博碩士論文 993208020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.22.240.205
姓名 葉嘉珉(Chia-min Yeh)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 以化學浴沉積法製備不同結構氧化鋅光電極薄膜之研究
(The fabrication of Zinc Oxide photoelectrode thin film with different structures by chemical bath deposition)
相關論文
★ 金屬粉末射出成型毛細吸附脫脂模擬★ 燃料電池複合式流道設計與膜電極組製程
★ 氣態鋅與水蒸氣混合之流場與反應爐參數分析★ 利用化學水浴沉積法製作Ni-ZnO光電極之研究
★ 電解水產氫之電解液流場效應分析★ 以化學水浴法製備AgInS2可見光光電極及其摻雜銅之研究
★ 高溫高壓之電解水產氫效率分析★ 超音波場下電解水產氫之效應分析
★ 以化學水浴法製備氧化鋅光電極薄膜之研究★ 以化學浴沉積法製備四元化合物光電極薄膜之研究
★ 利用化學水浴法鍍製二氧化鈦光電極薄膜之研究★ 以化學浴沉積法製備Cu-In-S化合物光電極薄膜之研究
★ 以化學浴沉積法製備β-In2S3化合物光電極薄膜之研究★ 電解水產氫中極化作用之分析與研究
★ 磁場對水電解產氫效率增益之機制研究★ 二氧化銥/氧化還原石墨烯複合觸媒之水電解效能研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究利用化學水浴沉積法於ITO導電玻璃上製備氧化鋅薄膜,應用於光電化學產氫系統中做為光電極;藉由改變錯合劑種類與濃度,製備出不同形貌的氧化鋅薄膜,比較各種形貌之薄膜光吸收及光電特性表現後,接著進一步討論沉積溫度、沉積層數及熱處理溫度等製程參數對薄膜所造成的影響,同時也逐步提升薄膜之光電特性表現。
實驗中發現,不同錯合劑種類與濃度會生成不同的氧化鋅結晶形貌,當錯合劑為氨水,濃度0.4M及0.8M為顆粒狀結構,而濃度1.2M及1.6M則為花瓣狀結構;錯合劑改為六亞甲基四胺皆呈現六角柱狀結構,而錯合劑使用三乙醇胺則為顆粒狀結構,比較後發現錯合劑為濃度4%之三乙醇胺所製備出的顆粒狀薄膜有較佳的光吸收及光電特性。接著逐步改變鍍浴溫度、鍍膜層數與熱處理溫度等參數,實驗結果顯示,在鍍浴溫度50℃、鍍膜層數5層、熱處理溫度400℃時有較佳的光暗電流密度差值,相較於其他類似製程之文獻已獲得不錯之提升,無施加偏壓下其值可達0.32mA⁄cm^2 ,且相對於硫化物系列材料而言,本研究之氧化鋅光電極有較佳的長時間穩定性。
摘要(英) In this study, zinc oxide thin films are deposited on ITO conductive glass substrates with chemical bath deposition (CBD) method. It can be used as the photoelectrode in photoelectrochemical water-splitting to produce hydrogen.
By changing different types and concentrations of complexing agent to form zinc oxide thin film, the various crystal structures are obtained, including particles, hexagonal cylinder, and flower-like structures. It is found that using 4% triethanolamine (TEA) as complexing agent, the particles structure can has better optical and photoelectrochemical properties, if 4% triethanolamine (TEA) is used as complexing agent
The impact of temperature of bath, number of deposition layers, and temperature of annealing on the properties of films are then be investigated. Results showed that current density difference between light and dark conditions is largest when the parameters are as following: 50℃ of bath temperature, 5 deposition layers, 400℃ of annealing temperature. The current density difference between light and dark conditions is 0.322mA⁄cm^2 without applying bias voltage. Films made in this thesis have better performance than those made in similar process before.
關鍵字(中) ★ 氧化鋅
★ 化學水浴沉積法
★ 錯合劑
★ 光電極
關鍵字(英) ★ Zinc Oxide
★ Chemical Bath Deposition
★ Complexing A
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論                        1
1-1 前言 1
1-2 各種製氫方式 3
1-3 光電化學產氫原理 4
1-4 化學水浴沉積法(Chemical Bath Deposition,CBD) 6
1-4-1 化學水浴沉積法基本反應機制 8
1-4-2 化學水浴沉積法沉積氧化物之反應機制 9
1-4-3 薄膜沉積成長機制 10
1-4-4 薄膜成長與溶解度之關係 11
1-5 文獻回顧 14
1-5-1 光電化學產氫及光觸媒文獻回顧 14
1-5-2 化學水浴沉積法文獻回顧 16
1-5-3 化學水浴沉積法沉積氧化鋅文獻回顧 18
1-6 研究目的 21
第二章 研究方法與實驗步驟                22
2-1 實驗流程及參數設定 22
2-2 實驗裝置及材料 22
2-2-1 實驗基材 22
2-2-2 實驗藥品 23
2-2-3 實驗設備 24
2-3 實驗步驟 25
2-3-1 基材前處理 25
2-3-2 反應溶液配置與鍍膜方法 26
2-3-3 鍍膜完成之試片後處理 28
2-3-4 電極封裝 28
2-4 薄膜物性量測分析 29
2-4-1 UV-Visible(紫外∕可見光光譜儀) 29
2-4-2 XRD(X-ray Diffraction,X光粉末繞射儀) 30
2-4-3 SEM(Scanning electron microscope,掃描式電子顯微鏡) 31
2-4-4 光電化學特性(光暗電流密度)量測 31
第三章 結果與討論                    33
3-1 不同錯合劑與濃度對薄膜的影響 33
3-1-1 錯合劑為〖NH〗_3 33
3-1-2 錯合劑為C_6 H_12 N_4 36
3-1-3 錯合劑為TEA 39
3-2 不同錯合劑之最佳濃度參數比較 42
3-3 不同鍍浴溫度對薄膜的影響 43
3-4 不同鍍膜層數對薄膜的影響 45
3-5 不同熱處理溫度對薄膜的影響 48
3-6 穩定性測試 50
第四章 結論與未來展望                  51
4-1 結論 51
4-2 未來展望 53
參考文獻                         54
參考文獻 [1] 哥本哈根氣候峰會觀察,經濟部能源局¬¬-2010年2月能源報導。 http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=201002&Page=4
[2] Cancun Agreements,聯合國氣候變化綱要公約(unfccc)。
http://unfccc.int/meetings/cancun_nov_2010/items/6005.php
[3] 聯合國氣候變化綱要公約第17次締約國大會觀察與感想,經濟部能源局¬¬-2012年2月能源報導。
http://energymonthly.tier.org.tw/outdatecontent.asp?ReportIssue=201202&Page=5
[4] 黃鎮江,燃料電池,第三版,滄海書局,台中市,民國97年。
[5] 鄭光煒,前瞻能源技術-太陽能製氫技術,長庚大學58期校訊,(2007)。
[6] 曲新生、陳發林,氫能技術:二十一世紀是氫能世紀,五南,臺北市,(2006)。
[7] A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, Vol. 238, Number 5358,pp. 37-38, (1972).
[8] A. Kudo, and Y. Miseki, “Heterogeneous photocatalyst materials for water splitting,” Chemical Society Reviews, Vol. 38, pp.253-278, (2009).
[9] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, “Photoelectrochemical hydrogen generation from water using solar energy. Materials related aspects,” International Journal of Hydrogen Energy, Vol. 27, pp.991-1022, (2002).
[10] T. P. Niesen, and M. R. D. Guire, “Review:deposition of ceramic thin films at low temperatures from aqueous solutions,” Solid State Ionics, Vol. 151, pp. 61-68, (2002).
[11] S. H. Yi, S. K. Choi, J. M. Jang, J. A. Kim, and W. G. Jung, “Low-temperature growth of ZnO nanorods by chemical bath deposition,” Journal of Colloid and Interface Science, Vol. 313, pp.705-710, (2007).
[12] D. D. O. Eya, “Influence of thermal annealing on the structural and optical properties of lead oxide thin films prepared by chemical bath deposition technique,” The Pacific Journal of Science and Technology, Vol.7, Number 2, pp.114-119, (2006).
[13] P. O’Brien, and J. McAleese, “Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS,” Journal of Materials Chemistry, Vol.8, pp.2309–2314, (1998).
[14] R. S. Mane, and C. D. Lokhande, “Chemical deposition method for metal chalcogenide thin films,” Materials Chemistry and Physics, Vol. 65, pp.1-31, (2000).
[15] S. M. Pawar, B. S. Pawar, J. H. Kim, O. S. Joo, and C. D. Lokhande, “Recent status of chemical bath deposited metal chalcogenide and metal oxide thin films,” Current Applied Physics, Vol.11, pp. 117-161, (2011).
[16] A. Ennaoui, M. Weber, R. Scheer, and H. J. Lewerenz, “Chemical-bath ZnO buffer layer for CuInS2 thin-film solar cells,” Solar Energy Materials and Solar Cells, Vol.54, pp.277-286, (1998).
[17] D. Hariskos, M. Powalla, N. Chevaldonnet, D. Lincot, A. Schindler , and B. Dimmler, “Chemical bath deposition of CdS buffer layer: prospects of increasing materials yield and reducing waste,” Thin Solid Films, Vol.387, pp.179-181, (2001).
[18] M. Z. Najdoski, and T. Todorovski, “A simple method for chemical bath deposition of electrochromic tungsten oxide films,” Materials Chemistry and Physics, Vol.104, pp.483-487, (2007).
[19] T. Ishiyama, T. Arai, Y. Sato, K. Shinoda, B. Jeyadevan, and K. Tohji,“Photocatalytic efficiency of CdS film synthesized by CBD method,” American Institute of Physics Conference Proceedings, Vol. 833, pp.23-26, (2006).
[20] 方俊、王秀峰、程冰、繆凌波,微波輔助化學浴沉積法製備ZnO薄膜,電子元件與材料,第25卷,第10期,pp.17-19,(2006)。
[21] 賴致遠,化學浴沉積法合成氧化鋅奈米線及其特性分析,國立成功大學化學工程研究所碩士論文,(2006)。
[22] H. Y. Xu, H. Wang, T. N. Jin, and H. Yan, “Rapid fabrication of luminescent Eu: films by microwave-assisted chemical solution deposition,” Nanotechnology, Vol. 16, pp.65-69, (2005).
[23] V. M. Aroutiounian, V. M. Arakelyan, and G. E. Shahnazaryan, “Metal oxide photoelectrodes for hydrogen generation using solar radiation-driven water splitting,” Solar Energy, Vol. 78, pp.581-592, (2005).
[24] K. S. Ahn, Y. Yan, S. H. Lee, T. Deutsch, J. Turner, C. E. Tracy, C. L. Perkins, and M. Al-Jassim, “Photoelectrochemical properties of N-incorporated ZnO films deposited by reactive RF magnetron sputtering,” Journal of The Electrochemical Society, Vol. 154, pp.B956-B959, (2007).
[25] Solar energy distribution graph, “What’’s so cool about cool roofs,”
http://continuingeducation.construction.com/article.php?L=68&C=488&P=6 , (2009)。
[26] J. Emerson-Reynolds, “On the synthesis of galena by means of thiocarbamide, and the deposition of lead sulphide as a specular film,” Journal of the Chemical Society, Vol. 45, pp.162-165, (1884).
[27] O. Houser, and E. Beisalski, “PbS film fabrication,” Chemiker Zeitung,Vol. 34, pp. 1079-1081, (1910).
[28] P. K. Nair, M. T. S. Nair, V. M. Garcı́a, O. L. Arenas, Y. Peña, A. Castillo, I. T. Ayala, O. Gomezdaza, A. Sánchez, J. Campos, H. Hu, R. Suárez, and M. E. Rincón, “Semiconductor thin films by chemical bath deposition for solar energy related applications,” Solar Energy Materials and Solar Cells, Vol. 52, pp.313-344, (1998).
[29] Y. Shi, Z. Jin, C. Li, H. An, and J. Qiu,“Effect of [Cu]/[In] ratio on properties of thin films prepared by successive ionic layer absorption and reaction method,” Appl. Surf. Sci., Vol. 252, pp.3737-3743, (2006).
[30] Y. Masuda, and K. Kato, “Anatase TiO2 films crystallized on SnO2:F substrates in an aqueous solution,” Thin Solid Films, Vol. 516, pp. 2547–2552, (2008).
[31] J. Ouerfelli, M. Regragui, M. Morsli, G. Djeteli, K. Jondo, C. Amory, G. Tchangbedji, K. Napo, and J. C. Bern`ede, “Properties of ZnO thin films deposited by chemical bath deposition and post annealed,” Journal of Physics D:Applied Physics, Vol. 39, pp.1954-1959, (2006).
[32] Y. Masuda, N. Kinoshita, and K. Koumoto, “Morphology control of ZnO crystalline particles in aqueous solution,” Electrochimica Acta, Vol. 53, pp.171-174, (2007).
[33] L. L. Yang, Q. X. Zhao, and M. Willander, “Size-controlled growth of well-aligned ZnO nanorod arrays with two-step chemical bath deposition method,” Journal of Alloys and Compounds, Vol. 469, pp.623-629, (2009).
[34] H.Khallaf, G.Chai, O.Lupan, H.Heinrich, S. Park, A.Schulte, and L.Chow, “Investigation of chemical bath deposition of ZnO thin films using six differint complexing agents,” Journal of Physics D:Applied Physics, Vol. 42, (2009).
[35] Q. Li, J. Bian, J. Sun, J. Wang, Y. Luo, K. Sun, and D. Yu, “Controllable growth of well-aligned ZnO nanorod array by low-temperature wet chemical bath deposition method,” Applied Surface Science, Vol. 256, pp.1698-1702, (2010).
[36] G. Jia, Y. Wang, and J. Yao, “Growth mechanism of ZnO nano-structure using chemical bath deposition,” Journal of Ovonic Research, Vol. 6, No. 6, pp.303-307, (2010).
[37] X. Liu, M. Afzaal, T. Badcock, P. Dawson, and P. O’Brien, “Conducting ZnO thin films with an unusual morphology:Large flat microcrystals with (0 0 0 1) facets perpendicular to the plane by chemical bath deposition” Materials Chemistry and Physics, Vol. 127, pp.174-178, (2011).
[38] M. M. Ali, “Characterization of ZnO thin films grown by chemical bath deposition,” Journal of Basrah Researches, Vol. 37, No. 3, pp.49-56, (2011).
[39] 賴耿陽,超音波工學理論實務,復漢,台南市,民國87年。
[40] 蔡佳霖,以化學浴沉積法製備四元化合物光電極薄膜之研究,國立中央大學能源工程研究所碩士論文,民國99年。
[41] 博精儀器股份有限公司,儀器介紹,積分球量測原理圖。
http://www.aandb.com.tw
[42] J. I. Pankove, Optical process of semiconductors, Prentice Hall, New York, (1971)。
[43] JASCO V-670 & 60mm Integrating Sphere, Handware/Function Manual, Jasco Analytical Instruments.
[44] 羅吉宗,薄膜與科技應用,全華圖書股份有限公司,民國98年。
[45] 鄭信民、林麗娟,X光繞射應用簡介,工業材料雜誌,第181期,pp.100-108,民國91年。
[46] 汪建民,材料分析,民全書局,民國93年。
[47] H. Yang, L. Guo, W. Yan, and H. Liu, “A novel composite photocatalyst for water splitting hydrogen production,” Journal of Power Sources, Vol. 159, pp.1305–1309, (2006).
[48] 徐彥翔,以化學水浴法製備氧化鋅光電極薄膜之研究,國立中央大學能源工程研究所碩士論文,民國99年。
[49] R. Wahab, A. Mishra,S. I. Yun, Y. S. Kim, and H. S. Shin, “Antibacterial activity of ZnO nanoparticles prepared via non-hydrolytic solution route,” Appl Microbiol Biotechnol, Vol. 87, pp.1917-1925, (2010).
[50] S. M. Huang, Z. Q. Bian, J. B. Chu, Z. A. Wang, D. W. Zhang, X. D. Li, H. B. Zhu, and Z. Sun, “One-step growth of structured ZnO thin films by chemical bath deposition in aqueous ammonia solution,” Journal of Physics D:Applied Physics, Vol. 42, pp.055412, (2009).
[51] S. Maji, P. Bhattacharyya, A. Sengupta, and H. Saha, “Growth and Characterization of Nano-Cups, Flowers and Nanorods of ZnO by Chemical Bath Deposition,” Adv. Sci. Lett., Vol. 3, pp.154-160, (2010).
[52] F. Wen, W. Li, J. H. Moon, and J. H. Kim, “Hydrothermal synthesis of ZnO:Zn with green emission at low temperature with reduction process,” Solid State Communications, Vol. 135, pp.34-37, (2005).
[53] B. Jin, and D. Wang, “Strong violet emission from zinc oxide dumbbell-like microrods and nanowires,” Journal of Luminescence, Vol. 132, pp.1879-1884, (2012).
[54] R. Zhai, S. B. Wang, H. Y. Xu, H. Wang, and H. Yan, “Rapid formation of CdS, ZnS thin films by microwave-assisted chemical bath deposition,” Materials Letters, Vol. 59, pp.1497-1501, (2005).
[55] 廈門大學精品課程,材料化學導論。
http://xmujpkc.xmu.edu.cn/clhxdl/wjcl/5-5.htm
[56] W. C. Hung, T. K. Sheu, M. A. Wang, S. W. Kou, and C. Su, “ITO Thin Film : from development and application to preparation and characterization,” The Chinese Chem. Soc., Vol. 63, pp.409-418, (2005).
[57] S. Ekambaram, Y. Iikubo, and A. Kudo, “Combustion synthesis and photocatalyic properties of transition metal-incorporated ZnO,” Journal of Alloys and Compounds, Vol. 433, pp.237-240, (2007).
指導教授 洪勵吾(Lih-wu Hourng) 審核日期 2012-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明