博碩士論文 993208025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:35.172.217.40
姓名 黃思翰(Sih-han Huang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 中溫固態氧化物燃料電池複合系統分析
(analysis of intermediate-temperature solid oxide fuel cell combined systems)
相關論文
★ 定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響★ 熱風循環烘箱熱傳特性研究
★ 以陽極處理製備奈米結構之氧化鐵光觸媒薄膜應用在光電化學產氫★ 規則多孔碳應用在燃料電池陰極觸媒擔體之研究
★ 鉑錫/多孔碳觸媒應用於燃料電池陰極反應之研究★ 腐蝕特性對金屬多孔材質子交換膜燃料電池性能影響之研究
★ 碎形理論應用在質子交換膜燃料電池中氣體擴散層熱傳導係數之研究★ 中文質子傳輸型固態氧化物燃料電池陽極之研究
★ 鋯摻雜鋇鈰釔氧化物微結構與電化學特性之研究★ 直接甲醇燃料電池氣體擴散層之研究
★ 不同流道設計之透明質子交換膜燃料電池陰極水生成現象探討★ 鋰離子電池陰極材料LiCoO2粉體尺寸與形貌對電池性能的影響
★ 多孔性碳材應用於質子交換膜燃料電池觸媒層之研究★ 多孔材應用於質子交換膜燃料電池散熱之研究
★ 質子交換膜燃料電池發泡材流道與傳統流道之模擬分析★ 金屬發泡材應用於質子交換膜燃料電池內流道之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究針對中溫型固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC)系統進行模擬,首先利用Matlab/Simulink分別模擬傳統氧離子傳導與氫離子(質子)傳導型SOFC,400 °C到700 °C之間的單電池的性能曲線,經由比較可知在中溫範圍,質子傳導型具有較佳的性能,這是因為BCSO電解質材料比YSZ電解質材料在中溫時有更佳的導電度。
Thermolib進行系統模擬時,使用中溫質子傳導SOFC。基本系統由燃料電池堆、混合器、重組器、熱交換器與後燃器所組成。模擬條件為燃料電池之操作溫度在450 °C到650 °C之間,操作於最大功率或0.7V。在分析上, 改變不同燃料量探討系統的電堆效率、系統淨電功輸出效率與系統熱電效率,由結果得知,650燃料量擁有最高的熱電效率,450燃料量擁有最高的電效率,在相同級數的熱回收下,0.7V的熱電效率會優於操作在最大功率系統;接著再改變不同的系統設計,在系統最後加入熱回收系統與渦輪機,可以增加系統的電功輸出,但回收的熱能會些微的下降;在渦輪機的配置上,將渦輪機置於後燃機後,渦輪機可以利用到高溫廢氣,加上降低系統溫度,可以減少空氣壓縮機的功耗,是本文中最佳的渦輪機配置方法。
摘要(英) This study investigates the performance of intermediate temperature (IT) solid oxide fuel cell (SOFC) systems. By using Matlab/Simulink, the traditional oxygen ion conducting and the hydrogen ion (proton) conducting SOFC I-V curves are built for the temperature range from 400 to 700 °C by considering various polarization losses. In this temperature range, the performance of proton conducting SOFC is better due to the higher conductivity of proton conducting electrolyte in IT range.
The system consists of a fuel mixing chamber, a reformer, a SOFC stack, heat exchangers, and an after-burner. The SOFC stack operates between 450 and 650 °C at the maximum power or 0.7V conditions. The basic heat recovery strategy is using exhaust gas to warm up water to 60 °C. The efficiencies of the net electric power output for cell stack and for the overall system, and the combined heat and power (CHP) are investigated for different fuel flow rates. Results show that the fuel flow rate which is required for the maximum power output in 650 °C has the highest heat recovery, and the 450 °C one has the highest electrical efficiency. The CHP efficiency of the system operating at 0.7V is better than that at maximum power.
Effects of system design are also studied by considering adding extra heat recovery components and turbine to the system. The modified designs can increase the electrical power output, but decrease the heat recovery slightly. Placing the turbine after the afterburner can provide the maximum power output by receiving the highest temperature of exhaust gas and reduce the power consumption of the air compressor by decreasing the system temperature. This configuration has the highest efficiency for the cases considered in this work.
關鍵字(中) ★ 中溫固態氧化物燃料電池
★ 熱電共生系統
★ 熱電共生系統
★ 渦輪機
★ 系統分析
關鍵字(英) ★ Intermediate temperature solid oxide fuel cell
★ combined heat and power
★ micro gas turbine
★ system analysis
論文目次 中文摘要 i
Abstract ii
致謝 iiv
目 錄 v
圖目錄 iix
表目錄 xiii
第一章 緒論 1
1.1 前言 1
1.2固態氧化物燃料電池與熱回收系統 2
1.2.1固態氧化物燃料電池運作原理 2
1.2.2固態氧化物燃料電池結構 3
1.2.3燃料電池極化現象 4
1.2.4固態氧化物燃料電池優缺點 6
1.2.5固態氧化物燃料電池系統 7
1.2.6 熱回收系統 8
1.3文獻回顧 8
1.3.1 SOFC數學模型 8
1.3.2 SOFC系統 12
1.4研究動機與方向 14
第二章 理論分析 16
2.1 問題描述與假設 16
2.2 固態氧化物燃料電池電化學模型 16
2.3 燃料電池的極化損失 18
2.3.1 活化極化: 18
2.3.2 歐姆極化 19
2.3.3 濃差極化 20
2.4 燃料電池溫度模型 22
2.5 混合器 22
2.6 氣體泵浦 22
2.7 熱交換器 23
2.8 重組器 24
2.9 渦輪機 24
2.10 後燃機 25
2.11 DC-AC轉換器 25
2.12 效率定義 25
2.13 參數條件 26
第三章 數值方法與驗證 27
3.1 數值方法 27
3.2 程式驗證 31
第四章 結果與討論 34
4.1 不同溫度下的電池性能曲線 34
4.1.1 氫質子傳導固態氧化物燃料電池 34
4.1.2 氧離子傳導固態氧化物燃料電池 37
4.2 不同燃料供給量對系統的影響 39
4.2.1 650燃料量 41
4.2.2 600燃料量 43
4.2.3 550燃料量 45
4.2.4 500燃料量 47
4.2.5 450燃料量 49
4.2.6 最大功率與0.7V各燃料量比較 51
4.3 不同系統設計 56
4.3.1 渦輪機與熱回收 57
4.3.2 不同渦輪機位置設計 67
4.3.3 陽極氣體回收 79
第五章 結論與未來建議 96
5.1結論 96
5.2 未來建議 97
第六章 參考文獻 98
參考文獻 [1] S. Ahmed, C. McPheeters, and R. Kumar, “Thermal-Hydraulic model of a monolithic solid oxide fuel cell,” Journal of The Electrochemical Society, Vol. 138, No. 9, 1991.
[2] E. Achenbach, “Three-dimensional and time-dependent simulation of a planar solid oxide fuel cell stack,” Journal of Power Sources, Vol. 49, pp.333-348, 1994.
[3] M. M. Hussain, X. Li, and I. Dincer, “Mathematical modeling of planar solid oxide fuel cells,” Journal of Power Sources, Vol. 161, pp.1012-1022, 2006.
[4] D. A. Noren, and M. A. Hoffman, “Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models,” Journal of Power Sources, Vol. 152, pp.175-181, 2005.
[5] S. H. Chan, and Z. T.Xia, “Polarization effects in electrolyte/electrode-supported solid oxide fuel cells,” Journal of Applied Electrochemistry, Vol. 32, pp.339-347, 2002.
[6] R. Suwanwarangkul, E. Croiset, M. W. Fowler, P. L. Douglas, E. Entchev, and M. A. Douglas, “Performance comparison of Fick^’s, Dusty-gas and Stefan-Maxwell models to predict the concentration overpotential of a SOFC anode,” Journal of Power Sources, Vol. 122, pp.9-18, 2003.
[7] F. Zhao, and A. V. Virkar, “Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters,” Journal of Power Sources, Vol. 141, pp.79-95, 2005.
[8] A. M. Murshed, B. Huang, and K. Nandakumar, “Control relevant modeling of planer solid oxide fuel cell system,” Journal of Power Sources, Vol. 163, pp.830-845, 2007.
[9] A. Demin, and P. Tsiakaras, “Thermodynamic analysis of a hydrogen fed solid oxide fuel cell based on a proton conductor,” International Journal of Hydrogen Energy, Vol. 26, pp. 1103-1108, 2001.
[10] A. Demin, P. Tsiakaras, V. Sobyanin, and Hramova, “Thermodynamic analysis of a methane fed solid oxide fuel cell based on a proton conductor,” Solid State Ionics, Vol. 152-153, pp. 555-560, 2002.
[11] Y. Patcharavorachot, N. P. Brandon, W. Paenguntuek, S. Assabumrungrat, and A. Arpornwichanop, “Analysis of planar solid oxide fuel cells based on proton-conducting electrolyte,” Solid State Ionics, Vol. 181, pp. 1568-1576, 2010.
[12] J. Huang, F. Xie, C. Wang, and Z. Mao, “Development of solid oxide fuel cell materials for intermediate-to-low temperature operation,” International Journal of Hydrogen Energy, Vol. 37, pp. 877-883, 2012.
[13] E. Gorbova, V. Maragou, D. Medvedev, A. Demin, and P. Tsiakaras, “Investigation of the protonic conduction in Sm doped BaCeO3,” Journal of Power Sources, Vol. 181, pp.207-213, 2008.
[14] P. Ranran, W. Yan, Y. Lizhai, and M. Zongqiang, “Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film,” Solid State Ionics, Vol. 177, pp. 389-393, 2006.
[15] D. J. L. Brett, A. Atkinson, N.P. Brandon, and S.J. Skinner, “Intermediate temperature solid fuel cells,” Chemical Society Reviews, Vol. 37, pp. 1568-1578, 2008.
[16] M. Ni, M. K. H. Leung, and D. Y. Leung, “Mathematical modeling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart,”fuel cells, No. 4, pp. 269-278, 2007.
[17] M.Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells : Comparison between proton-conducting electrolyte and oxygen ion-conducting electrolyte,” Journal of Power Sources, Vol. 183, pp.682-686, 2008.
[18] J. Padulles, G. W. Ault, and J. R. McDonald, “An integrated SOFC plant dynamic model for power systems simulation,” Journal of Power Sources, Vol. 86, pp.495-500, 2000.
[19] S. H. Chan, H. K. Ho, and Y. Tian, “Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant,” Journal of Power Sources, Vol. 109, pp.111-120, 2002.
[20] P. Kuchonthara, S. Bhattacharya, and A. Tsushi, “Energy recuperation in solid oxide fuell cell (SOFC) and gas turbine (GT) combined system,” Journal of Power Sources, Vol. 117, pp.7-13, 2003.
[21] K. Onda, T. Iwanari, N. Miyauchi, K. Ito, T. Ohba, Y. Sakaki, and S. Nagata, “Cycle analysis of combined power generation by planar SOFC and gas turbine considering cell temperature and current density distributions,” Journal of The Electrochemical Society, Vol. 150,pp. A1569-A156, 2003.
[22] H. Yoshizumi, K. Takeishi, and S. Kinoshita, “SOFC/MGT using Cheng cycle for high efficiency micro-cogeneration systems,” International Symposium on Transport Phenomena, 16th, 2005.
[23] P. Kazempoor, V. Dorer, and F. Ommi, “Evaluation of hydrogen and methane-fuelled solid oxide fuel cell systems for residential applications : system design alternative and parameter study,” International Journal of Hydrogen Energy, Vol. 34, pp. 8630-8644, 2009.
[24] C. Zamfirescu, and I. Dincer, “Thermodynamic performance analysis and optimization of a SOFC-H+ system,” Thermochimica Acta, Vol. 486, pp. 32-40, 2009.
[25] Y. Li, and Y. Weng, “Performance study of a solid oxide fuel cell and gas turbine hybrid system designed for methane operating with non-designed fuels,” Journal of Power Sources, Vol. 196, pp.3824-3835, 2011.
[26] 曾重仁,陳企甫,黃思翰,林森溥, “質子傳輸固態氧化物燃料電池系統理論效率分析”第六屆全國氫能與燃料電池學術研討會, 2011。
[27] R. J. Braun, S. A. Klein, and D. T. Reindl, “Evaluation of system configurations for solid oxide fuel cell-based micro-combined heat and power generators in residential in residential applications,” Journal of Power Sources, Vol. 158, pp.1290-1305, 2006.
[28] P. E. Santangelo, and P. Tartarini, “Fuel cell systems and traditional technologies. Part I: Experimental CHP approach,” Applied Thermal Engineering, Vol. 27, pp. 1278-1284, 2007.
[29] A. D. Hawkes, P. Aguiar, B. Croxford, M. A. Leach, C. S. Adjiman, and N. P. Brandon, “Solid oxide fuel cell micro combined heat and power system operating strategy : Options for provision of residential space and water heating,” Journal of Power Sources, Vol. 164, pp.260-271, 2007.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2013-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明