博碩士論文 993208005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:44.192.253.106
姓名 胡智愷(ZHI-KAI HU)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 大尺寸金屬有機化學氣相沉積反應腔之數值分析模擬研究
(The simulation analysis of a large-size MOCVD reactor)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 以RTP硒化法探討CIS薄膜及元件特性之研究
★ 局域性表面電漿共振效應應用於OLED出光增益之研究★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究
★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿
★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究★ 使用電子迴旋共振化學氣相沉積製備異質接面太陽能電池表面鈍化氫化非晶矽薄膜之製程參數研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) MOCVD為製造發光二極體(LED)的關鍵設備,MOCVD系統的組件大致可分為:反應腔、氣體控制系統、反應源及廢氣處理系統等。 反應腔體為MOCVD過程中發生化學反應的地方,腔體與氣體供應系統連接,並藉由噴嘴(nozzle)或噴氣頭(showerhead)將氣體混合;腔體材質通常採用不鏽鋼製作,腔體的內壁則由石英或是高溫陶瓷構成內襯,而腔體中的乘盤置於加熱器之上。
MOCVD反應腔的設計對薄膜厚度均勻性和品質而言非常關鍵,
本文以CFD計算流體力學軟體Fluent針對大尺寸近耦合MOCVD反應腔體設計做一研究探討,並以載台與進氣口間隙、腔體壁面溫度、進氣口溫度、載台旋轉速度、壓力變化等作為研究參數。初步探討大尺寸下MOCVD腔體內部熱流場之行為。本研究結果也將提供設計大尺寸近耦合MOCVD反應腔體的基本架構.
摘要(英) MOCVD is a key process for Light Emitting Diode industry, and the main components in a MOCVD system include reaction chamber, gas control system, MO source system and scrubber.
Basically, the reaction chamber connected with the gas supply system is a place where chemical reaction happened for MOCVD process. It makes MO source and carrier gas into a mixed gas by using the gas inlet system nozzle or showerhead. Generally, the material of the reactor is stainless steel, and the chamber wall is usually made by quartz or ceramics, and the susceptor is placed upper to the heater.
Design of a MOCVD reactor is very critical for epitaxy thin film uniformity and also the quality. A numerical Analysis for a large size closed-spaced MOCVD reactor will be developed by introducing the existing software Computational Fluid Dynamics FLUENT in this research. The numerical parameters will involve space between gas inlet and susceptor, wall temperature, gas inlet temperature, susceptor rotation rate, chamber pressure and so on. In the paper, we primarily investigate the behavior for thermal flow field of a large size close-spaced MOCVD reactor. Additionally, the results of this study can be used as a basic frame work for designing a large size close-spaced MOCVD reactor.
.
關鍵字(中) ★ 金屬有機化學氣相沉積
★ 加熱器
★ 熱流場
★ 反應腔體
★ 發光二極體
關鍵字(英)
論文目次 ................................................................ 13
2-1-2 化學氣相沉積(CVD)反應步驟 .................................... 17
2-2 化學氣相沉積分類 ................................................................... 19
2-3 磊晶生長示意圖 ....................................................................... 23
2-4 強制、自然對流效應 ............................................................... 25
iii
2-5 熱質傳耦合效應 ....................................................................... 27
2-6 金屬有機化學氣相沉積機制 ................................................... 28
2-6-1 金屬有機化合物源 ........................................................ 28
2-6-2 氫化物源 ........................................................................ 30
2-7 金屬有機化學氣相沉積反應腔系統 ............................... 32
2-7-1 MOCVD反應腔體設計要點 ......................................... 32
2-7-2 研究型水平反應腔體 .................................................... 36
2-7-3 生產型水平反應腔體 .................................................... 38
2-7-4 高速旋轉式反應腔體 ............................................................ 40
2-7-5 近耦合式反應腔體 ................................................................ 42
2-8 近耦合式MOCVD反應腔系統機制分析 .............................. 44
2-9 相關條件假設闡述 ................................................................... 48
2-9-1 動量傳輸 ........................................................................ 49
2-9-2 熱能傳遞 ........................................................................ 49
2-9-3 質量傳輸 ........................................................................ 50
2-9-4 輸送性質 ........................................................................ 51
2-9-5 統御方程式 .................................................................... 52
第三章:數值分析運算 ............................................................................. 53
3-1 計算流體力學軟體FLUENT背景介紹 .................................. 53
iv
3-2 FLUENT原理 ............................................................................ 54
3-2-1 有限體積法 .................................................................... 54
3-2-2 流體區域離散 ................................................................ 55
3-3 流場疊代求解方法 ................................................................... 57
3-4 交錯網格與控制體積 ............................................................... 60
3-5 收斂條件 ................................................................................... 61
第四章:結果與討論 ................................................................................. 62
4-1 研究內容 ................................................................................... 62
4-2 腔體尺寸網格說明 ................................................................... 66
4-3 改變進氣口與載台之間間隙 ................................................... 69
4-4 改變腔體壁面溫度 ................................................................... 75
4-5 改變進氣口溫度 ....................................................................... 79
4-6 無載台轉速下腔體壓力影響 ................................................... 83
4-7 定載台轉速下腔體壓力影響 ................................................... 88
4-8 定壓力下轉速影響 ................................................................... 92
第五章:結論與展望 ................................................................................. 97
參考文獻 ............................................................................................... 98
參考文獻 [1] G. Evans and R. Greif, ※Effect of Boundary Conditions on the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor, ㄑNumerical Heat Transfer , Vol. 12, pp. 243-252, 1987.
[2] G. Evans and R. Greif, ※A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor,ㄑTransactions of the ASME, Journal of heat transfer, Vol. 109, pp. 928-935, 1987.
[3] I. FOTIADIS, Anthony MKREMER, Donald R. McKENNA and Klavs F. JENSEN, ※Complex flow phenomena in vertical MOCVD reactors : effect on deposition uniformity and interface abruptness.ㄑ, Journal of Crystal. Growth, Vol.85, pp. 154-164, 1987.
[4] A. H. Dilawari and J. SZEKELY, ※Computed results for the deposition rates and transport phenomena for an MOCVD system with a conical rotating substrate.ㄑ, Journal of Crystal Growth, Vol.97, pp. 777-791, 1987.
[5] S. Patnaik and R. A. Brown, ※Hydrodynamic dispersion in rotating-disk OMVPE reactors : Numerical simulation and experimental measurements.ㄑ, Journal of Crystal Growth, Vol. 108, pp. 491-498, 1988.
[6] F. Durst, L. Kadinskii, ※Numerical study of transport phenomena in MOCVD reactors using a finite volume multigrid solver. ㄑ, Journal of Crystal Growth, Vol. 125, pp. 612-626, 1991.
99
[7] G. W. Young, S. I. Hariharan, and R. Carnahan, ※Flow effects in a vertical CVD Reactor,ㄑ SIAM Journal on Applied Mathematics , Vol.52, pp. 1509-1532, 1992
[8] W. Y. Chung, D. H. Kim, and Y. S. Cho, ※Modeling of Cu Thin Film Growth by MOCVD Process in a Vertical Reactor,ㄑ Journal of Crystal Growth , Vol. 180, pp 691-697, 1997.
[9] S. Joh and G. H. Evans, ※Heat Transfer and Flow Stability in a Rotating Disk/Stagnation Flow Chemical Vapor Deposition Reactor,ㄑ Numerical Heat Transfer, Part A: Applications , Vol. 31, pp. 867-879, 1997.
[10] D. W. Weyburne and B. S. Ahem, ※Design and operating considerations for a water-cooled close-spaced reactant injector in a production scale MOCVD reactor,ㄑJournal of Crystal Growth, Vol. 170, pp. 77-82, 1997.
[11] Theodoros G. Mihopoulos, ※Simulation of flow and growth phenomena in a close-spaced reactorㄑJournal of Crystal Growth, Vol. 195, pp. 725-732, 2000
[12] A. G. Mathews and J. E. Peterson, ※Flow Visualizations And Transient Temperature Measurements In An Axisymmetric Impinging Jet Rapid Thermal Chemical Vapor Deposition Reactor,ㄑJournal of Heat Transfer, Vol. 124, pp. 564-570, 2002.
[13] C. Park, J. Y. Hwang, M. Huang and T. J. Anderson, ※Investigation Of An Up Flow Cold-Wall CVD Reactor By Gas Phase Raman
100
Spectroscopy,ㄑThin Solid Films, Vol. 409, pp. 88-97, 2002.
[14] H. V. Santen, C. R. Kleijn, E. A. Harry and V. D. Akker, ※On Turbulent Flow In Cold-Wall CVD Reactor,§ Journal of Crystal Growth, Vol. 212, pp. 299-310, 2000.
[15] G. Luo, S. P. Vanka and N. Glumac, ※Fluid Flow And Transport Processes In A Large Area Atmospheric Pressure Stagnation Flow CVD Reactor For Deposition Of Thin Films,§ International Journal of Heat and Mass Transfer, Vol. 47, pp. 4979-4994, 2004.
[16] B. Mitrovic, A. Gurary, L. Kadinski, ※On the flow stability in vertical rotating disc MOCVD reactors under awide range of process parameters,§ Journal of Crystal Growth, Vol. 287, pp. 656每663, 2005.
[17] B. Mitrovic, §A. Parekh, J. Ramer, ※Reactor design optimization based on 3D modeling of nitrides deposition in MOCVD vertical rotating disc reactors,§ Journal of Crystal Growth, Vol. 289, pp. 708-714, 2006.
[18] B. Mitrovic, Alex Gurary, William Quinn, ※Process conditions optimization for maximum deposition rate and uniformity in vertical rotating disc MOCVD reactors based on CFD modeling,§ Journal of Crystal, Vol. 303, pp. 323-329, 2007.
[19] ZHONG ShuQuan, ※Numerical studies on flow and thermal fields in MOCVD reactor,§ Chinese Science Bulletin, Vol. 55,pp. 560-566, 2009.
[20] C. H. Lin, W. T. Cheng, ※Effect of embedding a porous medium on the deposition rate in a vertical rotating MOCVD reactor based on CFD modeling,§ International Communications in Heat and Mass Transfer, Vol. 36, pp. 680-685, 2009.
[21] 絻ㄛVLSI 庨婖撮胍ㄛ詢蕾衄癹鼠侗ㄛ1996﹝
101
[22] M. Meyyappanㄛcomputational modeling in semiconductor processing, Longman Scientific & Technicalㄛ1994
[23] 源祩轄ㄛ圉闚桽隴撮胍ㄛ?赽馱堤唳扦ㄛ2009﹝
[24] 湮傖ㄛ踢衄趙磁昜眈濠儒價渙摯蚚ㄛ褪堤唳扦ㄛ2008﹝
[25] D. K . Kim, ※Particle behavior in a vertical channel with thermal convection in the low Grashof number regime,ㄑ Computers & Fluids, Vol. 48, pp. 183-191.
[26] 豌峎捚杻禎ㄛ閉曾閨楷俶拸儂趙昜ㄛ褪悝堤唳扦ㄛ1985.
[27] ANSYS FLUENT 12.0ㄛUser ’ s Guideㄛ2009﹝
[28] 卼傖ㄛ衄癹啋匼楊ㄛ湮堤唳扦ㄛ2003﹝
[29] H. SchlichtingㄛBoundary-Layer TheoryㄛMcGraw Hillㄛ1979﹝
[30] 間媢瑕ㄛANSYS 12.0衄癹啋匼煦昴俇忒ㄛ?赽馱堤唳扦ㄛ2011﹝
[31] ANSYS FLUENTㄛFLUENT價渙掝最ㄛ湮堤唳扦ㄛ2012﹝
[32] Chang-Yong Shin, ※Numerical analysis for the growth of GaN layer in MOCVD reactor, ㄑ Journal of Crystal Growth, Vol. 247, pp. 301-312, 1998.
[33] C. Hemmingsson, ※Modeling, optimization, and growth of GaN in a vertical halide vapor-phase epitaxy bulk reactor,ㄑ Journal of Crystal
102
Growth, Vol. 310, pp. 906-910, 2007.
[34] L. Kadinski, ※Computational analysis of GaN/InGaN deposition in MOCVD vertical rotating disk reactors,ㄑ Journal of Crystal Growth, Vol. 261, pp. 175-181, 2004.
[35] Ran Zuo, ※Transport phenomena in radial flow MOCVD reactor with three concentric vertical inlets,ㄑ Journal of Crystal Growth, Vol. 293, pp. 498-508, 2006.
[36] Theodoros G, ※A reaction-transport model for AlGaN MOVPE growthㄑ Journal of Crystal Growth, Vol. 195, pp. 733-739, 1998.
[37] A. Hirako, M. Yoshitani, ※GaN-MOVPE growth and its microscopic chemistry of gaseous phase by computational thermodynamic analysis,ㄑ Journal of Crystal Growth, Vol. 237-239, pp. 931-935, 2002.
[38] A. Hirako, ※Analysis of TMGa/NH3/H2 reaction system in GaN-MOVPE growth by computational simulation,ㄑ Physical States Solid, Vol. 203, pp. 1716-1719, 2006.
[39] Chyi-Yeou SOONG, ※Thermo-Flow Structure and Epitaxial Uniformity in Large-Scale Metalorganic Chemical Vapor Deposition Reactors with Rotating Susceptor and Inlet Flow Control,ㄑ Journal of Apply physical, Vol. 37, pp. 5823-5834, 1998.
[40] Dimitrios I. FOTIADIS, ※TRANSPORT PHENOMENA IN VERTICAL REACTORS FOR METALORGANIC VAPOR PHASE EPITAXY,ㄑ Journal of Crystal Growth, Vol. 102, pp. 441-470, 1990.
[41] ALAN G. THOMPSON, ※The scaling of CVD rotating disk reactors
103
to large sizes and comparison with theory,ㄑ Journal of Electronic Materials, Vol. 25, pp. no 9, 1996.
[42] J. H. Boo, ※Growth of SiC thin films on graphite for oxidation-protective coating, ㄑ Journal of Vacuum Society, Vol. 18, no 4, 2000.
指導教授 利定東 審核日期 2012-11-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明