博碩士論文 993207026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.224.63.87
姓名 江鴻偉(Hung-wei Chiang)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 應用於太陽能聚光器之等光路型與金字塔型二次光學元件的分析與比較
(Analysis and comparison of equal optical path type and pyramid type secondary optical elements applied in solar concentrators)
相關論文
★ 光學遮斷式晶圓定位系統與半導體製程設備之整合★ 口徑550 mm反射鏡減重與撓性支撐結構最佳化設計
★ 光機整合分析應用於620mm反射鏡變形分析與八吋反射鏡彈性膠緊固設計★ 具線性齒頂修整之螺旋齒輪接觸特性研究
★ 應用投射疊紋技術於齒輪精度量測★ 反射鏡減重與撓性支撐結構最佳化
★ 曲面反射鏡減重與背向支撐撓性機構最佳化★ 建構拉焊機感測系統之人機介面與機器學習
★ 考量成像品質之最佳化塑膠透鏡結構設計★ 離軸矩形反射鏡輕量化與撓性支撐結構最佳化
★ 電路板拉焊製程參數優化與 烙鐵頭剩餘使用壽命預測之研究★ ZK型雙包絡蝸桿蝸輪組接觸分析
★ 整合深度學習與立體視覺之六軸機械手臂夾取系統開發★ 整合光源控制與深度學習辨識之平放膠體散料夾取系統開發
★ 整合視覺及力量控制之六軸機械手臂系統開發★ 平板式太陽能菲涅爾集光透鏡與二次光學元件之設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究應用二次光學元件設計方法,利用等光路設計建構太陽能聚光器,使用光學模擬軟體分析其光學效率、容忍角度與輻射照度等。主要目的為提升太陽能聚光器的容忍角度,降低太陽偏差角度所造成的能量損失,以及使能量分佈均勻,提升發電效益。
本研究比較四種不同的二次光學元件:折射式等光路設計之二次光學元件、折射式金字塔型二次光學元件以及反射式金字塔型二次光學元件、實現同步多曲面設計方法設計之複合式太陽能聚光器,模擬初始設計並進一步進階設計,分析其光學特性並進行比較。
論文中針對容忍角度較佳的折射式等光路設計之二次光學元件探討在多波段與組裝誤差的情況下,對於聚光器之光學特性造成的影響。
摘要(英) Based on the design methods for secondary optical elements, this thesis utilizes the equal optical path to build the solar concentrator and the optical simulation software to analyze the optical efficiency, acceptance angle and irradiance. The primary purpose is to improve the acceptance angle of solar concentrator, reduce the energy loss caused by sun angle deviations, distribute the energy evenly and finally promote the benefit of power generation.
In this paper, four types of secondary optical elements are compared, including kaleidoscope with equal optical path design, kaleidoscope with flat top surface, specular pyramid and the compound solar concentrator via the simultaneous multiple surfaces design method. This study simulates the initial design and carries out the advanced design, so as to analyze and compare the optical properties.
This thesis also analyzes the impacts of the broad band and assembly errors on the optical performance of the type of kaleidoscope with equal optical path design.
關鍵字(中) ★ 太陽能聚光器
★ 等光路
★ 金字塔
★ 二次光學元件
關鍵字(英) ★ Solar concentrator
★ Equal optical path
★ Pyramid
★ Secondary optical element
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 x
符號說明 xi
第1章 前言 1
1.1 研究背景 1
1.2 文獻回顧 2
1.2.1 平板式聚光透鏡 2
1.2.2 二次光學元件 9
1.2.3 自由曲面(Free-Form)設計之光學模組 15
1.2.4 波導形式之光學模組 17
1.3 研究目的 19
1.4 論文架構 19
第2章 基本理論 21
2.1 輻射度學與聚光型太陽能相關名詞介紹 21
2.2 邊緣光線原則 22
2.3 光線與波前之關係 23
2.4 菲涅爾透鏡設計 25
2.5 空氣質量與輻射照度之關係 28
第3章 菲涅爾透鏡與二次光學元件設計 30
3.1 菲涅爾透鏡 30
3.1.1 菲涅爾透鏡光學模擬 32
3.2 二次光學元件介紹 35
3.3 二次光學元件數學模型 35
3.3.1 折射式等光路設計之二次光學元件 35
3.3.2 折射式金字塔型二次光學元件 46
3.3.3 反射式金字塔型二次光學元件 50
3.4 討論 52
第4章 應用於菲涅爾透鏡之二次光學元件進階設計與組裝誤差 54
4.1 二次光學元件進階設計 54
4.1.1 折射式等光路設計之二次光學元件進階設計 54
4.1.2 折射式金字塔型二次光學元件進階設計 65
4.1.3 反射式金字塔型二次光學元件進階設計 73
4.2 應用於菲涅爾透鏡之二次光學元件比較 79
4.3 折射式等光路設計之二次光學元件組裝誤差 81
4.3.1 主鏡的位移誤差分析 82
4.3.2 主鏡的傾斜誤差分析 88
4.3.3 二次光學元件的徑向組裝誤差分析 92
4.3.4 二次光學元件的偏航角度誤差分析 94
4.3.5 太陽能電池的位移誤差分析 96
4.3.6 討論 98
4.3.7 綜合組裝誤差分析 100
4.4 折射式等光路設計之二次光學元件多波段模擬分析 101
4.5 討論 107
第5章 TIR-R太陽能聚光器 108
5.1 TIR-R太陽能聚光器之數學模型 108
5.2 TIR-R太陽能聚光器之初始模擬分析與比較 115
5.3 結論 119
第6章 結論與未來展望 121
6.1 結論 121
6.2 未來展望 122
參考文獻 123
附錄一 129
參考文獻 [ 1 ] 經濟部能源局,http://web3.moeaboe.gov.tw/ECW/populace/content/Con tentLink.aspx?menu_id=378.
[ 2 ] M.Z. Shvarts, V.M. Andreev, V.S. Gorohov, V.A.Grilikhes, A.E. Petrenko, A.A. Soluyanov, N.H. Timoshina, E.V. Vlasova, and E.M. Zaharevich, “Flat-plate Fresnel lenses with improved concentrating capabilities : designing, manufacturing and test,” 33th Photovoltaic Specialists Conference, pp. 1-6, San Diego, CA, U.S.A., May, 2008.
[ 3 ] V.D. Rumyantsev, “Solar concentrator moudles with silicone-on-glass Fresnel lens panels and multijunction cells,” Optics Express, Vol. 18, Issue S1, pp. A17-A24 , April 2010.
[ 4 ] J.S. Lin, W.C. Huang, H.C. Hsu, M.W. Chang, and C.P. Liu, “A study for the special Fresnel lens for high efficiency solar concentrators,” Nonimaging Optics and Efficient Illumination Systems II, Proc. of SPIE 5942, pp. 59420X.1-59420X.9, San Diego, CA, U.S.A., August 2005.
[ 5 ] F. Duerr, Y. Meuret, and H. Thienpont, “Miniaturization of Fresnel lenses for solar concentration: a quantitative investigation,” Applied Optics, Vol. 49, No.12, pp. 2339-2346, April 2010.
[ 6 ] A. Davis, “Fresnel lens solar concentrator derivation and simulations,” Novel Optical Systems Design and Optimization XIV, Proc. of SPIE 8129, pp. 81290J.1-81290J.15, San Diego, CA, U.S.A., August 2011.
[ 7 ] W.A. Parkyn and D.G. Pelka, “Compact non-imaging lens with totally internally reflecting facets,” Nonimaging Optics: Maximum Efficiency Light Transfer, Proc. of SPIE 1528, pp. 70-81, San Diego, CA, U.S.A., July 1991.
[ 8 ] C.P. Liu, H.Y. Lin, and C.T. Hsiao, “Optical design of a new combo solar concentrator,” Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VI, Proc. of SPIE 7423, pp. 74230X.1-74230X.11, San Diego, CA, U.S.A., Auguse 2009.
[ 9 ] D. Vázquez-Moliní, A. Á. Fernández-Balbuena, E. Bernabeu, J. M. L. Clemente, A. Domingo-Manrique, and Á. García-Botella,, “New concentrator multifocal Fresnel lens for improved uniformity : design and characterization,” High and Low Concentrator Systems for Solar Electric Applications IV, Proc. of SPIE 7407, pp. 740701.1-740701.11, San Diego, CA, U.S.A., August 2009.
[ 10 ] K. Ryu, J.G. Rhee, K.M. Park, and J Kim, “Concept and design of modular Fresnel lenses for concentration solar PV system,” Solar Energy, Vol. 80, Issue 12, pp. 1580-1587, December 2006.
[ 11 ] C.M. Wang, H.I Huang, J.W. Pan, H.Z. Kuo, H.F. Hong, H.Y. Shin, and J.Y. Chang, “Single stage transmission type broadband solar co- ncertrator,” Optics Express, Vol. 18, No.S2, pp. A118-A125, June 2010.
[ 12 ] V.M. Andreev, V.A. Grilikhes, A.A. Soluyanov, E.V. Vlasova, and M.Z. Sharts, “Optimization of the secondary optics for photovoltaic units with Fresnel lenses,” 23th European Photovoltaic Solar Energy Conference, pp. 126-131, Valencia, Spain, September 2008.
[ 13 ] Y.C. Chen and C.H. Su, “Concentrator design of a Fresnel lens and a secondary optical element,” 6th International Conference on Conce- ntrating Photovoltaic Systems, Proc. AIP 1277, pp. 109-112, Freiburg, Germany, April 2010.
[ 14 ] 蘇加訓,「平板式太陽能菲涅爾集光透鏡與二次光學元件之設計與分析」,國立中央大學,碩士論文,民國100年1月。
[ 15 ] M. Victoria, C. Dominguez, I. Anton, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Optics Express, Vol.17, No. 8, pp.6487-6492, April 2009.
[ 16 ] L. Fua, R. Leutzb, H.P. Annenb, “Evaluation and comparison of different designs and materials for Fresnel lens based solar concentrators,” Nonimaging Optics: Efficient Design for Illumination and Solar Con- centration VIII, Proc. of SPIE 8124, pp. 81240E.1-81240E.6, San Diego, CA, U.S.A., August 2011.
[ 17 ] L. Fu, R. Leutz, H.P. Annen, “Secondary optics for Fresnel lens solar concentrators,” Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VII, Proc. of SPIE 7785, pp. 778509.1-778509.6, San Diego, CA, U.S.A., August 2010.
[ 18 ] X. Ning, J. O’Gallagher, and R. Winston, “Optics of two-stage photo- voltaic concentrators with dielectric second stages,” Applied Optics, Vol. 26, No. 7, pp. 1207-1212, April 1987.
[ 19 ] D.P. Calero, J.C. Minano, P. Benitez, M. Hernandez, and A. Cvetkovic, “Design and modelling of a measuring device for a TIR-R concentrator,” High and Low Concentration for Solar Electric Applications, Proc. of SPIE 6339, pp. 63390H.1-63390H.11, San Diego, CA,U.S.A., August 2006.
[ 20 ] J. Jaus, P. Nitz, G. Peharz, G. Siefer, T. Schult, O. Wolf, M. Passig, T. Gandy, and A.W. Bett, “Second stage reflective and refractive optics for concentrator photovoltaics,” 33th Photovoltaic Specialists Conference, pp. 1-5, San Diego, CA, U.S.A., May 2008.
[ 21 ] J.H. Huang, W.C. Fei, W.C. Hsu, and J.C. Tsai, “Solar concentrator constructed with a circular prism array,” Applied Optics, Vol. 49, No. 23, pp. 4472-4478, August 2010.
[ 22 ] T. Tao, Z. Hongfei, H. Kaiyan, and A. Mayere, “A new trough solar concentrator and its performance analysis,” Solar Energy, Vol. 85, Issue 1, pp. 198-207, January 2011.
[ 23 ] M. Hernandez, A. Cvetkovic, P. Benitez, and J.C. Minano, “High-performance Kohler concentrators with uniform irradiance on solar cell,” Nonimaging Optics and Efficient Illumination Systems V, Proc. of SPIE 7059, pp. 705908.1-705908.9, San Diego, CA, U.S.A., August 2008.
[ 24 ] W. Zhang and R. Winston, “Simple Kohler homogenizers for image-forming solar concentrators,” Nonimaging Optics: Efficient Design for Illumination and Solar Concentration VII, Proc. of SPIE 7785, pp. 77850E.1-77850E.4, San Diego, CA, U.S.A., December 2010.
[ 25 ] J.C. Minano, P. Benitez, P. Zamora, R. Mohedano, A. Cvetkovic, M. Buljan, J. Chaves, M. Hernandez, O. Dross, and R. Alvarez, “Improving the efficiency/cost ratio by increasing the tolerance of your Fresnel system,” 6th International Conference on Concentrating Photovoltaic Systems, Proc. of AIP 1277, pp. 81-84, Freiburg, Germany, October 2010.
[ 26 ] Z. Zamora, A. Cvetkovic, M. Buljan, M. Hernandez, P. Benitez, J.C. Mi- nano, O. Dross, R. Alvarez, and A. Santamaria, “Advanced PV concentrators,” 34th Photovoltaic Specialists Conference, pp. 929-932, Philadelphia, PA, June 2009.
[ 27 ] P. Benitez, J. C. Minano, P. Zamora, M. Hernandez, and A. Cvetkovic, “Kohler concentrator,” U.S. Pat. 8000018, August 2011.
[ 28 ] W.C. Shieh and G.D. Su, “Compact solar concentrator designed by minilens and slab waveguide,” High and Low Concentrator Systems for Solar Electric Applications VI, Proc. of SPIE 8108, pp. 8108H.1-8108H.9, San Diego, CA, U.S.A., August 2011.
[ 29 ] E.H. Banaei and A.F. Abouraddy, “Design and fabrication of polymer-fiber-based luminescent solar concentrator fabrics,” CLEO: Science and Innovations, San Jose, CA, U.S.A., May 2012.
[ 30 ] O. Selimoglu and R. Turan, “Exploration of the horizontally staggered light guides for high concentration CPV applications,” Optics Express, Vol. 20, Issue 17, pp. 19137-19147, August 2012.
[ 31 ] S. Bouchard and S. Thibault, “Planar waveguide concentrator used with a seasonal tracker,” Applied Optics, Vol. 51, Issue 28, pp. 6848-6854, October 2012.
[ 32 ] S.C. Chu, H.Y. Wu, and H.H. Lin, “Planar lightguide solar concentrator,” Photonics for Solar Energy Systems IV, Proc. of SPIE 8438, pp.843810.1-843810.7, Brussels, Belgium, April 2012.
[ 33 ] W. J. Smith, “Modern optical engineering,” The McGraw-Hill Company, 2008.
[ 34 ] A. Ghatak, “Optics,” The McGraw-Hill Company, 2005.
[ 35 ] J.C. Minano, J.C. Gonzalez, “New method of design of nonimaging concentrators,” Applied Optics, Vol. 31, No. 16, pp. 3051-3060, June 1992.
[ 36 ] J. Chaves, “Introduction to Nonimaging optics,” Taylor & Francis, 2008.
[ 37 ] R. Leutz and A. Suzuki, “Nonimaging Fresnel lenses : design and performance of solar concentrators,” Springer-Verlag Berlin Heidelberg, 2001.
[ 38 ] Solar spectral irradiance, http://rredc.nrel.gov/solar/spectra/am1.5/
[ 39 ] M. Bass, “Handbook of Optics: Volume II - Devices, Measurements, and Properties, Third Edition,” The McGraw-Hill Company, 2011.
[ 40 ] P. Benitez, J.C. Minano, J.Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernandez, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Optical Engineering 43, Issue 7, pp. 1489-1502, July 2004.
[ 41 ] J.L. Alvarez, M. Hernandez, P. Benitez, and J.C. Minano, “TIR-R concentrator : a new compact high-gain SMS design,” Nonimaging Optics: Maximum Efficiency Light Transfer VI, Proc. of SPIE 4446, pp. 32-42, San Diego, CA, U.S.A., July 2002.
[ 42 ] SCHOTT,http://www.schott.com/english/index.html
[ 43 ] FILMETRICS,http://www.filmetrics.com/
指導教授 陳怡呈(Yi-cheng Chen) 審核日期 2012-11-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明