4.3 動態擾流實驗結果與討論 34
4.4 小結 39
第五章 探討流體層對於光學式粗糙度測量之影響及像差校正 40
5.1 前言 40
5.2 架構設計與實驗過程 42
5.3 實驗結果與討論 49
5.4 小結 53
第六章 結論 54
參考文獻 56
參考文獻 [1] R.E. Reason, “Progress in the appraisal of surface topography during the first half-century of instrument development ”, Wear, Vol 57, pp. 1-16, 1979.
[2] D.J. Whitehouse, “Stylus contact method for surface metrology in the ascendancy ”, Meas. Control, Vol 31, pp. 48-50, 1998.
[3] A. López, D. Acosta, AI. Martínez and J. Santiago, “Nanostructured low crystallized titanium dioxide thin films with good photocatalytic activity ”, Powder Technol., Vol 202, pp. 111-117, 2010.
[4] H. Toupet, F. Marrec Le, J. Holc, M. Kosec, P. Vilarhino and M.G. Karkut, “Growth and thermal stability of epitaxial BiFeO3 thin films ”, J. Magn. Magn. Mater., Vol 321, pp. 1702-1705, 2009.
[5] Y. Masuda, T. Sugiyama, H. Lin, W.S. Seo and K. Koumoto, “Selective deposition and micropatterning of titanium dioxide thin film on self-assembled monolayers ”, Thin Solid Films, Vol 382, 153-157, 2001.
[6] K.A. O‘Donnell, “Effects of finite stylus width in surface contact profilometry ”, Appl. Optics, Vol 32, pp. 4922-4928, 1993.
[7] C.Y. Poon and B. Bhushan, “Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler ”, Wear, Vol 190, pp. 76-88, 1995.
[8] F. Forouzbakhsh, J. Rezanejad Gatabi, and I. Rezanejad Gatabi, “A new measurement method for ultrasonic surface roughness measurements ”, Measurement, Vol 42, pp. 702-705, 2009.
[9] H. J. Tiziani, “Optical methods for precision measurements ”,Opt. Quant. Electron., Vol 21, pp. 253-282, 1989.
[10] U. Persson, “Real time measurement of surface roughness on ground surfaces using speckle-contrast technique”, Opt. Lasers Eng., Vol 17, pp. 61-67, 1992.
[11] U. Persson, “Measurement of surface roughness on rough machined surfaces using spectral speckle correlation and image analysis ”, Wear, Vol 160, pp. 221-225, 1993.
[12] P.L. Wong and K.Y. Li, “In-process roughness measurement on moving surfaces ”, Opt. Laser Technol., Vol 31, pp. 543-548, 1999.
[13] C.J. Tay, S.H. Wang, C. Quan, and H.M. Shang, “In situ surface roughness measurement using a laser scattering method ”, Opt. Commun. Vol 218, pp. 1-10, 2003.
[14] E. Kayahan, H. Oktem, F. Hacizade, H. Nasibov, and O. Gundogdu, “Measurement of surface roughness of metals using binary speckle image analysis ”, Tribol. Int., Vol 43, pp. 307-311, 2010.
[15] L.C. Leonard and V. Toal, “Roughness measurement of metallic surfaces based on the laser speckle contrast method ”, Opt. Lasers Eng., Vol 30, pp. 433-440, 1998.
[16] S.R. Restaino, J.R. Andrews, T. Martinez, F. Santiago and D.V.Wick, “Adaptive optics using MEMS and liquid crystal devices ”, J. Opt. A-Pure Appl. Opt., Vol 10, 064006(5pp), 2008.
[17] H.W. Babcock, “The possibility of compensating astronomical Seeing ”, Publ. Astron. Soc. Pac., Vol 65, pp. 229-236, 1953.
[18] L.A. Thompson, “Adaptive Optics in Astronomy ” , Phys. Today, Vol 47, pp. 24-31, 1994.
[19] C. Rao, L. Zhu, X. Rao, C. Guan, D. Chen, J. Lin and Z. Liu, “37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan Astronomical Observatory ” , Chin. Opt. Lett., Vol 8, pp. 966-968, 2010.
[20] G. Shi, Y. Dai, L. Wang, Z. Ding, X. Rao and Y. Zhang, “ Adaptive optics optical coherence tomography for retina imaging ” , Opt. Lett., Vol 6, pp424-425, 2008.
[21] C. C’anovas, P. M. Prieto, S. Manzanera, A. Mira and P. Artal, “Hybrid adaptive-optics visual simulator ” , Opt. Lett., Vol 35, pp.196-198, 2010.
[22] L. Tchvialeva, I. Markhvida, H. Zeng, D. I. McLean, H. Lui, and T. K. Lee, “Surface roughness measurement by speckle contrast under the illumination of light with arbitrary spectral profile ” , Opt. Laser Eng., Vol 48, pp.774-778 2010.
[23] U. Persson, “Surface roughness measurement on machined surfaces using angular speckle correlation ” , J. Mater. Process. Technol., Vol 180, pp.233-238, 2006.
[24] K.C. Hsu and Y. K. Fuh, “A Novel In Situ Roughness Measurement Based on Spatial Average Analysis of Binary Speckle Image ”, Advanced Materials Research, Vol 154, pp.1125-1130, 2011.
[25] S. Wang, Y. Tian, C. J. Tay, and C. Quan, “Development of a Laser-Scattering-Based Probe for On-Line Measurement of Surface Roughness ”, Appl. Opt., Vol 42, pp.1318-1324, 2003.
[26] Q. Mu, Z. Cao, L. Hu, D. Li and L. Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device ”, Opt. Express, Vol 14, pp. 8013-8018, 2006.
[27] T.G. Bifano, J. Perreault, R. Krishnamoorthy Mali and M.N. Horenstein, “ Microelectromechanical Deformable Mirrors ”, IEEE J. Sel. Top. Quantum Electron., Vol 5, pp. 83-89, 1999.
[28] M. Hattori and S. Komatsu, “Real-time Adaptive Optics with a Twisted Nematic Liquid Crystal Light Modulator Controlled by the Wave Front Reconstruction Sensor ” , Opt. Rev., Vol 9, pp.126-131, 2002.
[29] C.C. Kuo, “Surface roughness characterization of Al-doped zinc oxide thin films using rapid optical measurement ” , Opt. Lasers Eng. Vol 48, pp. 1166–1169, 2010.
[30] C.C. Kuo and Y.R.Chen, “A new method to characterizing surface roughness of TiO2 thin films ” , Opt. Lasers Eng. Vol 49, pp. 410–414, 2011.
[31] S.H. Baik, S.K. Park, C.J. Kim and B. Cha, “A center detection algorithm for Shack-Hartmann wavefront sensor ” , Opt. Laser Technol., Vol 39, pp. 262-267, 2007.
[32] Q. Mu, “Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye ”, Opt. Lett., Vol 15, pp. 1946-1953, 2007.
[33] J.M. Girkin, S. Poland and A. J. Wright, “Adaptive optics for deeper imaging of biological samples ”, Curr. Opin. Biotechnol., Vol 20, pp. 106-110, 2009.
[34] C. Li, M. Xia, B. Jiang, Q.Mu, S.Chen and L. Xuan, “Retina imaging system with adaptive optics for the eye with or without myopia ”, Opt. Commun., Vol 282, pp.1496-1500, 2009.
[35] T. Shirai, “Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging ”, Appl. Optics, Vol 4, pp.4013-4023 2002.
[36] Y.K. Fuh, K.C. Hsu, M.X. Lin and J.R. Fan, “Adjustable fluidic lenses for correcting piston/defocus/astigmatism aberrations induced by mems deformable mirrors ”, Microw. Opt. Technol. Lett., Vol 54, pp. 1701-1705 2012.
[37] Y.K. Fuh, K.C. Hsu, M.X. Lin and J.R. Fan, “Characterization of adjustable fluidic lenses and capability for aberration correction of defocus and astimatism ”, Optik-Int. J. Light Electron Opt. 2012. doi:10.1016/j.ijleo.2012.01.019.
[38] Y.K. Fuh, K.C. Hsu and J.R. Fan, “Roughness measurement of metals using a modified binary speckle image and adaptive optics ”, Opt. Lasers Eng., Vol 50, pp.312-316, 2012.
[39] Y.K. Fuh, K.C. Hsu and J.R. Fan,“Rapid in-process measurement of surface roughness using adaptive optics ”, Opt. Lett., Vol 37, pp. 848-50, 2012.
[40] Thorlabs,“Adaptive Optics 101: Overview, Tech Review, And Applications,” http://www.thorlabs.hk/images/TabImages/AO_101_White_Paper.pdf
[41] K.M. Hamson, “ Adaptive Optics and vision,” J. Mod. Optic, Vol 55, pp. 3425-3467, 2008.
[42] Thorlabs,“Adaptive Optics Kit User guide ”, http://www.thorlabs.com/Thorcat/18100/18182-D02.pdf
[43] J. Schroers and N. Paton, “Amorphous metal alloys form like plastics ”, Adv. Mater. Process. Vol 164, pp.61–63, 2006.
[44] J. Schroers, G. Kumar, T. M. Hodges, S. Chan and T. R. Kyriakides, “Bulk metallic glasses for biomedical applications ”, JOM, Vol 61, pp. 21-29 2009.
[45] L. Huang, Z. Cao, H.M. Meyer, P.K. Liaw, E. Garlea, J.R. Dunlap, T. Zhang and W. He, “Responses of bone-forming cells on pre-immersed Zr-based bulk metallic glasses: Effects of composition and roughness ” , Acta Biomater., Vol 7, pp. 395–405, 2011.
[46] M. Ball, DM. Grant, WJ. Lo and CA. Scotchford, “The effect of different surface morphology and roughness on osteoblast-like cells ” , J Biomed Mater Res A, Vol 86, pp. 637–47, 2008.
[47] D.D. Deligianni, N. Katsala, S. Ladas, D. Sotiropoulou, J. Amedee and YF. Missirlis, “Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption ” , Biomaterials, Vol 22, pp. 1241–1251, 2001.
[48] K. Anselme, M. Bigerelle, “Statistical demonstration of the relative effect of surface chemistry and roughness on human osteoblast short-term adhesion ” , J Mater Sci: Mater Med, Vol 17, pp.471–479, 2006.
[49] H.Y. Kim, Y.F. Shen and J.H. Ahn, “Development of a surface roughness measurement system using reflected laser beam ” , J Mater Process Technol Vol 130-131, pp. 662–667, 2002.
[50] S.A. Coker and Y.C. Shin, “In-process control of surface roughness due to tool wear using a new ultrasonic system ”, Int. J. Mach. Tools Manuf. Vol 36, pp.411-22, 1996.
[51] L.Cheng and G.G. Siu, “Measurement of surface roughness with core-ring ratio method using incoherent light ”, Meas. Sci. Technol, Vol 1, pp.759-784, 1990.
[52] R.S. Lu and G.Y. Tian, “On-line measurement of surface roughness by laser light scattering ”, Meas. Sci. Technol, Vol 17, pp.1496-1502, 2006.
[53] G. Gobi, A.B. Ganesh, T.K.Radhakrishnan and D.Sastikumar, “An optical approach to estimate the surface roughness of metals ”, J. Am.Sci., Vol 3, pp.49-53, 2007.
[54] Y.Gao, “Use of fluid beams to estimate a clean zone for in-process optical measurement ”, Proc ASPE Am Soc Precis Eng USA, Vol 1, pp.329-332, 2001.
[55] Y.Gao and Z.Tao, “Test of flow patterns of grinding coolant interfered using an injection of stream ”, Proc. Euspen Conf. 684-687, 2001.
[56] R. Guo and Z. Tao, “The modified Beckmann-Kirchhoff scattering theory for surface characteristics in-process measurement ”, Opt. Lasers Eng., Vol 47, pp.1205-1211, 2009.
[57] R. Guo and Z. Tao, “Experimental investigation of a modified Beckmann-Kirchhoff scattering theory for the in-process optical measurement of surface quality ”, Optik , Vol 122, pp.1890-1894, 2011.
[58] R. Guo and Z. Tao, “Experimental investigation of the characteristics of a laser beam passing through a fluid layer for surface quality in-process measurement ”, Meas. Sci. Technol., Vol 21, 075306 (7pp) , 2010.
[59] Y. Gau, X. Huang and Y. Zhang, “An in-process form error measurement system for precision machining ”, Meas. Sci. Technol., Vol 21, 054001(8pp), 2010.
[60] 葉玉堂、饒建珍、肖峻,幾何光學,五南圖書,台北市,民國九十七年。
指導教授 傅尹坤(Yiin-kuen Fuh) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明