博碩士論文 993208013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.145.60.166
姓名 杜冠翰(Kuan-han Du)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 1kW質子交換膜商用電堆中四個特徵區段單電池之電化學交流阻抗圖譜診斷
(Diagnosis of the single cells chosen in four different regions of 1 kW-commercial stack of polymer electrolyte membrane fuel cells by electrochemical impedance spectroscopy)
相關論文
★ 鋁鈧濺鍍薄膜中鈧含量對其微結構、光反射性與腐蝕性質之影響★ 鍍金發泡鎳質子交換膜燃料電池之電池操作溫度、陰極加濕溫度、陰極計量比對其性能影響之研究
★ 碳酸鹽沉澱製備Ba0.5Sr0.5Co0.8Fe0.2O3 及其在滲透銀前後之陰極特性比較★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究
★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究
★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響
★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作
★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究
★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討★ n-型(100)矽單晶巨孔洞之電化學研究
★ 鋁在酸性溶液中孔蝕行為研究★ 微陽極引導電鍍與監測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究採用電化學交流阻抗圖譜法(Electrochemical Impedance Spectroscopy, EIS)來檢測由47顆單電池組成之一瓩級質子交換膜商用電堆,希望藉由此種診斷技術,找出電堆中四個特徵區段中單電池的特性差異,進而推測該區域容易發生之問題。
實驗時,先將電堆依據堆疊位置均分出4個區段(分別為A, B, C 和D),在一區段挑出位於中間之單電池進行檢測(分別以Am, Bm, Cm 和Dm代表)。電堆的A區段靠近陽極端,而D區域則靠近陰極端。藉由改變電池操作參數,量測各電池之電化學交流阻抗圖譜,所得圖譜經Z-View軟體之模擬分析,可推理出合理之等效電路,並求出電路圖中各元件數值。
實驗結果發現:活化時間的改變對商用電堆之電荷轉移阻抗(Rct)並沒有造成明顯的影響,也就是說在電堆僅需運作約1小時,觸媒的催化反應即可達穩定狀態。且當電堆運作經3小時候,在質傳阻抗(Rmt)及歐姆阻抗(Rohm)均呈現較穩定狀態。另外,當氫氣流量較低(5 L/min)時,在電堆中離氫氣端最遠的Dm電池之質傳阻抗值出現最大值(0.920 ohm),並且隨著氫氣流量增加而使其質傳阻抗值下降,表示該電堆的流道設計恐會發生末端氣體擴散不足之問題。並且在電堆中不同區域,發現離氫氣端越遠其歐姆阻抗值越高,可能原因為末堆電池加濕不足或電堆夾持壓力不足所致。
摘要(英) Electrochemical impedance spectroscopy (EIS) was used to conduct a non-destructive test on a commercial stack of 1.0 kW proton exchange membrane fuel cells (PEMFCs). This test provided an in-situ diagnosis of the stack to identify the different problem with the presence of unusual high impedance.
The testing stack consists of 47 single cells. It was sorted into four groups (i.e., A, B, C and D) with respect to the position. Group A was at the position most closed to the anode, and departed away for the group of B, C and D so that group D with the most closed position to the cathode. The middle among the single cells in each group (i.e., denoted as Am、Bm、Cm and Dm, respectively) was focused. In the process of testing, the operation was maintained at room temperature; air was fed on the cathode at room temperature without humidification; hydrogen gas humidified at 40℃was fed on the anode. The flow rate of hydrogen gas and air was varied in the test to explore the performance of each specified single cell in every group.
The experimental data were simulated with commercial software (i.e., Z-View) to estimate the magnitude of each elements in a proposed equivalent circuit. The experiment show: First, by the break-in time provide information that effect of different operating parameters, such as degree of water accumulation due to design of flow channel. Second, when the hydrogen flow rate is low (5 L / min), the end of single cell Dm response to feeding rate of hydrogen is shortage due to the design of the flow channel; and when the air flow rate is low(10 L/min), the end of single cell Am was also found the high diffusion resistance value. Third, different of stack position will cause the ohm resistance change, the phenomenon is speculation insufficient assembly pressure.
關鍵字(中) ★ 非破壞性診斷分析
★ 質子交換膜電堆
★ 電化學交流阻抗法
關鍵字(英) ★ electrochemical impedance spectroscopy
★ PEM fuel cell
論文目次 中文摘要…………………………………………………………………I
Abstact…………………………………………………………………II
致謝……………………………………………………………………III
表目錄…………………………………………………………………VII
圖目錄………………………………………………………………VIII
第一章 緒論……………………………………………………………1
1.1. 前言………………………………………………………………1
1.2. 電化學發展………………………………………………………2
1.2.1直流電電化學理論………………………………………………2
1.2.2交流電電化學理論………………………………………………3
1.3. 研究動機與目的…………………………………………………4
第二章 基礎原理與文獻回顧…………………………………………5
2.1 基礎原理…………………………………………………………5
2.1.1 燃料電池基本原理……………………………………………5
2.1.2 直流電極化曲線(I-V curve)基本原理……………………10
2.1.3 電化學交流(EIS)阻抗基本原理……………………………12
2.2 文獻回顧…………………………………………………………19
2.2.1 電化學交流阻抗文獻回顧……………………………………19
第三章 實驗方法……………………………………………………26
3.1實驗設備與實驗材料……………………………………………26
3.1.1 實驗設備………………………………………………………26
3.1.2實驗材料………………………………………………………27
3.2實驗流程與參數設定……………………………………………28
第四章 實驗結果……………………………………………………30
4.1電堆活化時間對商用電堆之EIS測試之影響……………………30
4.2電堆流量改變之影響……………………………………………31
4.2.1氫氣流量變化之影響…………………………………………31
4.2.2空氣流量變化之影響…………………………………………33
4.3電堆位置改變之影響……………………………………………34
第五章 實驗討論……………………………………………………35
5.1 活化時間對商用電堆之關係……………………………………35
5.2 電堆流量改變之關係……………………………………………37
5.2.1 氫氣流量改變…………………………………………………37
5.2.2 空氣流量改變…………………………………………………39
5.3 電堆位置改變之關係……………………………………………39
第六章 結論與未來展望……………………………………………42
6.1結論………………………………………………………………42
6.2未來展望…………………………………………………………42
第七章 參考文獻……………………………………………………44
附錄(一) ……………………………………………………………88
參考文獻 [1] L. Galvani, 1791 “De viribus electricitatis in motu musculari Commentarius”.
[2] E. Warburg, 1901, “Drud. Ann. der Physik", Polarization capacity of platinum, vol. 6, pp. 125.
[3] J. E. B. Randles, 1947, “Kinetics of rapid electrode reactions", Discussions of the Faraday Society, vol. 1, pp.11.
[4] M. Sluyters-Rehbach, J. H. Sluyter, 1984, “Comprehensive Treatise of Electrochemistry", Plenum Press, New York, vol. 9, pp. 177.
[5] K. sopian, W. R. W. Daud, “Challenges and future developments in proton exchange membrane fuel cells”, Renewable Energy, Vol. 31, pp. 719.
[6] 衣寶廉,「燃料電池-應用與原理」,初版,五南,台北市,民國九十四年。
[7] 黃鎮江,「燃料電池」,三版,滄海,台中市,民國九十七年。
[8] U. Bossel, C. F. Schonbein, W. R. Grove, 2000, “The birth of the fuel cell, 1835-1845”, European Fuel Cell Forum.
[9] 侯明、吳金鋒、衣寶廉等,「PEM燃料電池流場板」,電源技術,25卷,2001年。
[10] EG & G Technical Services Inc. , 2004, “Fuel Cell Handbook”, 7th Eds, Nov.
[11] E. Barsoukov, J. R. Macdonald, 2005, “Impedance Spectroscopy:Theory, Experiment, and Application”, John Wiley & Sons, Inc., 2nd Eds
[12] A. J. Bard, L. R. Faulkner, 2000, “Electrochemical Methods Fundamentals and Application”, John Wiley & Sons, Inc., 2nd Eds, pp. 368.
[13] X. Yuan, H. Wang, J. C. Sun, J. Zhang, 2007, “AC impedance technique in PEM fuel cell diagnosis” International Journal of Hydrogen Energy, Vol. 32, pp. 4365.
[14] J. M. Fildes, P. Chen, X. Zhan, “Application of Electrochemical Impedance Spectroscopy, Color Visible Imaging, and Infrared Imaging for Non-Destructive Evaluation of Anti-Corrosion Coatings”, Northwestern University (Evanston, Ill.). Infrastructure Technology Institute, pp.4.
[15] C. H. Hsu, F. Mansfeld, 2001, Corrosion, vol. 57, pp. 747.
[16] D. Bevers, N. Wagner, M. V. Bradke, 1998, “Innovative production procedure for low cost PEFC electrodes and electrode/membrane structures” International Journal of Hydrogen Energy, Vol. 23, pp. 57.
[17] M. Ciureanu, H. Wang, 1999, Journal of The Electrochemical Society, Vol. 146, pp. 4031
[18] T. J. P. Freire, E. R. Gonzalez, 2001, Journal of Electroanalytical Chemistry, Vol. 503, pp. 57.
[19] J. M. Song, S.Y. Cha, W. M. Lee, 2001, Journal of Power Sources, Vol. 94, pp. 78.
[20] J. D. Kim, Y. I. Park, K. Kobayashi, M. Nagai, M. Kunimatsu, 2001, Solid State Ionics, Vol. 140, pp. 313.
[21] M. Ciureanu, S.D. Mikhailenko, S. Kaliaguine, 2003, Catalysis Today, Vol. 82, pp. 195.
[22] E. B. Easton, P. G. Pickup, 2005, Electrochimica Acta, Vol. 50, pp. 2469.
[23] S. S. Hsieh, S. H. Yang, C. L. Feng, 2006, “Characterization of the operational parameters of a H2/air micro PEMFC with different flow fields by impedance spectroscopy” Journal of Power Source, Vol. 162, pp. 262.
[24] X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, David P. Wilkinson, 2006, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I: Stack impedance” Journal of Power Sources, Vol. 161, pp. 929.
[25] C. M. Lai, J. C. Lin, K. L. Hsueh, C. P. Hwang, K.C. Tsay, L. D. Tsai, Y. M. Peng,2007, International Journal of Hydrogen Energy, Vol. 32, pp. 4381.
[26] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, 2007, Journal of Power Source, Vol. 32, pp. 4358.
[27] S. Wasterlain, D. Candusso, D. Hissel, F. Harel, P. Bergman, P. Menard, M. Anwar, 2010, Journal of Power Sources, Vol. 195, pp. 984.
[28] S. Asghari, A. Mokmeli, M. Samavati, 2010, “Study of PEM fuel cell performance by electrochemical impedance spectroscopy” International Journal of Hydrogen Energy, Vol. 35, pp. 9283.
[29] S. Asghari, M. H. Shahsamandi, M. R. Ashraf Khorasani, 2010, “Design and manufacturing of end plates of a 5 kW PEM fuel cell” International Journal of Hydrogen Energy, Vol. 35, pp. 9291.
[30] J. H. Lee, J. H. Lee, W. Choia, K. W. Park, H. Y. Sunc, J. H. Oh, 2010, “Development of a method to estimate the lifespan of proton exchange membrane fuel cell using electrochemical impedance spectroscopy” International Journal of Power Sources, Vol. 195, pp. 6001.
[31] X. Yuan, J. C. Sun, H. Wang, J. Zhang, 2006, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II: Individual cell impedance” Journal of Power Sources, Vol. 161, pp. 929.
[32] M. Kumagai, S. T. Myung, T. Ichikawa, H. Yashiro, 2010, “Evaluation of polymer electrolyte membrane fuel cells by electrochemical impedance spectroscopy under different operation conditions and corrosion” Journal of Power Sources, Vol. 195, pp. 5501.
[33] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, 2010, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes” International Journal of Hydrogen Energy, Vol. 32, pp. 4358.
[34] S. Asghari, A. Mokmeli, M. Samavati, 2010, “Study of PEM fuel cell performance by electrochemical impedance spectroscopy” International Journal of Hydrogen Energy, Vol. 35, pp. 9283.
[35] J. H. Lee, J. H. Lee, W. Choia, K. W. Park, H. Y. Sunc, J. H. Oh, 2010, “Development of a method to estimate the lifespan of proton exchange membrane fuel cell using electrochemical impedance spectroscopy” Journal of Power Sources, Vol. 195, pp. 6001.
[36] S. S. Hsieh, S. H. Yang, C. L. Feng, 2006, “Characterization of the operational parameters of a H2/air micro PEMFC with different flow fields by impedance spectroscopy” Journal of Power Source, Vol. 162, pp. 262.
[37] X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, David P. Wilkinson, 2006, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I: Stack impedance” Journal of Power Sources, Vol. 161, pp. 929.
[38] A. Iranzo, M. Munoz, E. Lo´pez, J. Pino, F. Rosa, 2010, “Experimental fuel cell performance analysis under different operating conditions and bipolar plate designs” International Journal of Hydrogen Energy, Vol. 35, pp. 11437.
[39] R. Kuhn, Ph. Kruger, S. Kleinau, M. Dawson, J. Geyer, M. Roscher, I. Manke, Ch. Hartnig, 2012, “Dynamic fuel cell gas humidification system” International Journal of Hydrogen Energy, Vol. 37, pp. 7702 .
[40] F. P. Ting, C. W. Hsieh, W. H. Weng, J. C. Lin, 2012, “Effect of operational parameters on the performance of PEMFC assembled with Au-coated Ni-foam” International Journal of Hydrogen Energy, Available online 4 April
指導教授 林景崎(Jing-chie Lin) 審核日期 2012-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明