博碩士論文 993208023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:13.59.36.203
姓名 程志豪(Jhih-Hao Cheng)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 設計應力刺激微流體晶片以探討幹細胞的化學誘導分化之研究
相關論文
★ 奈米矽晶片於葡萄糖電化學檢測分析研究與電極應用★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究
★ 多重微流體晶片機械應力刺激細胞培養之研究★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究
★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)★ 複合式物理力的生物反應器自動化與控制設計
★ 外部致動之微流體機電控制平台★ 以微铣削進行高分子微流體裝置之製程整合
★ 奈米矽質譜晶片於質譜檢測之應用研究★ 以自發性化學蝕刻法製備矽奈米結構成長控制之研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 二次金沉積奈米矽晶片對質譜檢測分析研究與應用★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於幹細胞為目前被公認為可以分化成特定細胞的能力,因此在組織工程或再生醫學的應用或研究上逐漸受到重視,但因幹細胞分化容易受到外在環境所影響,而傳統實驗裝置由於對培養環境的控制較差因此在臨床應用或實驗研究稍嫌不足。而近年來發展的微流體晶片系統因其裝置微型化可降低實驗所需的藥劑量且可以模擬體內的微環境、可以進行自動化的控制、搭配即時監控系統、可精準控制的微環境並進行多種刺激等優勢,因此利用在幹細胞的研究上可以說是相當具有潛力。
本研究目的在於設計出可在同一晶片中進行多重應力刺激的微流體晶片,而目前先以設計出可進行多項相同剪應力刺激的微流體晶片裝置,利用流道設計可在實驗中建構多個相似的培養環境並進行相同的剪應力刺激實驗,將培養大鼠骨髓幹細胞(Rat bone marrow stem cells,RM)投以IBMX藥劑讓幹細胞成功分化為神經細胞,也搭配10分鐘不同總流率(0.042 μL/min、1μL/min與15μL/min)含藥與不含藥的流場剪應力刺激,並在刺激後的10個小時內觀察細胞分化情形,發現到有應力刺激的條件下可使細胞的分化時間提前並且也可增加其分化效率,而且於本實驗中也成功製做出可進行正向應力刺激的微流體晶片。
摘要(英) It is well recognized that stem cells have the ability to genetically differentiate into a specific cell type for promising applications such as tissue engineering or cell therapy. Stem cell is sensitive to the environment during the process of differentiation, so the experimental equipment in traditional that can’t well controlled the cell culture environment isn’t appropriate for stem cells research. Microfluidic techniques have been recently developed for well controlled the cell culture environment. In microfluidic systems, the objective is for these microenvironments to mimic in vivo surroundings. With advantageous characteristics such as optical transparency and the capability for automating protocols, different types of cells can be cultured, screened, and monitored in real time to systematically investigate their morphology and functions under well-controlled microenvironments in response to various stimuli. The microfluidic chips have the great potential in the stem cell research.
The purpose of this study is designing a chip for multiple different stress stimuli microfluidic chip, first we design a chip for multiple same stress stimuli microfluidic chip which is similar to provide multiple culture environment. We also use IBMX induce the RMs differentiate to neuron cell. We also do temporary fluid flow stimulation with or without IBMX under the various rate at 0.042, 1, 15 μL/min, respectively. The results show that fluid flow stimuli not only facilitate RMs to differentiate toward neuronal cells but also shorten the differentiation time. In this study, we also successfully made microfluidic chips for positive stress stimulus.
關鍵字(中) ★ 幹細胞
★ 微流體
★ 物理刺激
關鍵字(英)
論文目次 摘要 ................................................................................................................ I
ABSTRACT ................................................................................................ II
致謝 ............................................................................................................ III
目錄 ............................................................................................................. IV
圖目錄 ...................................................................................................... VIII
表目錄 ......................................................................................................... XI
第一章 緒論 ................................................................................................. 1
1.1 前言 ..................................................................................................... 1
1.2 文獻回顧 ............................................................................................. 4
1.3 研究目的 ........................................................................................... 13
1.4 論文架構 ........................................................................................... 14
第二章 實驗設計與製作 ........................................................................... 15
2.1 製程設備與耗材 ............................................................................... 15
2.1.1 製程設備 .................................................................................... 15
2.1.2 製程耗材 .................................................................................... 16
2.2 材料選擇 ........................................................................................... 17
2.2.1 SU-8 ............................................................................................ 17
2.2.2 聚二甲基矽氧烷(PDMS) .......................................................... 18
2.3 黃光微影製程 ................................................................................... 19
2.3.1光罩製作 ..................................................................................... 20
2.3.2晶圓清潔(wafer cleaning).......................................................... 22
2.3.3光阻塗佈(spin coating) .............................................................. 23
2.3.4 軟烤(soft bake) .......................................................................... 24
2.3.5 曝光(exposure) .......................................................................... 25
2.3.6 曝後烤(post exposure bake) ...................................................... 25
2.3.7 顯影(develop) ............................................................................. 25
2.3.8 硬烤(hard bake) ......................................................................... 26
2.4 晶片製作 ........................................................................................... 26
2.4.1翻膜 ............................................................................................. 27
2.4.2氧電漿接合 ................................................................................. 28
2.5 系統架設 ........................................................................................... 30
2.5.1微流體晶片 ................................................................................. 31
2.5.2系統環境控制 ............................................................................. 31
2.5.3光學觀測元件 ............................................................................. 32
第三章 實驗方法 ....................................................................................... 33
3.1 藥品配製 ........................................................................................... 34
3.2 細胞培養方法 ................................................................................... 36
3.3 實驗操作流程 ................................................................................... 41
3.3.1實驗前準備 ................................................................................. 41
3.3.2 細胞植入晶片 ............................................................................ 42
3.3.3 藥物誘導分化 ............................................................................ 44
3.3.4 染色步驟 .................................................................................... 45
3.4細胞影像分析 ................................................................................... 50
3.4.1細胞數量分析 ............................................................................. 50
3.4.2分化率的分析 ............................................................................. 50
第四章 實驗結果與討論 ........................................................................... 51
4.1晶片內各培養區的細胞均勻度 ....................................................... 51
4.2 藥物與流場剪力對分化結果之影響 .............................................. 56
4.2.1藥物濃度測試 ............................................................................. 56
4.2.2藥物與流場剪應力的影響 ......................................................... 59
4.3不同流道寬度的陣列式晶片 ........................................................... 71
第五章 正向應力刺激的微流體晶片 ...................................................... 74
5.1流道設計 ........................................................................................... 74
5.2晶片製作 ........................................................................................... 76
VII
5.3系統架設 ........................................................................................... 78
第六章 結論與未來展望 ........................................................................... 80
6.1結論 ................................................................................................... 80
6.2未來展望 ........................................................................................... 81
文獻回顧 ..................................................................................................... 83
附錄A ......................................................................................................... 88
參考文獻 1. Langer, R. and J.P. Vacanti, Tissue Engineering. Science, 1993. 260(5110): p. 920-926.
2. 李宣書, 淺談組織工程. 物理雙月刊, 2001. 24(3): p. 430-435.
3. Bustillo, J.M., R.T. Howe, and R.S. Muller, Surface micromachining for microelectromechanical systems. Proceedings of the Ieee, 1998. 86(8): p. 1552-1574.
4. Walker, G.M., H.C. Zeringue, and D.J. Beebe, Microenvironment design considerations for cellular scale studies. Lab Chip, 2004. 4(2): p. 91-7.
5. Kim, S.M., S.H. Lee, and K.Y. Suh, Cell research with physically modified microfluidic channels: a review. Lab Chip, 2008. 8(7): p. 1015-23.
6. Liu, L.Y., et al., Different effects of intermittent and continuous fluid shear stresses on osteogenic differentiation of human mesenchymal stem cells. Biomech Model Mechanobiol, 2012. 11(3-4): p. 391-401.
7. Dalmay, C., et al., A microfluidic device with removable packaging for the real time visualisation of intracellular effects of nanosecond electrical pulses on adherent cells. Lab on a Chip, 2012. 12(22): p. 4709-4715.
8. Murthy, S.K., et al., Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir, 2004. 20(26): p. 11649-11655.
9. Sin, A., et al., Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes. Biotechnol Bioeng, 2005. 91(7): p. 816-26.
10. Mata, A., A.J. Fleischman, and S. Roy, Characterization of polydimethylsiloxane (PDMS) properties for biomedical micro/nanosystems. Biomed Microdevices, 2005. 7(4): p. 281-293.
11. Weibel, D.B., P. Garstecki, and G.M. Whitesides, Combining microscience and neurobiology. Curr Opin Neurobiol, 2005. 15(5): p. 560-7.
12. Yen, B.L., et al., Placenta-derived multipotent cells differentiate into neuronal and glial cells in vitro. Tissue Engineering Part A, 2008. 14(1): p. 9-17.
13. Preston, S.L., et al., The new stem cell biology: something for everyone. Journal of Clinical Pathology-Molecular Pathology, 2003. 56(2): p. 86-96.
14. Yen, B.L., et al., Isolation of multipotent cells from human term placenta. Stem Cells, 2005. 23(1): p. 3-9.
15. Civin, C.I., Commitment to biomedical research ... Clearing unnecessary impediments to progress. Stem Cells, 2002. 20(6): p. 482-484.
16. Ghafar-Zadeh, E., J.R. Waldeisen, and L.P. Lee, Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration. Lab Chip, 2011. 11(18): p. 3031-48.
17. Lee, O.K., et al., Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood, 2004. 103(5): p. 1669-75.
18. Ferrari, G., et al., Muscle regeneration by bone marrow derived myogenic progenitors. Science, 1998. 279(5356): p. 1528-1530.
19. Miura, M., et al., SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A, 2003. 100(10): p. 5807-12.
20. Pittenger, M.F., et al., Multilineage potential of adult human mesenchymal stem cells. Science, 1999. 284(5411): p. 143-147.
21. Orlic, D., et al., Bone marrow cells regenerate infarcted myocardium. Nature, 2001. 410(6829): p. 701-705.
22. Poulsom, R., et al., Bone marrow contributes to renal parenchymal turnover and regeneration. J Pathol, 2001. 195(2): p. 229-35.
23. Alison, M.R., et al., Cell differentiation - Hepatocytes from nonhepatic adult stem cells. Nature, 2000. 406(6793): p. 257-257.
24. Eglitis, M.A. and E. Mezey, Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A, 1997. 94(8): p. 4080-4085.
25. Kim, J., et al., In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering. Biomed Mater, 2013. 8(1): p. 014107.
26. Liu, J., et al., Clinical analysis of the treatment of spinal cord injury with umbilical cord mesenchymal stem cells. Cytotherapy, 2013. 15(2): p. 185-91.
27. Yamamoto, K., et al., Fluid shear stress induces differentiation of Flk-1-positive embryonic stem cells into vascular endothelial cells in vitro. American Journal of Physiology-Heart and Circulatory Physiology, 2005. 288(4): p. H1915-H1924.
28. Young, T.H. and C.H. Hung, Behavior of embryonic rat cerebral cortical stem cells on the PVA and EVAL substrates. Biomaterials, 2005. 26(20): p. 4291-9.
29. Mosadegh, B., et al., Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients. Biotechnol Bioeng, 2008. 100(6): p. 1205-13.
30. Rottmar, M., et al., A high throughput system for long term application of intermittent cyclic hydrostatic pressure on cells in culture. J Biomech Eng, 2011. 133(2): p. 024502.
31. Scaglione, S., et al., Effects of fluid flow and calcium phosphate coating on human bone marrow stromal cells cultured in a defined 2D model system. J Biomed Mater Res A, 2008. 86(2): p. 411-9.
32. Miyanishi, K., et al., Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta 3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. Tissue Engineering, 2006. 12(8): p. 2253-2262.
33. Hess, R., et al., Hydrostatic pressure stimulation of human mesenchymal stem cells seeded on collagen-based artificial extracellular matrices. J Biomech Eng, 2010. 132(2): p. 021001.
34. Park, T.H. and M.L. Shuler, Integration of cell culture and microfabrication technology. Biotechnology Progress, 2003. 19(2): p. 243-253.
35. McDonald, J.C., et al., Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000. 21(1): p. 27-40.
36. Breslauer, D.N., P.J. Lee, and L.P. Lee, Microfluidics-based systems biology. Mol Biosyst, 2006. 2(2): p. 97-112.
37. Jeon, N.L., et al., Generation of solution and surface gradients using microfluidic systems. Langmuir, 2000. 16(22): p. 8311-8316.
38. Davidsson, R., et al., Developments toward a microfluidic system for long-term monitoring of dynamic cellular events in immobilized human cells. Anal Chem, 2004. 76(16): p. 4715-4720.
39. Lee, P.J., et al., Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng, 2006. 94(1): p. 5-14.
40. Toh, Y.C., et al., A novel 3D mammalian cell perfusion-culture system in microfluidic channels. Lab Chip, 2007. 7(3): p. 302-9.
41. Park, S.-H., et al., An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Vol. 12. 2006. 3107-17.
42. Wu, H.-W., et al., A microfluidic device for chemical and mechanical stimulation of mesenchymal stem cells. Microfluidics and Nanofluidics, 2011. 11(5): p. 545-556.
43. Gao, X., et al., A simple elastic membrane-based microfluidic chip for the proliferation and differentiation of mesenchymal stem cells under tensile stress. Electrophoresis, 2011. 32(23): p. 3431-6.
44. Blackman, B.R., K.A. Barbee, and L.E. Thibault, In vitro cell shearing device to investigate the dynamic response of cells in a controlled hydrodynamic environment. Annals of Biomedical Engineering, 2000. 28(4): p. 363-372.
45. Blackman, B.R., A New In Vitro Model to Evaluate Differential Responses of Endothelial Cells to Simulated Arterial Shear Stress Waveforms. Journal of Biomechanical Engineering, 2002. 124(4): p. 397.
46. Stiehler, M., et al., Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A, 2009. 89(1): p. 96-107.
47. Zheng, W., et al., Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integr Biol (Camb), 2012. 4(9): p. 1102-11.
48. Myers, K.A., N.G. Shrive, and D.A. Hart, A novel apparatus applying long term intermittent cyclic hydrostatic pressure to in vitro cell cultures. J Biosci Bioeng, 2007. 103(6): p. 578-81.
49. Sim, W.Y., et al., A pneumatic micro cell chip for the differentiation of human mesenchymal stem cells under mechanical stimulation. Lab Chip, 2007. 7(12): p. 1775-82.
50. Sotoudeh, A strain device imposing dynamic and uniform equi-biaxial strain to cultured cells (vol 26, pg 181, 1998). Annals of Biomedical Engineering, 1998. 26(4): p. 735-735.
51. Putnam, A.J., et al., Microtubule assembly is regulated by externally applied strain in cultured smooth muscle cells. Journal of Cell Science, 1998. 111: p. 3379-3387.
52. Zhou, J. and L.E. Niklason, Microfluidic artificial "vessels" for dynamic mechanical stimulation of mesenchymal stem cells. Integr Biol (Camb), 2012. 4(12): p. 1487-97.
53. Wu, H.W., C.C. Lin, and G.B. Lee, Stem cells in microfluidics. Biomicrofluidics, 2011. 5(1).
54. Lorenz, H., et al., SU-8: a low-cost negative resist for MEMS. Journal of Micromechanics and Microengineering, 1997. 7(3): p. 121-124.
55. 楊奇勳, 利用SU-8光阻二次塗佈製作2.5D微結構之製程研究. 2001.
56. MicroChem, SU-8 3000 Permanent Epoxy Negative Photoresist.
57. Duan, P., et al., Effect of neuronal induction on NSE, Tau, and Oct4 promoter methylation in bone marrow mesenchymal stem cells. In Vitro Cell Dev Biol Anim, 2012. 48(4): p. 251-8.
58. 蔡伯駿, 微流體剪應力對羊水幹細胞分化為內皮細胞之影響. 2010.
59. Korin, N., et al., Periodic "flow-stop" perfusion microchannel bioreactors for mammalian and human embryonic stem cell long-term culture. Biomed Microdevices, 2009. 11(1): p. 87-94.
60. 姜孟志, 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究. 2011.
61. Chang, Y.J., et al., Micropatterned stretching system for the investigation of mechanical tension on neural stem cells behavior. Nanomedicine, 2013. 9(3): p. 345-55.
62. Barbati, A.C., et al., Culture of primary rat hippocampal neurons: design, analysis, and optimization of a microfluidic device for cell seeding, coherent growth, and solute delivery. Biomed Microdevices, 2013. 15(1): p. 97-108.
63. Faley, S.L., et al., Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab on a Chip, 2009. 9(18): p. 2659-2664.
64. Unger, M.A., Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography. Science, 2000. 288(5463): p. 113-116.
65. ROHM&HAAS, MEGAPOSIT SPR220 SERIES PHOTORESISTS
指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2013-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明