博碩士論文 993208017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:13.59.195.118
姓名 黃稚弘(Chih-hung Huang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 二維剪力槽中顆粒體群聚現象之研究探討
(The cluster mechanism in sheared granular gas)
相關論文
★ 二維儲槽濾材顆粒流場之研究★ 粗細顆粒混合之流動性質分析
★ MOCVD腔體熱流場與新式進氣檔板之設計模擬分析研究★ 稻殼於流體化床進行快速裂解產製生質燃油之研究
★ 利用CFD 模擬催化生質能在快速熱裂解中碳沉積對於催化劑去活化反應影響★ 反向氣流對微小粉末於儲槽排放行為影響之研究
★ 積層製造自動化粉末回收系統-系統設計及其混合器之優化★ 雙床氣化爐冷模型中CFB入口速度、BFB床高和顆粒尺寸對矽砂之壓力分佈和質量流率的影響
★ 以實驗方式探討崩塌流場對可侵蝕底床侵蝕與堆積現象之影響★ 移動式顆粒床過濾器應用於去除PM2.5之研究
★ 超臨界顆粒流場中雙圓柱阻礙物震波交互影響之研究★ 添加微量液體對振動床中顆粒體分離現象的影響
★ 不同表面粗糙度的大顆粒在垂直式振動床中動態行為之研究★ 直渠道顆粒流之顆粒密度分離效應
★ 粉粒體於儲槽排放行為及氣泡現象之研究★ 初始體積占有率影響顆粒崩塌行為之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以二維環狀剪力槽作為實驗儀器,藉由內外邊壁轉動,施予槽內顆粒體剪切力及能量,並使用高速攝影機與數位攝影機,進行分析及觀察記錄顆粒體群聚現象,由實驗結果發現,當群聚現象發生時,群聚顆粒的流場切線速度會趨近於零,粒子溫度會下降。當末轉速上升時,粒子群聚強度下降。當系統顆粒總數增加時,粒子群聚強度會變大,且在高轉速時,增加的顆粒數對於群聚強度有較明顯的變化。另外當末轉速上升時,群聚團的粒子溫度與平均動能也隨之上升,顆粒團擾動較大,越不容易群聚。降低末轉速與增加顆粒總數,顆粒群聚時間會相對縮短。此外,我們也發現,在低轉速下,群聚密度較為緊密,且隨著末轉速上升,群聚的外型長寬比漸小,但當增加顆粒總數時,長寬比會隨之上升。我們也發現群聚密度與粒子溫度呈現Power law的關係,且粒子溫度與群聚強度也呈現Power law的關係,而群聚長寬比與群聚強度則呈現線性關係。在最後我們由實驗的結果歸納出不同轉速與顆粒總數下,群聚與未群聚之相圖,利用相圖便可以清楚瞭解各條件下顆粒是否產生群聚現象。
摘要(英) The kinetic energy of particles is dissipated because of the inelastic collisions and friction effect. Hence, granular materials has an interesting phenomenon that the so-called granular clustering. In this study, we performed a series of experiments to investigate the phenomenon of granular clustering by using two-dimensional annular shear cell. The particle motions are recorded by a high-speed camera and a digital camera. Image processing technology and particle tracking method are employed to measure the velocities, local solid fraction, clustering particle number and granular temperature. The results show that the tangential velocity is closed to zero, and the granular temperature is also reduced. The cluster index increases with the decrease of the final outer wall velocity and the increase of the particle number of system. The particle number of system has a significant influence on cluster index as the higher final wall velocity is applied. The particle cluster is not easy to form with the higher final wall velocity leading to the greater granular temperature. The clustering time is reduced with the decrease of final wall velocity and the increase of particle number of system. The cluster density and cluster aspect ratio increase as the final wall velocity is reduced. Additionally, we demonstrate that cluster density and granular temperature exists a power law relationship and granular temperature and index of cluster also show the power law relationship. Finally, the phase diagram of cluster is found according to the final wall velocity and the particle number of system.
關鍵字(中) ★ 二維剪力槽
★ 顆粒氣體
★ 顆粒群聚現象
關鍵字(英) ★ Granular temperature
★ Annular shear cell
★ Clustering
★ Granular flow
論文目次 附表目錄 V
附圖目錄 VI
符號說明 IX
第一章 緒論 1
1.1粒子流簡介 1
1.1.1顆粒體 1
1.1.2 粒子流特性 2
1.2 剪力粒子流研究發展 4
1.3 顆粒氣體群聚現象 5
1.4 研究動機與架構 9
第二章 實驗方法與原理 11
2.1 實驗設備 11
2.1.1 二維環狀剪力槽 11
2.1.2 顆粒體 12
2.1.3 觀測及量測儀器 13
2.2 實驗方法及原理 15
2.2.1 粒子溫度概念 15
2.2.2 影像處理分析方法 16
2.2.3 分析參數 18
2.3 實驗流程及步驟 19
2.3.1 實驗配置 19
2.3.2 實驗步驟 20
2.4 實驗誤差 22
第三章 結果與討論 24
3.1顆粒群聚現象 24
3.1.1顆粒群聚現象之觀察 24
3.1.2影響顆粒群聚的因素 26
3.1.3顆粒群聚性質探討 27
3.1.4顆粒群聚與未群聚之差異 28
3.2不同末轉速與顆粒數對顆粒群聚現象之影響 29
3.2.1 群聚強度與外環末轉速之關係 30
3.2.2 群聚粒子溫度、群聚粒子動能與不同外環末轉速之關係 32
3.2.3 群聚時間對不同外環末轉速之關係 33
3.3顆粒群聚密度與群聚形狀之探討 34
3.3.1 顆粒群聚密度 34
3.3.2 群聚形狀 35
3.3.3 粒子溫度、群聚密度、群聚強度與群聚長寬比之關係 36
3.3.4 顆粒群聚條件之相圖 38
第四章 結論 39
參考文獻 40
附錄 44
參考文獻 Campbell, C. S., “Rapid Granular Flows,” Annual Review of Fluid Mechanics, Vol. 22, pp 57-92, 1990.
Campbell, C. S., and Brennen, C. E., “Computer Simulation of Shear Flows of Granular Material”, Mechanics of Granular Materials, pp. 313-325, 1983.
Cattuto C., and Marconi U. M. B., “Ordering Phenomena in Cooling Granular Mixtures,” Physical Review Letters, Vol. 92, pp. 1745021-1745024, 2004.
Carr, J. F., and Walker, K. M., “An Annular Shear Cell for Granular Materials,” Powder Technology, Vol. 1, pp. 369-373, 1967.
Conway S. L., Liu, X., and Glasser, B. J., “Instability-induced Clustering and Segregation in High-shear Couette Flows of Model Granular Materials,” Chemical Engineering Science, Vol. 61, pp.6404-6423, 2006.
Conway S. L., Glasser, B. J., “Density Waves and Coherent Structures in Granular Couette Flows,” Physics of Fluids, Vol.16, pp. 509-529, 2004.
Elliott, K. E., Ahmadi, G., and Kvasnak, W., “Couette Flows of a Granular Monolayer an Experiment Study,’’ Journal of Non-Newtonian Fluid Mech, Vol. 74, pp. 89-111, 1998.
Faraday M., “On a Peculiar Class of Acoustical Figures; and on Certain Forms Assumed by a Group of Particles upon Vibrating Elastic Surfaces,” Philosophical Transactions of the Royal Society (London), Vol. 121, pp. 299-318, 1831.
Gerald, H., “Pattern Formation in Granular Materials,” Springer Verlag, 1999.
Goldhirsch, I., and Zanetti, G., “Clustering Instability in Dissipative Gases,” Physical Review Letters, Vol. 70, pp 1619-1622, 1993.
Goldhirsch, I., Noskowicsz, S. H., and Bar-Lev, O., “Theory of Granular Gases: Some Recent Results and Some Open Problems,” Journal of Physics: Condensed Matter, Vol. 17, pp. 2591-2608.2005.
Hsiau, S. S., and Yang W. L., “Stresses and Transport Phenomena in Sheared Granular Flows with Different Wall Conditions,” Physics of Fluids, Vol. 14, pp. 612-621, 2002.
Hopkins, M. A, and Louge, M. Y., “Inelastic Microstructure in Rapid Granular Flows of Smooth Disks,” Physics of Fluids , Vol. 3, No 1, pp 47-57, 1991.
Hvorslev, M. J., “Torsion Shear Test and Their Place in the Determination of ShearingResistance of Soils,” Proceedings of the American Society of Testing and Materials, Vol. 39, pp. 999-1022, 1939.
Hvorslev, M. J., “A Ring Shearing Apparatus for the Determination of the Shearing Resistance and Plastic Flow of Soil,” Proceedings, International Conference on Soil Mechanics and Foundation Engineering, Cambridge, Mass, Vol. 2, pp. 125-129, 1936.
Jaeger, H. M., and Nagel, S. R., “Physics of the Granular State,” Science, Vol. 255, pp. 1523-1531, 1992.
Jaeger, H. M., and Nagel, S. R., “Granular Solid, Liquids, and Gases,’’ Review of Modern Physics, Vol. 68, NO. 4, pp. 1259-1271, 1996.
Jain, N., Ottino, J. M., and Lueptow, R. M., “Effect of Interstitial Fluid on a Granular Flowing Layer,” Journal of Fluid Mechanics, Vol. 508, pp. 23-44, 2004.
Jasti, V., and Higgs, C., “Experiment Study of Granular Flows in a Rough Annular Shear Cell,” Physical Review E, Vol. 78, pp. 0413061-0413067, 2008.
Jasti, V., and Higgs, C., “A Fast First Order Model of a Rough Annular Shear Cell Using Cellular Automata,’’ Granular Matter, Vol. 12, pp. 97-106, 2010.
Kudrolli, A., Wolpert, M., and Gollub, J. P., “Cluster Formation due to Collisions in Granular Material,” Physical Review Letters, Vol. 78, pp. 1383-1386, 1997.
Lasinski, M. E., Curtis, J. S., and Peknt, J. F., “Effect of System Size on Particle-phase Stress and Microstructure Formation,” Physics of Fluids, Vol.16, pp. 265-273, 2004.
Liss, E. D., and Glasser, B. J., “The Influence of Clusters on the Stress in a Sheared Granular Material,” Power Technology, Vol. 116, pp. 116-132. 2001.
Liss, E. D., Conway S. L., and Glasser, B. J., “Density Waves in Gravity-driven Granular Flow Through A channel,” Physics of Fluids, Vol. 14, pp. 3309-3325. 2002.
Luding, S., and Herrmann, H. J., “Cluster-growth in Freely Cooling Granular Media,” Chaos, Vol. 9, pp. 673-681.1999.
Martin C. Marinack Jr., Venkata K. Jasti, Young Eun Choi, C. Fred Higgs III., “Couette Grain Flow Experiments: The effects of the Coefficient of Restitution, Global Solid Fraction, and Materials,’’ Powder Technology, Volume 211, Issue 1, Pages 144–155, 2011.
Novasad, J., “Apparatus for Measuring the Dynamic Angles of Internal Friction and External Friction of a Granular Material,” Collection Czech. Chen. Commun., Vol.29, pp. 2697-2701, 1964.
Ogawa, S., “Multi-temperature Theory of Granular Materials,” In Proceedings of US-Japan Seminar on Continuum-Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Tokyo, 1978.
Olafsen, J. S., and Urbach, J. S., “Clustering, Order, and Collapse in a Driven Granular Monolayer,” Physical Review Letters, Vol. 81, pp. 4369-4372.1998.
Reynolds, O., “On the Dilatancy of Media Composed of Rigid Particles in Contact,” Philosophical Magazine, Vol. 20, pp. 469-481, 1885.
Rice, R. B., and Hrenya, C. M., “Characterization of Clusters in Rapid Granular Flows,’’ Physical Review E, Vol.79, pp. 0213041-0213048. 2009
Richard, P., “Slow Relaxation and Compaction of Granular Systems,” Nature Materials, Vol. 4, pp. 121–128, 2005.
Scarlett, B., and Todd, A. C., “A Split Ring Annular Shear Cell for Determination of the Shear Strength of a Powder,” Scientific Instruments, Vol. 1, pp. 655-656, 1968.
Schlichting, H. J., and Nordmeier, V., Math. Naturl Sciences. 49 323, 1996.
Stephens, D. J. and Bridgwater, J., “The Mixing and Segregation of Cohesionless Particulate Materials,”Powder Technology., Vol. 21, pp. 17-44, 1978.
Tan, M. L., and Goldhirsch, I., “Intercluster Interactions in Rapid Granular Shear Flows,” Physics of Fluids, Vol. 9, No 4, pp. 856-869, 1997.
指導教授 蕭述三(Shu-san Hsiau) 審核日期 2012-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明