博碩士論文 993208021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:3.85.214.0
姓名 偕鶴齡(Jie Hao-Ling)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究
(Application of fractal theory to the effective thermal conductivity of the gas diffusion layer of PEM fuel cell)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 中溫固態氧化物燃料電池複合系統分析★ 中文質子傳輸型固態氧化物燃料電池陽極之研究
★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析★ 金屬發泡材應用於質子交換膜燃料電池內流道之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究將碎形理論與熱傳導模型結合並預測燃料電池中的氣體擴散層之熱傳導係數,以實驗值與預測值相互驗證,探討氣體擴散層於不同施加壓力和有無PTFE、MPL的情況下,對熱傳導係數的影響。
以碎形熱傳導模型預測Toray公司的TGP-H-090、TGP-H-090-20碳紙和SIGRACET® 35BC氣體擴散層之預測值分別為1.77 Wm^(-1) K^(-1)、1.54~2.4 Wm^(-1) K^(-1)和0.62 Wm^(-1) K^(-1),反映樣貌和內部構造改變造成的物理性質差異,近似真實物理現象。
本研究根據ASTM D5470標準自製之熱傳導量測儀器進行實驗,操作溫度設定為50℃,施加壓力0.72~1.39 MPa,在量測樣本中,Toray公司的TGP-H-090的熱傳導係數為1.02~1.31 Wm^(-1) K^(-1),TGP-H-090-20則是0.86~1.08 Wm^(-1) K^(-1),隨著施加壓力增加,熱傳導係數提高,TGP-H-090-20塗佈自製MPL,在施加壓力0.72~1.16 MPa下為0.67~0.81 Wm^(-1) K^(-1),而SIGRACET® 35BC在壓力0.94 MPa則是0.32 Wm^(-1) K^(-1),實驗數據雖低於大部分學者之實驗值,但趨勢上符合加入PTFE和MPL會使得熱傳導係數下降。
摘要(英) The fractal theory is combined with thermal conductivity model to predict the effective thermal conductivity, keff, of the gas diffusion layer (GDL) of proton exchange membrane fuel cell. The predicted values are compared with experimental results. In addition, effects of compression, PTFE loading and the addition of microporous layer (MPL) on the effective thermal conductivity are also investigated.
Using the fractal thermal conductivity model, keff is predicted as1.77 Wm^(-1) K^(-1),1.54 ~ 2.4 Wm^(-1) K^(-1) and 0.62 Wm^(-1) K^(-1) for Toray’s TGP-H-090 and TGP-H-090-20 carbon paper and SIGRACET®’s 35BC GDL, respectively. These values agree with literature values. One advantage of the present model is the ability to reflect the change in keff caused by surface and internal structure differences.
Furthermore, an experimental instrument based on ASTM standard D5470 is built and used to determine the through-plane thermal conductivity of GDL. The average temperature of test specimen is 50 ℃ and the compression pressure is between 0.72 ~ 1.39 MPa. keff is in the range of 1.02~1.31 Wm^(-1) K^(-1) for TGP-H-090, and 0.86 ~ 1.08 Wm^(-1) K^(-1) for TGP-H-090-20. keff increases with compression pressure. The keff of TGP-H-090-20 containing MPL is 0.67~0.81 Wm^(-1) K^(-1) under 0.72~1.16 MPa. The keff of 35BC is 0.32 Wm^(-1) K^(-1) under 0.94 MPa. Coating PTFE or adding MPL results in a decrease in keff.
關鍵字(中) ★ 碎形理論
★ 熱傳導係數
★ 氣體擴散層
★ 燃料電池
關鍵字(英) ★ Fractal theory
★ Thermal conductivity
★ Gas diffusion layer
★ Fuel cell
論文目次 摘要 i
Abstracts ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 ix
符號說明 x
第一章 緒論 1
1-1 前言 1
1-2 燃料電池簡介 2
1-2-1 液態電解質燃料電池 2
1-2-2 固態電解質燃料電池 2
1-3 質子交換膜燃料電池 3
1-3-1 質子交換膜燃料電池構造及原理 3
1-3-2 燃料電池的極化現象 4
1-3-3 開路電壓(Open Circuit Voltage, OCV) 5
1-4 研究目的 6
第二章 文獻回顧 10
2-1 多孔材的熱傳導模型 10
2-1-1 MG model 和 Bruggerman model 10
2-1-2 Layer model 和 Geometric mean model 11
2-1-3 其他模型 12
2-2 碎形理論應用在多孔材 14
2-2-1. 碎形理論應用在多孔材的滲透率 14
2-2-2. 碎形理論應用在多孔材的熱傳導率 16
2-3 熱傳導係數量測實驗 18
第三章 碎形理論分析 22
3-1 碎形理論簡介 22
3-1-1 歐式幾何體與碎形幾何體 22
3-1-2 碎形的特徵 24
3-1-3 碎形的種類 25
3-2 自我相似維度和盒子維度 27
3-2-1 自我相似維度 27
3-2-2 盒子維度 29
3-3 實驗方法 32
3-3-1 影像擷取 32
3-3-2 影像分析 32
3-3-3 碎形維度帶入熱傳導模型 33
3-4 氣體擴散層與微孔層之碎形熱傳導方程式 34
3-4-1 碎形熱傳導方程式之並聯模型 34
3-4-2 MPL之最大孔徑 38
第四章 實驗量測 41
4-1 實驗設備 41
4-2 熱傳導量測儀器之測試原理 45
4-3 熱阻分析 46
4-4 熱傳導儀器之實驗步驟 47
4-5 GDL的形態特徵 49
第五章 結果與討論 51
5-1 氣體擴散層之熱傳導量測實驗結果 52
5-1-1 壓力與PTFE對氣體擴散層的熱傳導係數之關係 54
5-1-2 MPL對於熱傳導係數的影響 57
5-2 碎形理論應用於氣體擴散層之熱傳導係數 59
5-3 氣體擴散層之碎形熱傳導模型探討 66
第六章 結論與未來方向 75
參考文獻 77
附錄一 83
附錄二 84
附錄三 89
參考文獻 [1] 黃鎮江,燃料電池,全華科技股份有限公司,民國九十四年。
[2] Fuel Cell Handbook, 5th ed. EG&G Services, Parsons Inc., US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory, West Virginia, pp.2-3, Figure 2-2, 2000
[3] M. Kaviany, Principle of Heat Transfer in Porous Media 2ed, Springer, New York, 1995
[4] J.C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. Roy. Soc. A 203, pp.385–420, 1904
[5] D.A.G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen,” Annalen der physik, pp.636-679, 1935
[6] B. X. Wang, L. P. Zhou and X. F. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles,” International Journal of Heat and Mass Transfer, Volume 46, pp.2665-2672, 2003
[7] B. Troschke, and H. Burkhardt, “Thermal conductivity models fro two-phase systems,” Physics and Chemistry of The Earth, Volume 23, pp.351-355, 1998
[8] A. Zerroug, K. Zehar, and L. Refoufi, “Thermal Conductivity Models of Porous Materials,” Journal of Engineering and Applied Sciences, Volume 2, pp.722-727, 2007
[9] M. Kandula, “On the effective thermal conductivity of porous packed beds with uniform spherical particles,” ASRC Aerospace, John F. Kennedy Space Center, FL, USA, 2010
[10] R. E. Meredith, and C. W. Tobias, “Conduction in heterogeneous systems,” Advances in Electrochemistry and Electrochemical Engineering, Volume 2, pp.15, 1962
[11] M.J. Rhodes, Principles of powder technology, Wiley, New York, 1990
[12]葛世榮、朱華,摩擦學的分形,機械工業出版社,2005
[13] A. Bunde, S. Havlin, eds, “Fractals and disordered systems”, Berlin New York : Springer-Verlag, 1991
[14] S.G. Advani, M.V. Bruschke, and R.S. Parnas, Resin transfer molding transfer phenomena in polymeric composites, Elsevier Science, Vol.10, pp.465-515, 1994
[15] J. Happel, “Viscous flow relative to arrays of cylinders,” AIChE Journal, Volume 5, pp.174–177, 1959
[16] A.S. Sangani, A. Acrivos, “Slow flow past periodic arrays of cylinders with application to heat transfer,” International Journal of Multiphase Flow, Volume 8, pp.193-206, June 1982
[17] M.V. Bruschke, S.G. Advani, “A numerical simulation of resin transfer mold filling process”, in: Proceedings of ANTEC’89, pp.1769-1773, 1989
[18] R. Pitchumani, and B. Ramakrishnan, “A fractal geometry model for evaluating permeabilities of porous preforms used in liquid composite molding,” International Journal of Heat and Mass Transfer, Volume 42, pp.2219-2232, 1999
[19]殷鴻堯, “質子交換膜燃料電池的氣體擴散層滲透率分形模型”, 能源科學進展, Vol.4, No.1, 2008
[20] L. W. Fan, Y. C. Hu, T. Tian, and Z. T. Yu, “The prediction of effective thermal conductivities perpendicular to the fibres of wood using a fractal model and an improved transient measurement technique,” International Journal of Heat and Mass Transfer, Volume 49, pp.4116-4123, 2006
[21] Y. Wang, G. Zhou, Y. Wei, and Y. Zhou, “Fractal analysis of thermal conduction of loose coal,” Mining Science and Technology (China), Volume 20, pp.831-834, 838, 2010
[22] X. Huai, W. Wang, and Z. Li, “Analysis of the effective thermal conductivity of fractal porous media,” Applied Thermal Engineering, Volume 27, pp.2815-2821, 2007
[23] Y. Shi, J. Xiao, S. Quan, M. Pan, and R. Yuan, “Fractal model for prediction of effective thermal conductivity of gas diffusion layer in proton exchange membrane fuel cell,” Journal of Power Sources, Volume 185, pp.241-247, 2008
[24] F. Zhu, S. Cui, and B. Gu, “Fractal analysis for effective thermal conductivity of random fibrous porous materials,” Physics Letters A, Volume 374, pp.4411-4414, 2010
[25] M. Khandelwal, and M.M. Mench, “Direct measurement of through-plane thermal conductivity and contact resistance in fuel cell materials,” Journal of Power Sources, Volume 161, pp.1106-1115, 2006
[26] J. Ramousse, S. Didierjean, O. Lottin, D. Maillet, “Estimation of the effective thermal conductivity of carbon felts used as PEMFC Gas Diffusion Layers,” International Journal of Thermal Sciences, Volume 47, pp.1-6, 2008
[27] E. Sadeghi, N. Djilali, and M. Bahrami“Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 2 Hysteresis effect under cyclic compressive load,” Journal of Power Sources, Volume 195, pp.8104-8109, 2010
[28] E. Sadeghi, N. Djilali, and M. Bahrami“Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. Part 1 Effect of compressive load,” Journal of Power Sources, Volume 196, pp.246-254, 2011
[29] N. Zamel, E. Litovsky, X. Li, Jacob Kleiman, “Measurement of the through-plane thermal conductivity of carbon paper diffusion media for the temperature range from -50 to +120 °C,” International Journal of Hydrogen Energy, Volume 36, pp.12618–12625, 2011
[30] G. Unsworth, N. Zamel, X. Li, “Through-plane thermal conductivity of the microporous layer in a polymer electrolyte membrane fuel cell,” International Journal of Hydrogen Energy, Volume 37, pp.5161–5169, 2012
[31] 吳文成,「碎形 Fractal」,See also http://www.atlas-zone.com/complex/fractals/index.html
[32] B. B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company., New York, 1982
[33] H. O. Peitgen, and D. Saupe, The Science of Fractal Images, Springer-Verlag New York, Inc. New York, USA, 1988
[34] K. Falconer, “Fractal geometry mathematical foundations and Applications”, John Wiley and Sons, 1990
[35] 張兆旭 編譯,「Fractal導論」,臺北市: 松崗,1994
[36] M. B. Ribeiro, and A. Y. Miguelote, “Fractals and the distribution of Galaxies,” Brazilian Journal of Physics, Volume. 28, pp.132-160, 1998
[37] R. C. Gonzalez, R. E. Woods, S. L. Eddins著;繆紹綱譯,數位影像處理:運用MATLAB,臺北市:臺灣東華,2005
[38] ASTM D5470-12, “Standard test method for thermal transmission properties of thermally conductive electrical insulation materials”, American Society for Testing and Materials, West Conshohocken, PA
[39] 黃志弘,TIM測量平台之精準度分析,2005
[40] Y. Shi, J. H. Xiao, M. Pan, R.Z. Yuan, “A fractal permeability model for the gas diffusion layer of PEM fuel cells,” Journal of Power Sources, Volume 160, pp.277-283, 2006
[41] S. K. Lo, “Fractal theory applied to the gas diffusion layer and microporous layer of proton exchange membrane fuel cells”, 2010
[42] B. Yu, and P. Cheng, “A fractal permeability model for bi-dispersed porous media,” International Journal of Heat and Mass Transfer, Volume 45, pp.2983–2993, 2002
[43] G. Karimi, X. Li, P. Teertstra, “Measurement of through-plane effective thermal conductivity and contact resistance in PEM fuel cell diffusion media,” Electrochimica Acta, Volume 55, pp.1619-1625, 2010
[44] The instruction manual of Capillary Flow Porometer in PMI, Inc. See also http://www.pmiapp.com/products/permeability.html.
[45] O. S. Burheim, “Through-plane thermal conductivity of PEMFC porous transport layers,” Norwegian University of Science and Technology, 2009
[46] A. Ahsan, “Convection and Conduction Heat Transfer”, InTech, 2011
[47] Toray Industries. Toray carbon paper, See also http://www.torayca.com/en/properties/report_eng09_2.html
[48] A. Radhakrishnan, “Thermal Conductivity Measurement of Gas Diffusion Layer Used in PEMFC”, Kate Gleason College of Engineering / Rochester Institute of Technology, 2009
[49] A. Z. Weber, and J. Newman, “Effects of Microporous Layers in Polymer Electrolyte Fuel Cells,” Journal of The Electrochemical Society, Volume 152, pp.A677-A688, 2005
指導教授 曾重仁(Chung-jen Tseng) 審核日期 2013-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明