博碩士論文 993209004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:54.227.97.219
姓名 曾耀田(Yao-Tien Tseng)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
(Electrochemical deposition of ZnO nano structures on a copper micro-column)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究
★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質
★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)
★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性
★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究★ 銅鎳合金微結構之微電鍍研究
★ 以微電鍍法製備三維銅錫介金屬化合物微結構★ 電鍍製作銅錫合金及Cu6Sn5之三維奈米晶微結構及其特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文研究不同於傳統的積體電路 IC製程及一般微機電系統製程技術,而以影像式微陽極導引電鍍法為基礎,結合奈米氧化鋅半導體電鍍技術,創造出表面披覆奈米氧化鋅之銅微柱複合元件。本研究重點在於如何利用電化學法在銅微柱表面披覆氧化鋅奈米結構物,並依據參數之控制,析鍍出各種形貌不同之奈米柱結構。
金屬銅微柱依製程之不同,可分為間歇式微電鍍與連續式之影像導引微電鍍,本研究選擇以後者作為銅微柱之製程,主要理由為連續式導引微電鍍可製作出品質精細、表面平滑與結構均勻之銅微柱,可允許氧化鋅以電化學法披覆於表面,間歇式微電鍍之優點為速度較快,但其結構粗糙之缺點使氧化鋅不易均勻成長。
氧化鋅之電化學製程參數可分為沉積電位、時間、與前驅物雙氧水濃度作為形貌與結構之探討。陰極動態極化掃描顯示在電位-0.9 V(vs. Ag/AgCl)為極限電流出現,經由掃描式電子顯微鏡觀察確實在此電位時沉積得到較佳之表面形貌。沉積時間為10 分鐘時得到第一層之氧化鋅柱,當時間增加為20分鐘得到互相堆疊且無定向成長之氧化鋅柱狀結構。前驅物雙氧水濃度為5 mM時氧化鋅成米粒狀之形貌,當濃度提升至20 mM時為六方堆積之氧化鋅柱,由XRD分析證實不同濃度之產物皆為氧化鋅之纖鋅礦結構,但由化學分析電子能譜儀(ESCA)分析在較高濃度雙氧水所得到之奈米柱含有較多之Zn(OH)2存在,顯示前驅物濃度為影響氧化鋅形貌之關鍵。摻錫之氧化鋅經微區元素分析(EDS)與化學分析電子能譜證實錫原子由電化學法摻雜,並經由XRD分析顯示並無其他不純物如金屬錫及二氧化錫存在,顯示電化學沉積法摻雜亦為一可行之辦法。
摘要(英) The micron-size metal columns, in an average diameter of 80 μm, have been prepared from a bath of copper sulfate by a novel method. This new technique of micro-electroplating system guided continuously by real-time imaging is different from the traditional technology used IC fabrication and MEMS process. The copper micro column is suitable for electrodepositing ZnO structure due to their smooth surface and fine structure. In this work, electrodeposition of nano ZnO homogeneously coated on the Cu-micro-column by controlling the experimental parameters and carried out with a three-electrode electroplating system was investigated. Surface morphology of the nano ZnO coating was determined by the experimental parameters such as deposition potential, bath composition and deposition time. By means of potentiodynamically cathodic polarization, we found this electroplating at -0.9 V (vs. Ag / AgCl) revealed a limiting current to grow ZnO nano-rod in good surface morphology through examination by the scanning electron microscope (SEM). With increasing the deposition time from 10 minutes to 20 minutes, a dense ZnO film was deposited and grown in non-directions growth. The morphologies of ZnO nano-rod tended to form in hexagonal nano-rod with increasing the H2O2 concentration for 5 mM to 20 mM. The X-Ray Diffraction confirms that all the ZnO prepared in differernt H2O2 concentration were wurtzite textured on (101).The deposited ZnO nano rods have been studied by electron spectroscopy for chemical analysis to identify the chemical bonding in the different H2O2 concentration. They consisted of major Zn(OH)2 covered on the ZnO deposited with the presence of concentrated H2O2. Tin-doped ZnO was examined through energy dispersive spectrometer (EDS) and ESCA to confirm prepared and the tin atoms into ZnO with the electrochemical deposition. The XRD analysis revealed no other impurities phase such as the existence of metal tin and tin dioxide (SnO2), doping by the electrochemical deposition has been proven to be a feasible approach.
關鍵字(中) ★ 連續式影像導引微電鍍
★ 陰極極化掃描
★ 銅微柱
★ 氧化鋅
★ 氧化鋅摻錫
關鍵字(英) ★ real-time imaging guided continuously micro-elec
★ potentiodynamic cathodic polarization
★ Cu micro column
★ ZnO
★ tin-doped ZnO
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
表目錄 x
圖目錄 xi
第一章 前言 1
1-1研究背景 1
1-2研究動機 2
1-3研究目的 3
第二章 文獻回顧與原理學說 4
2-1電鍍原理 4
2-2微電鍍之發展 4
2-3氧化鋅之簡介 9
2-3-1 氣相合成法(Vapor phase synthesis) 9
2-3-2 有機金屬化學氣相沉積-MOCVD法 10
2-3-3 液相合成法(Solution phase synthesis) 10
2-3-4 電化學沉積法(Electrodeposition) 11
2-3-5氧化鋅摻雜錫 13
第三章 實驗步驟與研究方法 14
3-1 實驗流程與規劃 14
3-2氧化鋅基材(銅微柱)之準備 14
3-2-1 微陽極與氣泡去除微噴嘴之製備 14
3-2-2 循環系統 15
3-2-3 銅微柱之製備 15
3-2-4 鍍液配製與實驗槽體 16
3-2-5 微電鍍所使用之儀器 16
3-3氧化鋅奈米柱之製備 17
3-3-1成長奈米氧化鋅之實驗裝置 17
3-3-2改變沉積電位 18
3-3-3改變沉積時間 18
3-3-4改變前驅物雙氧水濃度 18
3-3-5本實驗所使用之分析儀器 19
第四章 實驗結果 21
4-1銅微柱之微電鍍製程 21
4-2不同實驗參數成長氧化鋅所得表面形貌 21
4-2-1動態極化掃描 21
4-2-2沉積電位對氧化鋅奈米結構物形貌之影響 22
4-2-3沉積時間對於氧化鋅奈米結構物形貌影響 23
4-2-4不同雙氧水溶液濃度對氧化鋅奈米柱之影響 24
4-2-5 不同雙氧水濃度對ESCA分析之結果 25
4-2-6摻雜錫原子對氧化鋅的影響 25
第五章 討論 27
5-1 微電鍍製程之差異 27
5-2 不同電位沉積氧化鋅對形貌之影響 28
5-3 沉積時間對氧化鋅形貌之影響 28
5-4 不同前驅物雙氧水濃度沉積氧化鋅奈米柱之影響 30
5-4-1 雙氧水濃度對氧化鋅奈米結構物形貌之影響 30
5-4-2 氧化鋅ESCA分析 31
5-5 氧化鋅奈米柱摻錫之影響 32
第六章 結論 34
第七章 未來展望 35
參考文獻 36
參考文獻 [1]. John D. Madden and Ian W. Hunter, Journal of micro-electro-mechanical systems. vol. 5 No.1, pp 24 – 32, 1996.
[2]. T. C. Chen, Y. R. Hwang, J. C. Lin and Y. J. Ciou, International Journal of Electrochemical Science, Volume 5, December, pp. 1810 – 1820, 2010.
[3]. J. C. Lin, T. K. Chang, J. H. Yang, J. H. Jeng, D. L. Lee and S. B. Jiang, Journal of Micromechanics and Microengineering. 19, 015030, 2009.
[4]. J. H. Yang, J. C. Lin, T. K. Chang, X. B. You and S. B. Jiang, Journal of Micromechanics and Microengineering. 19 025015, 2009.
[5]. J. C. Lin, J. H. Yang, T. K. Chang and H. B. Jiang, Electrochimica Acta, volume 54, pp. 5703-5708, 2009.
[6]. J. C. Lin, T. K. Chang , J. H. Yang , Y. S. Chen and C. L. Chuang, Electrochemical Acta, Vol. 55, Issue 6, February, pp. 1888-1894, 2010.
[7]. Display Search, “Low Temperature Polysilicon and IGZO Production Forecast to Skyrocket 150% in 2012”, 2011.
[8]. ARC Advisory Group, “Toxic and Combustible Gas Detector Market to Reach $823 Million”, Sensors & Field Devices, 2009.
[9]. E. M. El-Giar and D.J. Thomson, Proceedings of 1997 Conference on Communications, Power and Computing; Winnipeg, MB; pp.327-332, May 22-23, 1997.
[10]. E. M. El-Giar, R A Said, G E Bridges and D. J. Thomson, Journal of The Electrochemical Society, Vol. 147, Issue 2, pp. 586-591, 2000.
[11]. S. H. Yeo and J. H. Choo, Journal of Micromechanics and Microengineering, Vol. 11, pp. 435 – 442, 2001.
[12]. S. H. Yeo, J. H. Choo and K. H. A. Sim, Journal of Micromechanics and Microengineering, Vol. 12, pp. 271 – 279, 2001.
[13]. S. K. Seol, J. M. Yi, X. Jin, C. C. Kim, J. H. Je, W. L. Tsai, P. C. Hsu, Y. Hwu, C. H. Chen, L. W. Chang and G. Margaritondo, Electrochemical and Solid-State Letter, Vol. 7, Issue 9, pp. C95-C97, 2004.
[14]. S. K. Seol, J. T. Kim, J. H Je, Y. Hwu and G. Margaritondo, Electrochemical and Solid-State Letter, Vol. 10, Issue 5, pp. C44-C46, 2007.
[15]. C. S. Lin, C. Y. Lee, J. H. Yang and Y. S. Huang, Electrochemical and Solid-State Letter, Vol. 8, Issue 9, pp. C125-C129, 2005.
[16]. C. Y. Lee, C. S. Lin and B. R. Lin, Journal of Micromechanics and Microengineering, Vol. 18, 105008, 2008
[17]. Jie Hu and Min-Feng Yu, Science, Vol. 329, No. 5989, pp. 313-316, 2010.
[18]. 葉柏青, “微陽極導引電鍍與監測”,國立中央大學機械工程研究所碩士論文, 2003.
[19]. J. C. Lin, S. B. Jang, D. L. Lee, C. C. Chen, P. C. Yeh, T. K. Chang and J. H. Yang, Journal of Micromechanics and Microengineering, Vol. 15, 2405, 2005.
[20]. J. H. Yang, J. C. Lin, T. K. Chang, G. Y. Lai and S. B. Jiang, Journal of Micromechanics and Microengineering, Vol. 18, 055023, 2008.
[21]. Y. R. Hwang, J. C. Lin and T. C. Chen, International Journal of Electrochemical Science, Vol. 7, pp. 1359 – 1370, 2012.
[22]. R. R. Reeber, Journal of Applied Physics, vol. 41, Issue 13, pp. 5063-5066, 1970.
[23]. G. C. Yi, C. Wang and W. I. Park, Semiconductor Science and Technology, Vol. 20, No. 4, pp. S22-S34, 2005.
[24]. G. Gundiah, F.L. Deepak, A. Govindaraj and C.N.R. Rao, Topics in Catalysis, Vol. 24, No. 1, pp. 137-146, 2003.
[25]. S. C. Lyu, Y. Zhang, C. J. Lee, H. Ruh and H. J. Lee, Chemistry of Materials, Vol. 15, No.17, pp. 3294-3299, 2003.
[26]. S. Y. Li, C. Y. Lee and T. Y. Tseng, Journal of Crystal Growth, Vol. 247, Issues 3–4,pp. 357–362, 2003.
[27]. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Advanced Materials, Vol. 13, Issue 2, pp. 113–116, 2001.
[28]. Y. W. Wang, L. D. Zhang, G. Z. Wang, X. S. Peng, Z.Q. Chu and C.H. Liang, Journal of Crystal Growth, Vol. 234, Issues 1,pp. 171–175, 2003.
[29]. P. X. Gao, Y. Ding and Z. L. Wang, Nano Letters, Vol. 3, No. 9, pp. 1315-1320, 2003.
[30]. M. E. Fragala, Y. Aleeva and G. Malandrino, Thin Solid Films, Vol. 519, Issue 22, pp. 7694–7701, 2011.
[31]. H. G. Chen, H. D. Lian, S. P. Hung and C. F. Wang, Journal of Crystal Growth, In Press, 2012.
[32]. S. Baruah and J. Dutta, Science and Technology of Advanced Materials, Vol. 10, 013001, 2009.
[33]. S. Peulon and D. Lincot, Advanced Materials, Vol. 8, Issue 2, pp. 166–170, 1996.
[34]. S. Peulon and D. Lincot, Journal of the Electrochemical Society, Vol. 145, pp. 864-874, 1998.
[35]. Masanobu Izaki and Takashi Omi, Applied Physics Letters, Vol.68, Issue 17, pp. 2439-2440, 1996.
[36]. Masanobu Izaki and Takashi Omi, Journal of the Electrochemical Society, Vol. 144, pp. 1949-1952, 1997.
[37]. G. P. Mohanty and L. V. Azaroff, Journal of Chemical Physics, Vol. 35, Issue 4, pp. 1268-1270, 1961.
[38]. M. Lai and D. J. Riley, Chemistry of Materials,Vol. 18, Issue 9, pp. 2233–2237, 2006.
[39]. V. Shelke, M.P. Bhole and D.S. Patil, Solid State Sciences, Vol. 14, Issue 6, pp. 705–710, 2012
[40]. R. H. Petrucci, W. S. Harwood and F. G. Herring, General chemistry: principles and modern applications, Vol. 1, 2002.
[41]. S. T. Shishiyanu, T. S. Shishiyanu and O. I. Lupan, Sensors and Actuators B: Chemical, Vol. 107, Issue 1, pp. 379–386, 2005.
[42]. N. J. Nicholas, G. V. Franks and W. A. Ducker, CrystEngComm, Vol. 14, pp. 1232-1240, 2012.
[43]. M. Chen, Z. H. Wang, D. M. Han, F. B. Gu and G. S. Gu, Vol. 115, Issue 26, pp. 12763–12773, 2011.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2012-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明